ÙetLe keâe@efcheefšMeve šeFcme SSC JuniorEngineer Online Exam Mechanical Engineering hejer#ee %eeve keâesMe (2007-2019 All Sets) efJemle=le JÙeeKÙee meefnle nue ØeMve-he$e mebheeove SJeb mebkeâueve SSC JE cewkesâefvekeâue hejer#ee efJeMes<e%e meefceefle uesKeve menÙeesie Fbpeer. efJeJeskeâ Megkeäuee, Fbpeer. ye=pesMe, Fbpeer. jeceefveJeeme keâchÙetšj «eeefHeâkeäme yeeueke=â<Ce ef$ehee"er, Ûejve efmebn mebheeokeâerÙe keâeÙee&ueÙe ÙetLe keâe@efcheefšMeve šeFcme 12, ÛeÛe& uesve, ØeÙeeiejepe-211002 cees. : 9415650134 Email : [email protected] website : www.yctbooks.com ØekeâeMeve Iees<eCee mecheeokeâ SJeb ØekeâeMekeâ Deevevo kegâceej cenepeve ves Deej.S. efmekeäÙeesefjšer efØevšme&, ØeÙeeiejepe mes cegefõle keâjJeekeâj, ÙetLe keâe@efcheefšMeve šeFcme, 12, ÛeÛe& uesve, ØeÙeeiejepe-2 kesâ efueS ØekeâeefMele efkeâÙee~ Fme hegmlekeâ keâes ØekeâeefMele keâjves ceW mecheeokeâ SJeb ØekeâeMekeâ Éeje hetCe& meeJeOeeveer yejleer ieF& nw efHeâj Yeer efkeâmeer $egefš kesâ efueS Deehekeâe megPeeJe Deewj menÙeesie meeoj Dehesef#ele nw~ cetuÙe : 995/- efkeâmeer Yeer efJeJeeo keâer efmLeefle ceW vÙeeefÙekeâ #es$e ØeÙeeiejepe nesiee~ efJe<eÙe-metÛeer (cid:1) SSC petefveÙej FbpeerefveÙej cewkesâefvekeâue keâe hejer#ee hee"dÙe›eâce--------------------------------------------------------------------------------------3-4 (cid:1) SSC cewkesâefvekeâue petefveÙej FbpeerefveÙeefjbie hetJe& hejer#ee ØeMve-he$eeW keâe efJeMues<eCe Ûeeš&------------------------------------------------------------------5 (cid:1) SSC cewkesâefvekeâue JE hetJe& hejer#ee ØeMve-he$eeW keâe DeOÙeeÙeJeej efJeMues<eCe Ûeeš&----------------------------------------------------------------------6 ■ SSC Junior Engineer Online Exam 2019 (CPWD/CWC/MES)-----------------------------------------------------------------7-45 Mechanical Engineering [Time : 3-5 pm, Exam Date : 25 September, 2019] ■ SSC Junior Engineer Online Exam 2019 (CPWD/CWC/MES)---------------------------------------------------------------46-79 Mechanical Engineering [Time : 10.15 am, Exam Date : 27 September, 2019] ■ SSC Junior Engineer Online Exam 2019 (CPWD/CWC/MES)--------------------------------------------------------------80-112 Mechanical Engineering [Time : 3-5 pm, Exam Date : 27 September, 2019] ■ SSC Junior Engineer Online Exam 2018 (CPWD/CWC/MES)------------------------------------------------------------113-149 Mechanical Engineering [Time : 10.15 am, Exam Date : 22 January, 2018] ■ SSC Junior Engineer Online Exam 2018 (CPWD/CWC/MES)------------------------------------------------------------150-184 Mechanical Engineering [Time : 3.15 pm, Exam Date : 22 January, 2018] ■ SSC Junior Engineer Online Exam 2018 (CPWD/CWC/MES)------------------------------------------------------------185-222 Mechanical Engineering [Time : 10.15 am, Exam Date : 23 January, 2018] ■ SSC Junior Engineer Online Exam 2018 (CPWD/CWC/MES)------------------------------------------------------------223-259 Mechanical Engineering [Time : 3.15 pm, Exam Date : 23 January, 2018] ■ SSC Junior Engineer Online Exam 2018 (CPWD/CWC/MES)------------------------------------------------------------260-295 Mechanical Engineering [Time : 10.15 am, Exam Date : 24 January, 2018] ■ SSC Junior Engineer Online Exam 2018 (CPWD/CWC/MES)------------------------------------------------------------296-332 Mechanical Engineering [Time : 3.15 pm, Exam Date : 24 January, 2018] ■ SSC Junior Engineer Online Exam 2018 (CPWD/CWC/MES)------------------------------------------------------------333-368 Mechanical Engineering [Time : 10.15 am, Exam Date : 25 January, 2018] ■ SSC Junior Engineer Online Exam 2018 (CPWD/CWC/MES)------------------------------------------------------------369-404 Mechanical Engineering [Time : 3.15 pm, Exam Date : 25 January, 2018] ■ SSC Junior Engineer Online Exam 2018 (CPWD/CWC/MES)------------------------------------------------------------405-442 Mechanical Engineering [Time : 10.15 am, Exam Date : 27 January, 2018] ■ SSC Junior Engineer Online Exam 2018 (CPWD/CWC/MES)------------------------------------------------------------443-479 Mechanical Engineering [Time : 3.15 pm, Exam Date : 27 January, 2018] ■ SSC Junior Engineer Online Exam 2018 (CPWD/CWC/MES)------------------------------------------------------------480-516 Mechanical Engineering [Time : 10.15 am, Exam Date : 29 January, 2018] ■ SSC Junior Engineer Online Exam 2018 (CPWD/CWC/MES)------------------------------------------------------------517-552 Mechanical Engineering [Time : 3.15 pm, Exam Date : 29 January, 2018] ■ SSC Junior Engineer Online Exam 2017 (CPWD/CWC/MES)------------------------------------------------------------553-594 Mechanical Engineering [Time : 10 am, Exam Date : 1 March, 2017] ■ SSC Junior Engineer Online Exam 2017 (CPWD/CWC/MES)------------------------------------------------------------595-630 Mechanical Engineering [Time : 2.45 pm, Exam Date : 1 March, 2017] ■ SSC Junior Engineer Online Exam 2017 (CPWD/CWC/MES)------------------------------------------------------------631-671 Mechanical Engineering [Time : 10 am, Exam Date : 2 March, 2017] ■ SSC Junior Engineer Online Exam 2017 (CPWD/CWC/MES)------------------------------------------------------------672-708 Mechanical Engineering [Time : 2.45 pm, Exam Date : 2 March, 2017] ■ SSC Junior Engineer Online Exam 2017 (CPWD/CWC/MES)------------------------------------------------------------709-744 Mechanical Engineering [Time : 10 am, Exam Date : 3 March, 2017] ■ SSC Junior Engineer Online Exam 2017 (CPWD/CWC/MES)------------------------------------------------------------745-784 Mechanical Engineering [Time : 2.45 pm, Exam Date : 3 March, 2017] ■ SSC Junior Engineer Online Exam 2017 (CPWD/CWC/MES)------------------------------------------------------------785-825 Mechanical Engineering [Time : 10 am, Exam Date : 4 March, 2017] ■ SSC Junior Engineer Online Exam 2017 (CPWD/CWC/MES)------------------------------------------------------------826-866 Mechanical Engineering [Time : 2.45 pm, Exam Date : 4 March, 2017] ■ SSC Junior Engineer Exam 2015 (CPWD/CWC/MES)---------------------------------------------------------------------867-898 Mechanical Engineering ■ SSC Junior Engineer Exam 2014 (CPWD/CWC/MES)---------------------------------------------------------------------899-928 Mechanical Engineering (Morning Shift) ■ SSC Junior Engineer Exam 2014 (CPWD/CWC/MES)---------------------------------------------------------------------929-956 Mechanical Engineering (Evening Shift) ■ SSC Junior Engineer Exam 2013 (CPWD/CWC/MES)---------------------------------------------------------------------957-985 Mechanical Engineering ■ SSC Junior Engineer Exam 2012 (CPWD/CWC/MES)--------------------------------------------------------------------986-1013 Mechanical Engineering ■ SSC Junior Engineer Exam 2011 (CPWD/CWC/MES)------------------------------------------------------------------1014-1034 Mechanical Engineering ■ SSC Junior Engineer Exam 2010 (CPWD/CWC/MES)------------------------------------------------------------------1035-1055 Mechanical Engineering ■ SSC Junior Engineer Exam 2009 (CPWD/CWC/MES)------------------------------------------------------------------1056-1073 Mechanical Engineering ■ SSC Junior Engineer Exam 2008 (CPWD/CWC/MES)------------------------------------------------------------------1074-1090 Mechanical Engineering ■ SSC Junior Engineer Exam 2007 (CPWD/CWC/MES)------------------------------------------------------------------1091-1104 Mechanical Engineering 2 SSC Junior Engineer Paper Syllabus MECHANICAL ENGINEERING The Examination will be conducted in two stages: A. Paper-I (Pre) (200 marks) B. Paper-II (Mains) (300 marks) Total Written Test (500 marks) Written Test : Paper Subject Max. Mark Duration & Timing Paper-I (i) General Intelligence & Reasoning 50 2 Hours Objective type (ii) General Awareness 50 (iii) General Engineering (Mechanical) 100 Paper-II General Engineering (Mechanical) 300 2 Hours Conventional There will be negative marking of 0.25 marks for each wrong answer in Paper-I. Candidates are, therefore advised to keep this in mind while answering the questions. Paper-II will be Descriptive Type. Syllabus of Examination (cid:1)(cid:1)(cid:1)(cid:1) The standard of the questions in Engineering subjects will be approximately of the level of Diploma in Mechanical Engineering from a recognized Institute, Board or University recognized by All India Board of Technical Education. All the questions will be set in SI units. The details of the syllabus are given below. Paper-I (cid:1)(cid:1)(cid:1)(cid:1) General Intelligence & Reasoning: The Syllabus for General Intelligence would include questions of both verbal and non-verbal type. The test may include questions on analogies, similarities, differences, space visualization, problem solving, analysis, judgment, decision making, visual memory, discrimination, observation, relationship concepts, arithmetical reasoning, verbal and figure classification, arithmetical number series etc. The test will also include questions designed to test the candidate’s abilities to deal with abstract ideas and symbols and their relationships, arithmetical computations and other analytical functions. (cid:1)(cid:1)(cid:1)(cid:1) General Awareness: Questions will be aimed at testing the candidate’s general awareness of the environment around him/her and its application to society. Questions will also be designed to test knowledge of current events and of such matters of everyday observations and experience in their scientific aspect as may be expected of any educated person. The test will also include questions relating to India and its neighbouring countries especially pertaining to History, Culture, Geography, Economic Scene, General Polity and Scientific Research, etc. These questions will be such that they do not require a special study of any discipline. (cid:1)(cid:1)(cid:1)(cid:1) General Engineering : Civil and Structural, Electrical & Mechanical Mechanical Engineering (cid:1)(cid:1)(cid:1)(cid:1) Theory of Machines and Machine Design, Engineering Mechanics and Strength of Materials, Properties of Pure Substances, 1st Law of Thermodynamics, 2nd Law of Thermodynamics, Air standard Cycles for IC Engine Performance, IC Engines Combustion, IC Engine Cooling & Lubrication, Rankine cycle of System, Boilers, Classification, Specification, Fitting & Accessories, Air Compressors & their cycles, Refrigeration cycles, Principle of Refrigeration Plant, Nozzles & Steam Turbines. Properties & Classification of Fluids, Fluid Statics, Measurement of Fluid Pressure, Fluid kinematics, Dynamics of Ideal fluids, Measurement of Flow rate, basic principles, Hydraulic Turbines, Centrifugal Pumps, Classification of steels. 3 Detailed Syllabus JE Mechanical Engineering Theory of Machines and Machine Design (cid:1)(cid:1)(cid:1)(cid:1) Concept of simple machine, Four bar linkage and link motion, Flywheels and fluctuation of energy, Power transmission by belts – V-belts and Flat belts, Clutches – Plate and Conical clutch, Gears – Type of gears, gear profile and gear ratio calculation, Governors – Principles and classification, Riveted joint, Cams, Bearings, Friction in collars and pivots. Engineering Mechanics and Strength of Material (cid:1)(cid:1)(cid:1)(cid:1) Equilibrium of Forces, Law of motion, Friction, Concepts of stress and strain, Elastic limit and elastic constants, Bending moments and shear force diagram, Stress in composite bars, Torsion of circular shafts, Bucking of columns – Euler’s and Rankin’s theories, Thin walled pressure vessels. Thermal Engineering Properties of Pure Substances: (cid:1)(cid:1)(cid:1)(cid:1) P-V & P-T diagrams of pure substance like H O, Introduction of steam table with respect to steam generation 2 process; definition of saturation, wet & superheated status. Definition of dryness fraction of steam, degree of superheat of steam. H-S chart of steam (Mollier’s Chart). 1st Law of Thermodynamics : (cid:1)(cid:1)(cid:1)(cid:1) Definition of stored energy & internal energy, 1stlaw of Thermodynamics of cyclic process, Non-Flow Energy Equation, Flow Energy & Definition of Enthalpy, Conditions for Steady State and Steady Flow; Steady State Steady Flow Energy Equation. 2nd Law of Thermodynamics : (cid:1)(cid:1)(cid:1)(cid:1) Definition of Sink, Source Reservoir of Heat, Heat Engine, Heat Pump & Refrigerator; Thermal Efficiency of Heat Engines & co-efficient of performance of Refrigerators, Kelvin – Planck & Clausius Statements of 2nd Law of Thermodynamics, Absolute or Thermodynamic Scale of temperature, Clausius Integral, Entropy change calculation of ideal gas processes. Carnot Cycle & Carnot Efficiency, PMM-2; definition & its impossibility. Air standard Cycles for IC engines : (cid:1)(cid:1)(cid:1)(cid:1) Otto cycle; plot on P-V, T-S Planes; Thermal Efficiency, Diesel Cycle; Plot on P-V, T-S planes; Thermal efficiency. IC Engine Performance, IC Engine Combustion, IC Engine Cooling & Lubrication. Rankine cycle of steam : (cid:1)(cid:1)(cid:1)(cid:1) Simple Rankine cycle plot on P-V, T-S, H-S planes, Rankine cycle efficiency with & without pump work. Boilers; Classification; Specification; Fittings & Accessories : Fire Tube & Water Tube Boilers. Air Compressors & their cycles; Refrigeration cycles; Principle of a Refrigeration Plant; Nozzles & Steam Turbines Fluid Mechanics & Machinery Properties & Classification of Fluid : (cid:1)(cid:1)(cid:1)(cid:1) Ideal & real fluids, Newton’s law of viscosity, Newtonian and Non-Newtonian fluids, compressible and incompressible fluids. Fluid Statics : Pressure at a point. Measurement of Fluid Pressure : Manometers; U-tube, Inclined tube. Fluid Kinematics : Stream line, laminar & turbulent flow, external & internal flow, continuity equation. Dynamics of ideal fluids : Bernoulli’s equation, Total head; Velocity head: Pressure head; Application of Bernoulli’s equation. Measurement of Flow rate Basic Principles : Venturimeter, Pilot tube, Orifice meter Hydraulic Turbines : Classifications, principles Centrifugal Pumps : Classifications, Principles, Performance. Production Engineering Classification of Steels : (cid:1)(cid:1)(cid:1)(cid:1) Mild steal & alloy steel, Heat treatment of steel, Welding – Arc Welding, Gas Welding, Resistance Welding, Special Welding Techniques i.e. TIG, MIG, etc. (Brazing & Soldering), Welding Defects & Testing; Foundry & Casting – methods, defects, different casting processes, Forging, Extrusion, etc, Metal cutting principles, cutting tools, Basic Principles of machining with (i) Lathe (ii) Milling (iii) Drilling (iv) Shaping (v) Grinding, Machines, tools & manufacturing processes. 4 cewkesâefvekeâue (SmeSmemeer) petefveÙej FbpeerefveÙeefjbie hetJe& ØeMve-he$eeW keâe efJeMues<eCe Ûeeš& (Mechanical SSC JE Previous Papers Analysis Chart) hejer#ee Je<e& kegâue ØeMve (šsefkeävekeâue) kegâue ØeMve (vee@ve šsefkeävekeâue) SSC–JE 2019 (25 September Evening) 100 100 SSC–JE 2019 (27 September Morning) 100 100 SSC–JE 2019 (27 September Evening) 100 100 SSC–JE 2018 (22 January Morning) 100 100 SSC–JE 2018 (22 January Evening) 100 100 SSC–JE 2018 (23 January Morning) 100 100 SSC–JE 2018 (23 January Evening) 100 100 SSC–JE 2018 (24 January Morning) 100 100 SSC–JE 2018 (24 January Evening) 100 100 SSC–JE 2018 (25 January Morning) 100 100 SSC–JE 2018 (25 January Evening) 100 100 SSC–JE 2018 (27 January Morning) 100 100 SSC–JE 2018 (27 January Evening) 100 100 SSC–JE 2018 (29 January Morning) 100 100 SSC–JE 2018 (29 January Evening) 100 100 SSC–JE 2017 (1 March Morning) 100 100 SSC–JE 2017 (1 March Evening) 100 100 SSC–JE 2017 (2 March Morning) 100 100 SSC–JE 2017 (2 March Evening) 100 100 SSC–JE 2017 (3 March Morning) 100 100 SSC–JE 2017 (3 March Evening) 100 100 SSC–JE 2017 (4 March Morning) 100 100 SSC–JE 2017 (4 March Evening) 100 100 SSC–JE 2015 100 100 SSC–JE 2014 (Morning) 100 100 SSC–JE 2014 (Evening) 100 100 SSC–JE 2013 100 100 SSC–JE 2012 100 100 SSC–JE 2011 50 100 SSC–JE 2010 50 100 SSC–JE 2009 37 25 SSC–JE 2008 37 25 SSC–JE 2007 37 25 Total 3011 3075 5 Mechanical SSC JE Topic wise Analysis Chart YEAR 7 8 9 0 1 2 3 4 (M) 4 (E) 5 st7 1 March (M) st7 1 March (E) nd7 2 March(M) nd7 2 March (E) rd7 3 March (M) rd7 3 March (E) th7 4 March (M) th7 4 March (E) 22 Jan. 2018 (M) 22 Jan. 2018 (E) 23 Jan. 2018 (M) 23 Jan. 2018 (E) 24 Jan. 2018 (M) 24 Jan. 2018 (E) 25 Jan. 2018 (M) 25 Jan. 2018 (E) 27 Jan. 2018 (M) 27 Jan. 2018 (E) 29 Jan. 2018 (M) 29 Jan. 2018 (E) 25 Sep. 2019 (E) 27 Sep. 2019 (M) 27 Sep. 2019 (E) 00 00 00 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 E E E E E E E E E E E E E E E 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 J J J J J J J J J J J J J J J C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S Mechanics 1 2 1 1 5 2 3 6 10 5 – 12 4 14 1 4 4 2 3 – 3 3 2 – 2 5 4 3 4 4 1 2 2 SOM 6 5 7 9 6 10 11 7 10 7 17 2 9 2 15 14 13 9 11 15 13 7 13 14 12 10 4 12 11 12 3 3 2 TOM 6 6 5 5 8 6 12 13 12 12 8 7 2 16 3 2 5 4 4 14 16 13 16 14 15 15 14 14 13 13 15 2 3 1 DOM – 2 3 1 2 8 3 4 2 6 6 12 1 10 1 9 3 7 2 2 1 6 2 – 2 1 2 4 2 2 2 1 3 FM 6 3 3 6 5 12 9 28 23 23 28 14 20 17 20 14 26 26 29 21 22 29 18 29 25 18 30 21 18 19 19 27 23 HM – 3 2 3 3 6 7 4 5 8 1 13 5 12 10 7 3 2 – 8 10 1 11 – 1 11 – 8 `12 11 12 7 11 TD 7 2 2 6 3 13 8 6 8 6 9 13 10 8 12 13 20 21 11 16 18 10 16 9 10 21 11 15 16 18 11 10 9 PP 4 – – 4 6 8 6 13 8 14 1 2 10 4 7 2 1 1 9 8 5 7 10 10 11 6 11 8 3 7 20 20 24 HT – – – – – 2 – – – 2 19 2 6 3 4 14 7 5 – – – – – – – – – – – – – – – RAC – – – – – 3 2 3 1 6 1 15 6 11 5 4 2 3 1 0 2 1 0 – 1 – 3 1 1 – 12 10 8 IC Engine 2 4 2 2 4 9 13 14 11 8 1 1 1 6 5 3 3 2 10 6 3 12 6 14 8 4 11 5 9 5 13 12 11 WT 2 4 3 2 1 3 8 – 2 3 3 – 2 – 6 2 4 5 1 – 3 – 1 – 1 3 – 6 1 2 – – – PT 3 7 9 8 9 12 17 3 8 4 7 2 8 2 10 4 9 9 – 4 3 1 3 1 1 4 4 2 7 3 – – – EM – – – – – – – – – – – 10 2 8 2 5 1 4 8 3 3 7 3 8 6 3 6 1 3 1 5 5 6 MMED – – – – – – – – – – – – – – – – – – – 1 1 – 1 – – – – 1 – 1 – – – Miscellaneous – – – – – – – – – – – – – – – – – – 1 – –– – – – – 4 – – – – – – – TOTAL 37 37 37 50 50 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 Mech – Mechanics, SOM – Strength of Materials, TOM – Theory of Machines, DOM – Design of Machine, FM – Fluid Mechanics, HM – Hydraulic Machines, TD – Thermodynamics, PP – Power Plant Engineering, HT – Heat Transfer, RAC – Refrigeration and Air Conditioning, IC Engine – Internal Combustion Engine, WT- Workshop Technology, PT – Production Technology, MMED- Mechanical Measurement and Engineering Drawing, EM – Engineering Materials SSC Junior Engineer Mechanical Online Exam 2019 CPWD/CWC/MES Mechanical Engineering Time : 3-5 pm] [Exam Date : 25 September, 2019 TECHNICAL : Mechanical 3. A nozzle is not used in a : veespeue keâe GheÙeesie efkeâmeceW veneR efkeâÙee peelee nw? 1. 500 kJ of heat is removed from a cooled space, (a) vapour compression refrigeration system in a reverse Carnot cycle refrigerator, by an Jee<he mebheer[ve ØeMeerleve ØeCeeueer evaporator by refrigerant -23ºC. The change in (b) steam turbine/Jee<he keâe šjyeeFve entropy of the refrigerant is: -23ºC hej ØeMeerlekeâ Éeje Skeâ Jeeeq<he$e Éeje, efjJeme& (c) rocket/je@kesâš keâeveexš jseføeâpejsšj ceW, Skeâ Meerefleue mLeeve mes 500 kJ (d) jet engine/pesš Fbpeve T<cee efvekeâeueer peeleer nw, lees ØeMeerlekeâ keâer Svš^eheer ceW Ans. (a) : Jee<he mebheer[ve jsøeâerpejsMeve efmemšce (Vapour heefjJele&ve %eele keâerefpeS~ compression refrigeration system) ceW vee@peue keâe ØeÙeesie vener (a) 2 kJ/K (b) -2 kJ/K efkeâÙee peelee nw~ Fmekesâ Deefleefjòeâ mšerce šjyeeFve, je@kesâš leLee pesš (c) 21.74kJ/ºC (d) 0.5 kJ/K Fbpeve ceW vee@peue keâe ØeÙeesie efkeâÙee peelee nw~ Ans. (a) : Q = 500 kJ • Jee<he mebheer[ve jsøeâerpejsMeve efmemšce ces FJeeshejsšj, mebheer[keâ 2 T2 = 273 - 23 = 250 K (compressor), kebâ[smej leLee LeÇe@šue JeeuJe ØeÙeesie efkeâS peeles nQ~ • vee@peue Éeje Yeehe Ùee iewme keâer T<ceerÙe Tpee& keâes ieeflepe Tpee& ceW heefjJeefle&le efkeâÙee peelee nw~ Fme Øekeâej vee@peue kesâ efvekeâeme hej Yeehe keâe Jesie yengle DeefOekeâ neslee nw Deewj Yeehe Ùee iewme Skeâ pesš kesâ ™he ceW efvekeâueleer nw~ 4. Identify the incorrect statement, from the dQ Q Svš^e@heer ceW heefjJele&ve (ds)= = 2 following options: T T In a multi-stage reciprocating compressor, the 2 process of intercooling.................. 500 ds= ⇒ ds = 2 kJ/K efvecveefueefKele efJekeâuheeW ceWs mes, ieuele keâLeve keâer henÛeeve 250 keâerefpeS : 2. Heat of 1000 kJ is supplied to a heat engine Skeâ yeng-ÛejCeerÙe ØelÙeeieeceer kebâØesmej ceW Fbšjketâefuebie keâer from a reservoir at 1000K, and it rejects waste heat to a river at 300K engine's work output is Øeef›eâÙee ..................... nw~ 400 kJ. Its efficiency is: (a) reduces the compression work needed 1000 kJ keâer T<cee, 1000K hej ceewpeto meb«eenkeâ mes DeeJeMÙekeâ keâchesÇMeve keâeÙe& keâes keâce keâjleer nw T<cee Fbpeve keâes Deehetefle& keâer peeleer nw, Deewj Ùen 300K (b) final compressed air delivery pressure is hej DeheefMe„ T<cee keâes veoer ceW efvekeâeuelee nw~ Fme Fbpeve higher as compared to single stage compression keâe keâeÙe& DeeGšhegš 400 kJ nw~ Fmekeâer o#elee........... nw~ Skeâue ÛejCe mebheer[ve keâer leguevee ceW Debeflekeâ mebheeref[le JeeÙeg (a) 65% (b) 40% efJelejCe oeye DeefOekeâ neslee nw (c) 0.30% (d) 57.14% (c) is used during compression of air in two or Ans. (b) : efoÙee nw, more stages/keâe GheÙeesie oes Ùee DeefOekeâ ÛejCeeW ceW JeeÙeg kesâ mebheer[ve kesâ oewjeve efkeâÙee peelee nw Q = 1000 kJ, T = 1000 K A H W = 400 kJ, T = 300 K (d) cools the compressed air from each stage L before admission to the next stage/Deieues ÛejCe ceW ØeJesMe keâjves mes henues ØelÙeskeâ ÛejCe ceW mebheeref[le JeeÙeg keâes "b[e keâjleer nw Ans. (b) : Skeâ yengheoerÙe JeeÙeg mebheer[keâ (Multi-Stage Air Compressor) keâes Ûeueeves kesâ efueS DeeJeMÙekeâ Meefòeâ keâes ceOÙe Meerlekeâ (inter-cooler) kesâ Éeje keâce efkeâÙee peelee nw keäÙeeWefkeâ ceOÙe Fbpeve keâer o#elee (η)= W Meerlekeâ kesâ JeeÙeg keâes ØeJeeefnle keâjkesâ Gmekesâ leeheceeve ceW keâceer keâer peeleer E Q nw, efpememes Deieues efmeefueC[j ceW mebheer[ve keâeÙe& keâce KeÛe& nes~ Fme A 400 Øekeâej leerve efmeefueC[j kesâ mebheer[keâ ceW oes yeej ceOÙe Meerleueve keâjkesâ oes η = ⇒ η =40% E 1000 E efmeefueC[jeW ceW keâeÙe& keâer yeÛele keâer peeleer nw~ SSC JE Online Mechanical 2019 (Ex. date 25.09.2019) 3 pm 7 5. Identify the incorrect statement, from the Ans. (d) : efceòeesheÙeespekeâ (Economiser) Deeflelehle Yeehe keâe following options related to the below Glheeove veneR keâjlee nw~ efceòeesheÙeespekeâ Skeâ efJeMes<e Øekeâej keâe YejCe statement: heeveer hetJe& leehekeâ (feed water pre-heater) nw, efpemeceW oiOe iewmeeW Superheated steam is used in a Rankine power (hot gases) keâer yeÛeer T<cee mes heeveer keâes leeefhele keâjves ceWs ØeÙeesie cycle ................... efkeâÙee peelee nw~ Fme Øekeâej Heäuet iewme ceW ve„ nesves Jeeueer T<cee heeveer veerÛes efoS ieS keâLeve mes mebyebefOele efvecve efJekeâuheeW ceW mes keâes nerš-Dehe keâjkesâ hegve: Øeehle keâj efueÙee peelee nw, efpememes yee@Ùeuej ceW ieuele keâLeve keâer henÛeeve keâerefpeS: heeveer keâes Yeehe ceW yeoueves kesâ efueS keâce T<cee keâer DeeJeMÙekeâlee nesleer ‘Deefleleeefhele Jee<he keâe GheÙeesie jQefkeâve heeJej Ûe›eâ ceW nw~ Fmemes hueevš keâer Lece&ue o#elee yeÌ{ peeleer nw, efpememes yee@Ùeuej ceW efkeâÙee peelee nw, ................ FËOeve keâer yeÛele nesleer nw~ (a) because it increases work output of the cycle for same pressure limit/keäÙeeWefkeâ Ùen meceeve oeye 7. A Kaplan turbine is a/an ............. turbine. meercee kesâ efueS Ûe›eâ keâer keâeÙe& DeeGšhegš keâes yeÌ{elee nw keâheueeve šjyeeFve Skeâ ................. šjyeeFve nw~ (b) to reduce the work of pumping/hebefheie kesâ keâeÙe& (a) tangential flow/mheMe&jsKeerÙe ØeJeener keâes keâce keâjves kesâ efueS (b) mixed flow/efceefßele ØeJeener (c) because it increases cycle efficiency for same (c) radial flow/ef$epÙe ØeJeener pressure limit/keäÙeeWefkeâ Ùen meceeve oeye meercee kesâ efueS (d) axial flow/De#eerÙe ØeJeener Ûe›eâ kesâ keâeÙe& Glheeove keâes yeÌ{elee nw Ans. (d) : keâheueeve šjyeeFve Skeâ De#eerÙe ØeJeener šjyeeFve nw~ (d) because steam at the exit of turbine will be keâheueeve šjyeeFve kesâ ue#eCe (specification)— less wet, preventing erosion of turbine blades/keäÙeeWefkeâ šjyeeFve kesâ efvekeâeme hej Jee<he keâce Deeõ& 1. Øeefleef›eâÙee šjyeeFve nesieer, efpememes šjyeeFve yues[ kesâ #ejCe keâes jeskeâe pee 2. De#eerÙe ØeJeen mekesâiee 3. efvecve Meer<e& 4. GÛÛe efJemepe&ve Ans. (b) : 5. GÛÛe efJeefMe„ ieefle • keâheueeve šjyeeFve keâes variable pitch propeller turbine keânles nw~ • keâheueeve šjyeeFve keâe mheer[ Devegheele 1.4 mes 2.0 lekeâ neslee nw~ 8. Select the incorrect statement with regard to rotary compressors. jesšjer kebâØesmej kesâ mebyebOe ceW ieuele keâLeve keâe ÛeÙeve keâjW~ (a) They can be centrifugal compressors Jes DehekeWâõer kebâØesmej nes mekeâles nw (b) They operate at a higher speed than piston- • jwefkeâve Ûe›eâ ceW meghejneršs[ mšerce ØeÙeesie ceWs ueeÙeer peeleer nw, efpememes cylinder compressors, and are used when efve<heeove keâeÙe& (work output) yeÌ{ peelee nw~ large flow rates are needed/Jes efhemšve-efmeueW[j • jwefkeâve Ûe›eâ ceW meghejneršs[ mšerce keâe ØeÙeesie keâjves mes šjyeeFve ceW kebâØesmejeW keâer leguevee ces DeefOekeâ ieefle mes keâece keâjles nQ, ueies yues[ keâe #ejCe (erosion) veneR neslee nw keäÙeeWefkeâ Yeehe ceW Deewj DeefOekeâ ØeJeen oj keâer DeeJeMÙekeâlee nesves hej GheÙeesie veceer veneR nesleer nw~ efkeâS peeles nw • meceeve oeye meercee (same pressure limit) hej meghejneršs[ mšerce (c) They can be lobe compressors keâer o#elee yeÌ{ peeleer nw~ Jes ueesye kebâØesmej nes mekeâles nQ • heeJej hueebš jQefkeâve Ûe›eâ hej keâeÙe& keâjlee nw~ (d) They have more vibration and pulsation in the veesš–Yeehe keâe meghejnerefšbie keâjves mes hebhe Ùee hebefhebie keâeÙe& hej keâesF& flow than piston-cylinder compressors/efhemšve- ØeYeeJe veneR heÌ[lee nw~ efmeueW[j kebâØesmejeW keâer leguevee ceW Gvekesâ ØeJeen ceW DeefOekeâ 6. Which of the following is not true with regard kebâheve Deewj mhebove neslee nw to an economizer in a steam boiler? Ans. (d) : jsmeerØeeskesâefšbie keâcØesmej (Reciprocating compressor) mšerce yee@Ùeuej kesâ FkeâesveesceeFpej kesâ mebyebOe ceW keâer leguevee ceW jesšjer keâcØesMej (Rotary compressor) ceW keâcheve efvecveefueefKele ceW mes keâewve mee keâLeve melÙe veneR nw? leLee meblegueve keâer mecemÙee keâce nesleer nw~ (a) It is used for recovery of heat from flue • jesšjer keâcØesMej GÛÛe efJemepe&ve leLee efvecve oeye kesâ efueS ØeÙegòeâ nesles gases/Fmekeâe GheÙeesie, Heäuet iewmeeW mes T<cee keâer hegve: nw, peyeefkeâ jsmeerØeeskesâefšbie keâcØesMej efvecve efJemepe&ve leLee GÛÛe oeye kesâ Øeeefhle kesâ efueS efkeâÙee peelee nw efueS GheÙegòeâ nesles nw~ (b) It gives increased boiler efficiency jesšjer keâcØesMej kesâ Øekeâej (Types of rotary compressor) Ùen yeÌ{er ngF& yee@Ùeuej o#elee Øeoeve keâjlee nw 1. ™š yueesDej keâcØesMej (Root blower compressor) (c) It preheats feed-water 2. Jesve yueesDej keâcØesMej (Vane blower compressor) Ùen Heâer[-Jeešj keâes Øeernerš keâjlee nw (d) It produces superheated steam 3. mesvš^erHeäÙetieue keâcØesMej (Centrifugal compressor) Ùen Deefleleeefhele Jee<he GlheVe keâjlee nw 4. De#eerÙe ØeJeen keâcØesMej (Axial flow compressor) SSC JE Online Mechanical 2019 (Ex. date 25.09.2019) 3 pm 8 9. The transport of heat by natural circulation of U-šŸetye cewveesceeršj keâe GheÙeesie keâjkesâ peue ØeJeen Jeeueer water does not take place in which boiler? heeFheueeFve kesâ meeLe ner oes efyebogDeeW kesâ yeerÛe Skeâ efvecve heeveer kesâ Øeeke=âeflekeâ mebÛeueve Éeje leehe keâe heefjJenve efkeâme oeye-Deblej keâes ceehee peevee nQ~ ØeÙegòeâ cewveesceeršj õJe Jee@Ùeuej ceW veneR neslee nw? keäÙee nw? (a) La Mont boiler/uees ceeWš yee@Ùeuej (a) Mercury/cejkeäÙegjer (b) Lancashire boiler/uebkeâeMeeÙej yee@Ùeuej (b) Water/peue (c) Cochran boiler/keâe@keâjeve yee@Ùeuej (c) Kerosene/kesâjesefmeve (d) Babcock-Wilcox boiler (d) Carbon tetrachloride/keâeye&ve šsš^ekeäueesjeF[ Jewyekeâe@keâ-efJeuekeâe@keäme yee@Ùeuej Ans. (d) : U-šdÙetye cewveesceeršj keâe GheÙeesie keâjkesâ peue ØeJeen Jeeueer Ans. (a) : yeueeled heefjÛeeueve yee@Ùeuej (forced circulation heeFhe ueeFve kesâ meeLe ner oes efyebogDeeW kesâ yeerÛe Skeâ efvecve oeye Deblej boiler) ceW heeveer kesâ heefjÛeeueve keâes ye{Ì eves kesâ efueS Ùeebef$ekeâ meeOeveeW keâe keâes ceehee peelee nw, Fmekesâ efueS ØeÙegkeäle cewveesceeršj õJe keâeye&ve ØeÙeesie efkeâÙee peelee nw, pewmes-heche FlÙeeefo~ uee-cee@Cš yee@Ùeuej Deeefo šsš^ekeäueesjeF[ nw, Fme Øekeâej kesâ cewveesceeršj ceW (CCl ) keâe ØeÙeesie 4 Fme ßesCeer ceW Deeles nw~ meWefmebie lejue heoeLe& kesâ ™he ceW efkeâÙee peelee nw, keäÙeeWefkeâ Fmekeâer Øeeke=âeflekeâ heefjÛeeueve yee@Ùeuej (Natural circulation boiler) ceW peue efJeefMe<š ieg®lJe (S.G) keâce nesleer nw efpememes Ùen efvecve oeyeevlej keâes keâe heefjÛeeueve Øeeke=âeflekeâ mebJenve (Natural convection) efJeefOe Éeje pÙeeoe DeeJeefOe&le (Magnify) keâjkesâ efoKeelee nw~ neslee nw, hejvleg yee@Ùeuej ceW ›eâeme šŸetye ueieekeâj heefjÛeeueve yeÌ{eÙee 12. A centrifugal pump is operating at a flow rate peelee nw~ Fme ßesCeer ceW uebkeâeMeeÙej, keâe@keâjeve yee@Ùeuej Deeles nw~ and head given by the intersection of its H-Q curve with the load H-Q curve, near it 10. Identify the wrong statement about a single maximum efficiency point. If water level in the plate clutch from the following. sump, from where water is being pumped, efvecveefueefKele ceW mes keâeve mee keâLeve, Skeâue huesš keäueÛe increases, then the operating condition will kesâ efJe<eÙe ceW ieuele nw? shift to: (a) It transmits power from the flywheel to Skeâ Dehekesâvõer heche efkeâmeer ØeJeen oj hej mebÛeeefuele nes transmission shaft/Ùen HeäueeF&Jnerue mes š^ebmeefceMeve jne nw Deewj Meer<e&, uees[ H-Q Je›eâ kesâ meeLe Gmekesâ H-Q MeeHeäš lekeâ Meefòeâ Debleefjle keâjlee nw kesâ ØeefleÛÚsove Éeje Gmekesâ DeefOekeâlece o#elee efyevog hej (b) It is placed between the engine and the efoÙee peelee nw~ Ùeefo meche ceW heeveer keâe mlej, peneB mes gearbox in case of automobiles/Fmes heeveer heche efkeâÙee pee jne nw, yeÌ{lee nw, lees mebÛeeueve Dee@šesceesyeeFue kesâ ceeceues ceW Fbpeve Deewj efieÙejyee@keäme kesâ eqmLeefle ......... ceW heefjJeefle&le nes peeSiee~ yeerÛe jKee peelee nw (a) Higher flow rate and higher head (c) Torque is transmitted by friction GÛÛe ØeJeen oj leLee GÛÛe Meer<e& coupling/yeue-DeeIetCe& (šeke&â), Ie<e&Ce Ùegiceve Éeje (b) Higher flow rate and lower head mebÛeeefjle efkeâÙee peelee nw GÛÛe ØeJeen oj leLee efvecve Meer<e& (d) Power is transmitted by a cone on the (c) Lower head and same flow rate transmission shaft engaging with a tapered efvecve ØeJeen oj leLee meceeve Meer<e& recess in the flywheel/Meefòeâ, Skeâ keâesve Éeje (d) Higher head and lower flow rate HeäueeF&Jnerue ceW Skeâ šshe[& efjmesme kesâ meeLe pegÌ[er GÛÛe Meer<e& leLee efvecve ØeJeen oj š^ebmeefceMeve MeeHeäš hej mebÛeeefjle keâer peeleer nw Ans. (b) : Ùeefo ieefle keâes efveÙele jKee peeS, lees cewveescesefš^keâ Meer<e& Ans. (d) : Single plate clutch— (H), hee@Jej (P) leLee o#elee (η) keâe efJemepe&ve (Q) kesâ meehes#e 1. eEmeieue huesš keäueÛe HeäueeF&Jnerue mes š^ebmeefceMeve MeeHeäš keâes Meefòeâ heefjJele&ve keâes Skeâ «eeHeâ kesâ ceeOÙece mes efoKeevee ner mebÛeeueve heejsef<ele keâjlee nw~ DeefYeue#eCe Je›eâ (Operating characteristic curve) keânueelee nw~ 2. Dee@šesceesyeeFume ceW eEmeieue huesš keäueÛe Fbpeve leLee efieÙej yee@keäme • hee@Jej, Meer<e& leLee o#elee keâes y-De#e hej leLee efJemepe&ve keâes x-De#e kesâ yeerÛe ceW eqmLele neslee nw~ hej oMee&Ùee peelee nw~ 3. eEmeieue huesš keäueÛe šeke&â friction coupling Éeje heejsef<ele • Fvehegš hee@Jej Je›eâ keâYeer Yeer Origin mes ØeejcYe veneR neslee keäÙeeWefkeâ keâjlee nw~ efJemepe&ve (Q) = 0 nesves hej Yeer heche keâes oer ieÙeer hee@Jej kegâÚ 2 r3−r3 Ùeebef$ekeâ neefveÙeeW ceW Kehele nesleer nw~ 4. • heejsef<ele šeke&â (T)= µw 1 2 3 r2−r2 • efJemepe&ve Q = 0 nesves hej Meer<e& keâe ceeve DeefOekeâlece neslee nw~ 1 2 (For uniform Pressure theory) 1 • heejsef<ele šeke&â (T)= µw(r +r ) 2 1 2 (For uniform wear theory) 11. A small pressure difference between two points along a pipeline carrying water is to be measured using U-tube manometer. The manometric fluid to be used is : SSC JE Online Mechanical 2019 (Ex. date 25.09.2019) 3 pm 9