ebook img

Spline functions - computations methods. PDF

426 Pages·2015·30.403 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Spline functions - computations methods.

Spline Func t ions Spline Func t ions COMPUTATIONAL METHODS Larry L. Schumaker Vanderbilt University Nashville, Tennessee Society for Industrial and Applied Mathematics Philadelphia Copyright © 2015 by the Society for Industrial and Applied Mathematics 10 9 8 7 6 5 4 3 2 1 All rights reserved. Printed in the United States of America. No part of this book may be reproduced, stored, or transmitted in any manner without the written permission of the publisher. For information, write to the Society for Industrial and Applied Mathematics, 3600 Market Street, 6th Floor, Philadelphia, PA 19104-2688 USA. Macintosh is a trademark of Apple Computer, Inc., registered in the United States and other countries. Spline Functions: Computational Methods is an independent publication and has not been authorized, sponsored, or otherwise approved by Apple Computer, Inc. MATLAB is a registered trademark of The MathWorks, Inc. For MATLAB product information, please contact The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098 USA, 508-647-7000, Fax: 508-647-7001, [email protected], www.mathworks.com. UNIX is a registered trademark of The Open Group in the United States and other countries. Windows is a registered trademark of Microsoft Corporation in the United States and/or other countries. Publisher David Marshall Acquisitions Editor Elizabeth Greenspan Developmental Editor Gina Rinelli Managing Editor Kelly Thomas Production Editor David Riegelhaupt Copy Editor David Riegelhaupt Production Manager Donna Witzleben Production Coordinator Cally Shrader Compositor Techsetters, Inc. Graphic Designer Lois Sellers Library of Congress Cataloging-in-Publication Data Schumaker, Larry L., 1939- Spline functions : computational methods / Larry L. Schumaker, Vanderbilt University, Nashville, Tennessee. pages cm. -- (Other titles in applied mathematics ; 142) Includes bibliographical references and index. ISBN 978-1-611973-89-1 1. Spline theory. 2. Numerical calculations. I. Title. QA224.S34 2015 518’.5--dc23 2015012804 is a registered trademark. Contents Preface ix 1 UnivariateSplines 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 B-splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 ComputingwiththeB-form . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Interpolationwithunivariatesplines . . . . . . . . . . . . . . . . . . 8 1.5 Hermiteinterpolation . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.6 Interpolationwithshapecontrol . . . . . . . . . . . . . . . . . . . . 16 1.7 Quasi-interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.8 Discreteleast-squaresapproximation . . . . . . . . . . . . . . . . . . 22 1.9 Theeffectofnoise . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.10 Penalizedleast-squaresapproximation . . . . . . . . . . . . . . . . . 26 1.11 Choosingoptimalknotsforleast-squaressplines . . . . . . . . . . . . 29 1.12 Two-pointboundary-valueproblems . . . . . . . . . . . . . . . . . . 32 1.13 Errorbounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 1.14 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 1.15 Historicalnotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 2 Tensor-ProductSplines 51 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.2 Tensor-productB-splines . . . . . . . . . . . . . . . . . . . . . . . . 52 2.3 ComputingwiththetensorB-form . . . . . . . . . . . . . . . . . . . 52 2.4 Lagrangeinterpolationonagrid . . . . . . . . . . . . . . . . . . . . 57 2.5 Hermiteinterpolation . . . . . . . . . . . . . . . . . . . . . . . . . . 60 2.6 Tensor-productquasi-interpolation . . . . . . . . . . . . . . . . . . . 64 2.7 Tensor-productdiscreteleast-squares . . . . . . . . . . . . . . . . . . 66 2.8 Theeffectofnoise . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 2.9 Penalizedleast-squaresapproximation . . . . . . . . . . . . . . . . . 69 2.10 Errorbounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 2.11 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 2.12 Historicalnotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3 ComputingwithTriangulations 79 3.1 Triangulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 v vi Contents p h p a. 3.2 Triangulationswithhangingvertices . . . . . . . . . . . . . . . . . . 79 s oj 3.3 Storingandplottingtriangulations . . . . . . . . . . . . . . . . . . . 80 s/ al 3.4 Additionaldatastructurefortriangulations . . . . . . . . . . . . . . . 81 n ur 3.5 Starsofverticesandtriangles . . . . . . . . . . . . . . . . . . . . . . 84 o g/j 3.6 Barycentriccoordinates . . . . . . . . . . . . . . . . . . . . . . . . . 84 r 3.7 Findingthetrianglecontainingapoint . . . . . . . . . . . . . . . . . 85 o m. 3.8 Constructingatriangulationwithgivenvertices . . . . . . . . . . . . 86 a si 3.9 Gridgeneration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 w. 3.10 Triangulationsofgriddeddataonarectangle . . . . . . . . . . . . . 89 w w 3.11 Refiningatriangulation . . . . . . . . . . . . . . . . . . . . . . . . . 90 p:// 3.12 Adjustingtriangulationsbyedgeswapping . . . . . . . . . . . . . . . 91 htt 3.13 Eulerrelations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 ee 3.14 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 s ht; 3.15 Historicalnotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 g yri 4 ComputingwithSplines 97 p o 4.1 Bernsteinbasispolynomials . . . . . . . . . . . . . . . . . . . . . . 97 c r 4.2 Domainpointsonatriangle . . . . . . . . . . . . . . . . . . . . . . . 98 o e 4.3 EvaluatingpolynomialsinB-form . . . . . . . . . . . . . . . . . . . 99 s n e 4.4 DerivativesofpolynomialsinB-form . . . . . . . . . . . . . . . . . 100 c M li 4.5 Integralsandinnerproductsofpolynomials . . . . . . . . . . . . . . 101 4.6 Integralsofgeneralfunctionsovertriangles . . . . . . . . . . . . . . 102 A SI 4.7 Plottingapolynomialpatch . . . . . . . . . . . . . . . . . . . . . . . 104 o 4.8 Domainpointsonatriangulation . . . . . . . . . . . . . . . . . . . . 105 ct t 4.9 ThespaceS0((cid:2)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 e d bj 4.10 Evaluatingsplinesandtheirderivatives . . . . . . . . . . . . . . . . . 109 u n s 4.11 Integralsandinnerproductsofsplines . . . . . . . . . . . . . . . . . 110 o 4.12 Renderingasplinesurface . . . . . . . . . . . . . . . . . . . . . . . 110 buti 4.13 Spacesofsmoothsplines . . . . . . . . . . . . . . . . . . . . . . . . 113 stri 4.14 Someusefulmacro-elementspaces . . . . . . . . . . . . . . . . . . . 120 di 4.15 Degreeraising . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 e R 4.16 Subdivision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 05. 4.17 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 2 0. 4.18 Historicalnotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 4 4. 5 5 Macro-elementInterpolationMethods 135 1 2. 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 8 o 5.2 TheC1 Powell–Sabininterpolant . . . . . . . . . . . . . . . . . . . . 137 9 t 5.3 TheC1 Powell–Sabin-12interpolant . . . . . . . . . . . . . . . . . . 141 1 7/ 5.4 TheC1 Clough–Tocherinterpolant . . . . . . . . . . . . . . . . . . . 143 0 2/ 5.5 TheC1 quinticArgyrisinterpolant . . . . . . . . . . . . . . . . . . . 146 1 d 5.6 TheC2 Wanginterpolant . . . . . . . . . . . . . . . . . . . . . . . . 149 e d 5.7 Acomparisonofthemethods . . . . . . . . . . . . . . . . . . . . . . 150 a nlo 5.8 Rateofconvergenceforlesssmoothfunctions . . . . . . . . . . . . . 151 w 5.9 Interpolationondomainswithholes . . . . . . . . . . . . . . . . . . 153 o D 5.10 Interpolationatbadlyspacedpoints . . . . . . . . . . . . . . . . . . 154 5.11 Scaleinvariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Contents vii p h p a. 5.12 Theroleoftheminimalangleinerrorbounds . . . . . . . . . . . . . 157 s oj 5.13 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 s/ al 5.14 Historicalnotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 n r u o g/j 6 ScatteredDataInterpolation 161 or 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 m. 6.2 InterpolationwithS0((cid:2)) . . . . . . . . . . . . . . . . . . . . . . . . 162 a 1 si 6.3 Minimalenergyinterpolatingsplines . . . . . . . . . . . . . . . . . . 166 ww. 6.4 AlocalC0 cubicsplinemethod . . . . . . . . . . . . . . . . . . . . . 173 w 6.5 AlocalC1 Clough–Tochermethod . . . . . . . . . . . . . . . . . . . 175 p:// 6.6 Estimatingderivativesfromscattereddata . . . . . . . . . . . . . . . 178 htt 6.7 Localtwo-stagemethodsbasedonderivativeestimation . . . . . . . . 185 e e 6.8 Acomparisonofthemethods . . . . . . . . . . . . . . . . . . . . . . 190 s ht; 6.9 Scaleinvariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 g 6.10 Nonrectangulardomainsandholes . . . . . . . . . . . . . . . . . . . 195 ri py 6.11 Interpolatingatalargenumberofdatapoints . . . . . . . . . . . . . 198 o c 6.12 Theerrorasafunctionofmeshsize . . . . . . . . . . . . . . . . . . 202 r o 6.13 Non-Delaunaytriangulations . . . . . . . . . . . . . . . . . . . . . . 203 e ns 6.14 Scattereddatainterpolationwithradialbasisfunctions . . . . . . . . 204 e c 6.15 Almostinterpolationwithtensor-productsplines . . . . . . . . . . . . 208 M li 6.16 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 A 6.17 Historicalnotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 I S o ct t 7 ScatteredDataFitting 219 e 7.1 Least-squaresfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 bj u 7.2 Least-squaresfittingwithC0 splines . . . . . . . . . . . . . . . . . . 223 s n 7.3 Least-squaresfittingwithC1 splines . . . . . . . . . . . . . . . . . . 226 o uti 7.4 Least-squaresfittingwithC2 splines . . . . . . . . . . . . . . . . . . 231 b ri 7.5 Scaleinvarianceofleast-squaresfitting . . . . . . . . . . . . . . . . . 233 dist 7.6 Acomparisonofthemethods . . . . . . . . . . . . . . . . . . . . . . 234 Re 7.7 Theeffectofnoise . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 5. 7.8 Penalizedleast-squaresfitting . . . . . . . . . . . . . . . . . . . . . . 236 0 2 7.9 Penalizedleast-squaresfittingwithmacro-elementsplinespaces . . . 239 0. 4 7.10 Nonscaleinvarianceofpenalizedleast-squaresfitting . . . . . . . . . 243 4. 5 7.11 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 1 2. 7.12 Historicalnotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 8 o 9 t 8 ShapeControl 247 1 7/ 8.1 Nonnegativeinterpolation . . . . . . . . . . . . . . . . . . . . . . . . 247 0 2/ 8.2 Nonnegativeleast-squares . . . . . . . . . . . . . . . . . . . . . . . 251 1 d 8.3 Monotoneinterpolation . . . . . . . . . . . . . . . . . . . . . . . . . 254 e d 8.4 Monotoneleast-squares . . . . . . . . . . . . . . . . . . . . . . . . . 268 a o 8.5 Convexinterpolation . . . . . . . . . . . . . . . . . . . . . . . . . . 270 nl w 8.6 Convexleast-squares . . . . . . . . . . . . . . . . . . . . . . . . . . 283 o D 8.7 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 8.8 Historicalnotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 viii Contents p h p a. 9 Boundary-ValueProblems 289 s oj 9.1 Examplesofboundary-valueproblems . . . . . . . . . . . . . . . . . 289 s/ al 9.2 TheRitz–Galerkinmethod . . . . . . . . . . . . . . . . . . . . . . . 290 n our 9.3 Solvingsecondorderboundary-valueproblemswithSd0((cid:2)) . . . . . . 294 g/j 9.4 Solvingsecondorderboundary-valueproblemsusingmacro-element r spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 o m. 9.5 Solvingsecondorderboundary-valueproblemsusingthespace a si S1,2((cid:2)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 w. 5 w 9.6 SolvingthebiharmonicequationwithC1 quinticsplines . . . . . . . 316 w 9.7 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 p:// 9.8 Historicalnotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324 htt ee 10 SphericalSplines 325 s ht; 10.1 Sphericaltriangulations . . . . . . . . . . . . . . . . . . . . . . . . . 325 g 10.2 Sphericalpolynomials . . . . . . . . . . . . . . . . . . . . . . . . . 333 yri 10.3 ThespaceS0((cid:2))onasphericaltriangulation . . . . . . . . . . . . . 340 p d co 10.4 Spacesofsmoothsphericalsplines . . . . . . . . . . . . . . . . . . . 344 or 10.5 Sphericalmacro-elementspaces . . . . . . . . . . . . . . . . . . . . 348 se 10.6 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 n e 10.7 Historicalnotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355 c M li 11 ApplicationsofSphericalSplines 357 A o SI 1111..21 HInetermrpiotelaitniotenrpwoiltahtiSo10n(w(cid:2)i)thm. .ac.ro.-e.le.m.en.t.sp.a.ce.s. .. .. .. .. .. .. .. .. .. .. .. 336517 ct t 11.3 Scattereddatainterpolationonthesphere . . . . . . . . . . . . . . . 369 e bj 11.4 Least-squaresfittingwithsphericalsplines . . . . . . . . . . . . . . . 384 u n s 11.5 Theeffectofnoise . . . . . . . . . . . . . . . . . . . . . . . . . . . 391 o 11.6 Sphericalpenalizedleast-squares . . . . . . . . . . . . . . . . . . . . 393 buti 11.7 PDE’sonthesphere . . . . . . . . . . . . . . . . . . . . . . . . . . . 396 stri 11.8 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399 di 11.9 Historicalnotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402 e R 5. Bibliography 403 0 2 0. 4 ScriptIndex 407 4. 5 2.1 FunctionIndex 409 8 o 9 t SubjectIndex 411 1 7/ 0 2/ 1 d e d a o nl w o D p h p a. s oj s/ al n r u o g/j r o m. Preface a si w. w w p:// htt Spline functions have been studied intensively for over 50 years, and there are now e manythousandsofpapersonthesubject. Thereasonforthisgreatinterestisthatsplines e ht; s haraevaesmwahneyredietsisirraebqleuifreeadtutoreasptphraotxmimaakteetahnemunkidneoawlntofoulnscftoiornacwomidpeuvtaartiioetnyalolyf.aTphpulisc,atthioeyn g yri havefoundapplicationsinApproximationTheory,NumericalAnalysis,Engineering,and p o a variety of other business, medical, and scientific areas. What makes splines especially c r attractiveisthefactthat o e ns • they are easy to work with computationally, and in particular, there are stable and e c efficientalgorithmsforevaluatingthem,theirderivatives,andtheirintegrals; M li • thereareveryconvenientrepresentationswhichprovideastrongconnectionbetween A SI theshapeofasplineanditsassociatedcoefficients; o ct t • splinesarecapableofapproximatingsmoothfunctionswell,andtheexactrelation- bje ship between the smoothness of a function and its order of approximation can be su quantified. n o uti Thetheoreticalaspectsofsplineshavebeenwelldocumentedintheliterature;seethe b list of booksat the end of this book and the online referencelist. Some of them discuss ri st applications,andafewevendescribecomputationalmethods. Thepurposeofthisbookis edi togiveadetailedtreatmentofsomeofthemostimportantcomputationalaspectsofsplines. R 5. Itcanbeconsideredasacomplementtomytwoearlierbooksonsplines,neitherofwhich 0 dealtwithapplicationsorcomputations.Thefirst,SplineFunctions:BasicTheory,wasfirst 2 0. publishedin1978byWileyInterscience,anddealsonlywithunivariateandtensor-product 4 4. splines. Athirdeditionwithsupplementarymaterialandreferenceswaspublishedin2007 5 1 by Cambridge University Press. The second book, SplineFunctionsonTriangulations, 2. 8 waswrittenwithM.-J.Lai, anddealswithbivariatesplinesdefinedontriangulationsand 19 to qteutraadhreadnrgaullpatairotnitsio,snpshienriRca3.lsItpwlinaessadlseofinpeudbloisnhtehdeinsp2h0e0re7,bayndCtarmivbarriiadtgeesUplniniveesrsdietyfinPerdesosn. 07/ Splinescanbeusedtosolveseveralofthemostbasicproblemsinnumericalanalysis. 2/ Thetopicsdiscussedhereinclude 1 d de • interpolationinoneorseveralvariables, a o nl • datafittinginoneorseveralvariables, w o D • numericalquadrature, i.e., the computation of derivativesand integrals based only ondiscretedata, ix x Preface p h p a. • the numerical solution of problems involving ordinary or partial differential equa- s oj tions. s/ al n Thegoalof thisbookis to notonlydescribe a varietyof methodsforattackingthese r u o problemsusingsplines, buttoalsoexplainwhythemethodswork,andtogiveactualnu- g/j mericalexamples.Theaimistodescribeeachmethodinenoughdetailtoallowthereader r o m. to programithimself. However,to enhancethe learningprocess, andto encouragemore a experimentationwithsplines,IhavepreparedaMATLAB(cid:2) packageSplinePakwhichin- si w. cludesimplementationsofallofthemethodsdiscussedinthebook. Thepackageincludes w anextensivecollectionofp-filescontainingMATLABfunctionsforcarryingoutthevar- w p:// ious algorithmsin the book, a set of scripts providedas m-files for carrying out specific htt tasks, andfinallya numberofdatafilesusedinthenumerousexamplesinthebook. The e packageislicensedbyNashboroPress;seewww.splinepak.com.Itshouldbeempha- e s sized that the code in the package is not production code, and has not been designed to ht; achievemaximalefficiency. Indeed,forlargescalecomputation,theusershouldconsider g ri codingthealgorithmsinanotherlanguage. y p Thebookisprimarilyaboutbivariatepolynomialsplinesontriangulations,butforthe o r c sake of completeness, and to provide numerical tools for comparison purposes, I have o e included chapters on univariate splines, tensor-product splines, and splines on spherical s n triangulations.Thematerialisorganizedasfollows. e c M li Chapter1dealswithunivariatesplines.First,wediscussalgorithmsforevaluatingsplines andtheirderivatives,forcomputingintegralsofsplines,andforplottingsplines. Thenwe A I discussseveralmethodsforsolvingthebasicLagrangeandHermiteinterpolationproblems S o inonevariable.Inaddition,quasi-interpolation,least-squares,penalizedleast-squares,and ct t theuseofsplinesforsolvingtwo-pointboundary-valueproblemsaretreated. e bj Chapter2isdevotedtotheuseoftensor-productsplinestosolveinterpolationandapprox- u n s imationproblemsinthebivariatesetting. First,itisshownhowunivariatealgorithmscan utio beusedtoevaluatetensor-productsplines, andtocomputetheirderivativesandintegrals. b Thenwestudyinterpolation,quasi-interpolation,least-squares,andpenalizedleast-squares stri methodsbasedontensor-productsplines. di e Chapter3explainshowtodealwithtriangulationscomputationally,andisacriticalprepa- R 5. rationforthelaterchapters.Hereweexplainhowtoconstruct,store,andmanipulatetrian- 0 gulations.Refinementandedgeswappingalgorithmsarealsoincluded. 2 40. Chapter4describesindetailhowtostore,evaluate,andrendersplinesontriangulations. 4. Thealgorithmsdescribedhereare essentialtoolsfortheremainderofthe book. Thekey 5 1 2. underlyingconceptistheBernstein–Bézierrepresentationofsplines. Hereweexplainhow o 8 tocomputewiththespaceSd0((cid:2))ofC0 splines,andwitharbitrarysubspacesofsmoother 9 t splines. Severalspecialmacro-elementspacestobeusedextensivelylaterarediscussedin 7/1 detail. 0 2/ Chapter 5 is the first chapterwhere real applicationsare addressed. Here we show how 1 d certainmacro-elementspacescanbeusedtosolveinterpolationproblemsinthebivariate de setting. The focus is on Hermite interpolation at the vertices of a triangulation. I give a o numericalexamplesforeachofthemethods,andincludetheresultsofsomeexperiments nl w comparingthevariousinterpolationmethods. o D Chapter 6 treats the problemof scattered data fitting where no derivativeinformationis available. Both local and global methods are discussed, beginning with minimal energy

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.