Springer Series in Light Scattering Alexander Kokhanovsky Editor Springer Series in Light Scattering Volume 6: Radiative Transfer, Light Scattering, and Remote Sensing Springer Series in Light Scattering SeriesEditor AlexanderKokhanovsky,VITROCISETBelgium,ALeonardoCompany, Darmstadt,Germany EditorialBoard ThomasHenning,MaxPlanckInstituteforAstronomy,Heidelberg,Germany GeorgeKattawar,TexasA&MUniversity,CollegeStation,USA OlegKopelevich,ShirshovInstituteofOceanology,Moscow,Russia Kuo-NanLiou,UniversityofCalifornia,LosAngeles,USA MichaelMishchenko,NASAGoddardInstituteforSpaceStudies,NewYork,USA LevPerelman,HarvardUniversity,Cambridge,USA KnutStamnes,StevensInstituteofTechnology,Hoboken,USA GraemeStephens,NASAJetPropulsionLaboratory,LosAngeles,USA BartvanTiggelen,J.FourierUniversity,Grenoble,France ClaudioTomasi,InstituteofAtmosphericSciencesandClimate,Bologna,Italy The main purpose of is to present recent advances and progress in light scattering mediaoptics.Thetopicisverybroadandincorporatessuchdiverseareasasatmo- spheric optics, ocean optics, optics of close-packed media, radiative transfer, light scattering, absorption, and scattering by single scatterers and also by systems of particles, biomedical optics, optical properties of cosmic dust, remote sensing of atmosphere and ocean, etc. The topic is of importance for material science, envi- ronmentalscience,climatechange,andalsoforopticalengineering.Althoughmain developmentsinthesolutionsofradiativetransferandlightscatteringproblemshave beenachievedinthe20thcenturybyeffortsofmanyscientistsincludingV.Ambart- sumian,S.Chandrasekhar,P.Debye,H.C.vandeHulst,G.Mie,andV.Sobolev,the lightscatteringmediaopticsstillhavemanypuzzlestobesolvedsuchasradiative transferincloselypackedmedia,3Dradiativetransferasappliedtothesolutionof inverseproblems,opticsofterrestrialandplanetarysurfaces,etc.Alsoithasabroad rangeofapplicationsinmanybranchesofmodernscienceandtechnologysuchas biomedicaloptics,atmosphericandoceanicoptics,andastrophysics,tonameafew. ItisplannedthattheSerieswillraisenovelscientificquestions,integratedataanal- ysis,andoffernewinsightsinopticsoflightscatteringmedia.SPRINGERSeries inLightScattering. Moreinformationaboutthisseriesathttp://www.springer.com/series/15365 Alexander Kokhanovsky Editor Springer Series in Light Scattering Volume 6: Radiative Transfer, Light Scattering, and Remote Sensing Editor AlexanderKokhanovsky VitrocisetBelgium Darmstadt,Hessen,Germany ISSN2509-2790 ISSN2509-2804 (electronic) SpringerSeriesinLightScattering ISBN978-3-030-71253-2 ISBN978-3-030-71254-9 (eBook) https://doi.org/10.1007/978-3-030-71254-9 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNature SwitzerlandAG2021 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuse ofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Contents √ (cid:2) Law: Centennial of the First Exact Result of Classical RadiativeTransferTheory ......................................... 1 V.V.Ivanov SolarHeatingoftheCryosphere:SnowandIceSheets ................ 53 LeonidA.DombrovskyandAlexanderA.Kokhanovsky Stereological Methods in the Theory of Light Scattering byNonsphericalParticles .......................................... 111 AlekseyMalinka InverseMethodsinStudiesofTerrestrialAtmosphere ................ 175 MichaelYu.Kataev Index ............................................................. 195 v √ (cid:2) Law: Centennial of the First Exact Result of Classical Radiative Transfer Theory V.V.Ivanov 1 Introduction √ Nowadaysprobablynobodyknowswhenandwheretheterm“ (cid:2)law√”wascoined. But as early as in 1975 in the title of one of the papers we find “ (cid:2) revisited” (FrischandFrisch1975).Hencesomeo√nehasalreadyvisiteditearlier.Andthen√it started:“Analternativederivationfor (cid:2)”(La√ndiDegl’Innocenti1979),“The (cid:2) law”(Hubeny1987),“...Agenera√lizationofthe (cid:2)law”(LandiDegl’Innocentiand Bommier19√94),“Ageneralized (cid:2)-law ”(ŠteˇpánandBommier2007),“...general formo√fthe (cid:2)law”(Grachev2014)and,finally,thetitleo√fthisdocumentinitially was“ (cid:2)law:retrospective”.Well,andwhatindeedisthis (cid:2),andwhydoesitneed somany√generalizations? The (cid:2)lawinitsusualastrophysicalformulationistheassertionthatthedegreeof excitationoftwo-levelatomsattheboundaryofsemi-infiniteisoth√ermalatmosphere is lover than its equilibrium Boltzmann value by a factor of 1/ (cid:2). Here, (cid:2) is the probabilityofdestructionofaphotonofresonancelineperscatteringundergoneby photonsinitsspecificrandomwalkintheatmosphere.Thespecificfeatureofthis walkiscausedbythepossibilityoftinychangesofphotonfrequencyuponscattering. Thisleadstodrasticchangesintheirmeanfreepathlength;averagedovertheline, itisinfinite(thesocalledLévyflights).Instellaratmospheres,forstrongresonance linesonehas(cid:2)(cid:3)1.Theresultisthat,duetotheescapeofradiation,therearelarge deviationsfromthermodynamicequilibriumneartheboundaryoftheatmosphere. Elucidatingthestructureofthenon-equilibriumopticallythickboundarylayeristhe keyproblemofthetheoryofstellaratmospheres.Amathematicallysimilarproblemis thecalculationofthermalequilibriumofamodelsolaratmosphereheatedfrombelow byradiationoriginatinginSun’sinterior.Polarizationoftheradiationemergingfrom B V.V.Ivanov( ) St.PetersburgUniversity,SaintPetersburg,Russia e-mail:[email protected] ©TheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerlandAG2021 1 A.Kokhanovsky(ed.),SpringerSeriesinLightScattering,SpringerSeries inLightScattering,https://doi.org/10.1007/978-3-030-71254-9_1 2 V.V.Ivanov ascatteringatmosphe√realsobearsvaluableinformationonitsphysics.Incalculating thispolarization,the (cid:2)law(inageneralizedform)isalsohelpful. Thispaperpresentsanoverviewofevolution(spanningacentury)ofinvestiga- tionsofseveralradiativetransferproblems.Itmayalsobeconsideredasanauthor’s personalaccount(itseems,somewhatimmodest)ono√neofhisresearchfields. Assertions that are known in astrophysics as “the (cid:2) law”, are mathematically equivalenttothisone.IfwehavetheWiener–Hopfintegralequation (cid:2)∞ S(τ)=(1−(cid:2)) K(τ −τ(cid:5))S(τ(cid:5))dτ(cid:5)+(cid:2) (1) 0 withsymmetricnon-negativenormalizedtounitykernelfunction K(τ),sothat (cid:2)∞ K(−τ)= K(τ), K(τ)≥0, K(τ)dτ =1, (2) −∞ then √ S(0)= (cid:2), S(∞)=1. (3) √ However,theforminwhich (cid:2)appearsinastrophysicalliteratureisusuallydifferent, andsoitsessenceremainsunclear. AlongwithEq.(1)itisnaturaltoconsideritslimitingformfor(cid:2)=0,i.e.homo- geneousequation (cid:2)∞ S (τ)= K(τ −τ(cid:5))S (τ(cid:5))dτ(cid:5), (4) h h 0 thesolutionofwhichwillbenormalizedsothat S (0)=1. (5) h Comparisonof(1)and(3)with(4)–(5)showsthat S(τ) S (τ)= lim √ . (6) h (cid:2)→0 (cid:2) Asymptoticbehaviorofthesolution√ofhomogeneousequation(4)forτ →∞may belookedatasacounterpartofthe (cid:2)lawforthelimitingcase(cid:2)=0. Physical significance of Eqs. (1) and (4), kernel function K(τ), solutions S(τ) andS (τ),aswellastheparameter(cid:2), 0≤(cid:2)≤1,invariousastrophysicalproblems h (and all the m(cid:3)ore in problems(cid:4)of other branches of physics) differ. In terminology and notation τ, (cid:2), H(μ) etc. we follow astrophysical tradition (mainly Western, ratherthanRussian). √ (cid:2)Law:CentennialoftheFirstExactResultofClassicalRadiativeTransferTheory 3 Fig.1 Behaviorofsolutions ofEqs.(1)and(4)witha probabilistickernelK(τ) BehaviorofsolutionsS(τ)oftheEq.(1)withaprobabilistickernelK(τ)aswell asthatofthecorrespondinghomogeneousequation(4),S (τ),isillustratedinFig.1. h Theoutlineofthepaperisasfollows.Section2isanelementaryintroductionto the solution√of the Wiener–Hopf equations with probabilistic kernels. The deriva- tion of the (cid:2) law is provided, one of the simplest among a multitude of all the a√vailable. Section3 presents a brief historical overview of the first appearance of (cid:2)inastrophysics.InSect.4wediscussspecificfeaturesofmultiplescatteringof photonsofresonancelinesindilutegaseousmedia.Thenotionoftheboundarylayer isintroducedanditsstructureisbrieflyoutlined.InSect.5weconsiderradiationin aresonancelineemergingfromsemi-infinitescatteringatmosphere.Crucialroleof continuumabsorptioninqu√enchingmultiplescatteringandhenceinlineformation isdiscussed.InSect.6the (cid:2)lawisusedasthebasisinstudyingscalingofradia- tionfieldsinatmospheresoffiniteopticalthickness.Thelarge-scaledescriptionof transferoflineradiation√isintroduced.InSect.7ween√umeratethemethodsthathas beenusedtoderivethe (cid:2)law.Generalizationsofthe (cid:2)lawnecessaryfortreating polarizedradiationarethesubjectofSect.8.Problemsofbothnon-magneticmulti- pleresonancescatteringandsca√tteringinatmosphereswithweakmagneticfieldsare brieflydiscussed.InSect.9the (cid:2)lawcombinedwiththeasymptoticsolutionofthe homogeneousEq.(4)areusedasthebasisforconstructinganapproximatesolutionof 4 V.V.Ivanov theWiener–Hopfequation(1)thatdescribesthesocalledLevýflights(kernelswith “tails”decreasingsoslowlythateventhefirstmomentofK(τ)diverges).Finally,in Sect.10wesummarizetheresults. 2 MathematicalPrologue 2.1 TheGreenFunction LetG(τ,τ )betheGreenfunctionofEq.(1),i.e.thesolutionoftheequation 1 (cid:2)∞ G(τ,τ )=(1−(cid:2)) K(τ −τ(cid:5))G(τ(cid:5),τ )dτ(cid:5)+δ(τ −τ ), (7) 1 1 1 0 whereδ(τ −τ )isthedelta–function.Let,further,G (τ)bethevalueoftheGreen 1 0 functionforτ =0(surfaceGreenfunction;physically—thesourceattheboundary 1 ofthemedium): G (τ)≡G(τ,0)=G(0,τ). (8) 0 Simpleprobabilisticconsiderationsshowthat (cid:2)τ G(τ,τ )= G (τ −t)G (τ −t)dt, τ =min(τ,τ ). (9) 1 0 0 1 1 0 Somewhatunexpectedly,G0appearsheren√on-linearly.Asweshallseeshortly,itis thisnon-linearitywhichisattherootofthe (cid:2)law,non-linearityoftheH–equation etc. Equation (9) reveals the key role of the surface Green function G (τ) in all 0 half-spaceproblems. Physically,Eq.(9)isnearlyobvious.Transferofparticle(inourcase,aphoton) occurs along a trajectory. Let t be the depth at which the trajectory approaches the surface most (the highest point of the trajectory, if the boundary is at the top). Evidentlyt ≤min(τ,τ ).Atthispointtscatteringoccurs,sinceotherwisethephoton 1 wouldcontinuetoapproachtheboundary.Thisscatteringeventdividesthetrajectory leadingfromτ toτ intwoparts.Theprobabilityoftransitionfromτ tot alongthe 1 1 firstpartofthetrajectoryisevidentlyG(0,τ −t),sincepresenceofthelayersabove 1 t is not felt, and otherwise the trajectory is arbitrary. After scattering at t, random walkcontinues,againwithoutintersectingthislevel.Hencewemayassumethata newphotonisinjectedattheboundaryofahalf-space,andithastoarriveatτ −t. ThecorrespondingtransitionprobabilityisobviouslyG(τ −t,0).Sincethereisno memory in the random walk, the total transition probability τ →τ along all the 1 trajectories with the highest point at t is the product of the transition probabilities