ebook img

Spitzer Imaging of Herschel-ATLAS Gravitationally Lensed Submillimeter Sources PDF

0.43 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Spitzer Imaging of Herschel-ATLAS Gravitationally Lensed Submillimeter Sources

Draftversion January17,2011 PreprinttypesetusingLATEXstyleemulateapjv.08/22/09 SPITZER IMAGING OF HERSCHEL-ATLAS GRAVITATIONALLY LENSED SUBMILLIMETER SOURCES R. Hopwood1, J. Wardlow2, A. Cooray2, A. A. Khostovan2, S. Kim2, M. Negrello1, E. da Cunha3, D. Burgarella4, I. Aretxaga5, R. Auld6, M. Baes7, E. Barton2, F. Bertoldi8, D. G. Bonfield9, R. Blundell10, S. Buttiglione11, A. Cava12,13, D. L. Clements14, J. Cooke3,15, H. Dannerbauer16, A. Dariush6,35, G. de Zotti11,17, J. Dunlop18, L. Dunne19, S. Dye6, S. Eales6, J. Fritz7, D. Frayer20, M. A. Gurwell10, D. H. Hughes5, E. Ibar21, R. J. Ivison18,21, M. J. Jarvis9, G. Lagache23,24, L. Leeuw25,26, S. Maddox19, M. J. Micha lowski18, A. Omont27, E. Pascale6, M. Pohlen6, E. Rigby19, G. Rodighiero28, D. Scott29, S. Serjeant1, I. Smail30, D. J. B. Smith19, P. Temi31, M. A.Thompson9, I. Valtchanov32, P. van der Werf18,23, A. Verma34, J. D. Vieira15 1 1 Draft version January 17, 2011 0 2 ABSTRACT We present physical properties of two submillimeter selected gravitationally lensed sources, identi- n fiedintheHerschelAstrophysicalTerahertzLargeAreaSurvey. Thesesubmillimetergalaxies(SMGs) a J have flux densities > 100mJy at 500µm, but are not visible in existing optical imaging. We fit light profiles to each component of the lensing systems in Spitzer IRAC 3.6 and 4.5µm data and success- 3 fully disentangle the foreground lens from the background source in each case, providing important 1 constraintsonthe spectralenergydistributions(SEDs)ofthe backgroundSMGatrest-frameoptical- ] near-infraredwavelengths. The SED fits show that these two SMGs have high dust obscurationwith O AV ∼4−5andstarformationratesof∼100M⊙yr−1. Theyhavelowgasfractionsandlowdynamical C masses compared to 850µm selected galaxies. Subject headings: galaxies: individual (SDP.81: H-ATLAS J090311.6+003906, SDP.130: H-ATLAS . h J091305.0-005343)— galaxies: starburst — gravitationallensing: strong p - o 1. INTRODUCTION tr 1Department ofPhysics andAstronomy, TheOpenUniversity, Gravitational lensing is an invaluable astrophysical s MiltonKeynes,MK76AA,UK a 2Department of Physics and Astronomy, University of Califor- tool. Itcanbeexploitedtostudygalaxiesbeyondinstru- [ nia,Irvine,CA92697,USA mentalblankfieldsensitivitiesandtoconstrainthetotal 3DepartmentofPhysics,UniversityofCrete,Heraklion,Greece mass of galaxy systems, without regard for its dark or 2 4Laboratoired’AstrophysiquedeMarseille,OAMP,CNRS,Aix- luminous nature (see review by Treu 2010). The magni- v MarseilleUniversit´e,France 0 5InstitutoNacionaldeAstrof´ısica,O´pticayElectr´onica,Aptdo. fication of distant galaxies through gravitationallensing 4 Postal51y216,72000Puebla,Mexico enables the detailed study of sources that would other- 9 6School of Physics and Astronomy, Cardiff University, Cardiff, wise be undetectable. In the submillimeter regime this CF243AA,UK 4 7Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan includes members of the population of intrinsically faint . 281S9,B-9000Gent, Belgium galaxiesthatcompriseasignificantfractionofthecosmic 1 8ArgenlanderInstitute forAstronomy,UniversityofBonn,Auf far-infraredbackground. 1 demHugel71,53121Bonn,Germany The Herschel35 (Pilbratt et al. 2010) Astrophysical 0 9CentreforAstrophysicsResearch,ScienceandTechnologyRe- Large Area Survey (H-ATLAS; Eales et al. 2010) is the 1 searchCentre,UniversityofHertfordshire,HertsAL109AB,UK : 10Harvard-Smithsonian Center for Astrophysics, Cambridge, largestopen-timekeyprojectcurrentlybeingundertaken v MA02138,USA Xi tor1i1oI5N,AI-F3,51O2s2sePravadtoovrai,oIAtasltyronomico di Padova, Vicolo Osserva- 23Institut dAstrophysique Spatiale (IAS), Batiment 121, Uni- r 12Instituto de Astrofisica de Canarias, C/Va Lactea s/n, E- ver2s4itC´eNPRarSis(USuMdR18161971)4,0951O40r5saOy,rFsarya,nFcerance a 3821300DLepaaLrtaagmunenat,oSpdaeinAstrofisica, Universidad de La Laguna 25Physics Department, University of Johannesburg, P.O. Box (ULL),E-38205LaLaguna, Tenerife,Spain 524,AucklandPark2006,SouthAfrica 14Astrophysics Group, Physics Department, Imperial College 2267SInEsTtiItuItnsdt’iAtustter,opMhoyusinqtuaeindVeiPewar,isC,AU,n9iv4e0r4s3it,´eUPSiAerreetMarie London,PrinceConsortRoad,LondonSW72AZ,UK 15California Institute of Technology, MS 249-17, 1216 E. Cali- Cu2r8ieDaipnadrtCimNeRnSt,o9d8iAbisstrboonuolmeviaar,dUAnirvaegros,it7a5d0i1P4aPdaorvias,,VFricaonlcoeOs- forniaBlvd.,Pasadena,CA91125,USA 16Laboratoire AIM Paris Saclay, CEA-CNRS-Universit´e, ser2v9aDtoerpioar2t,mIe-3n5t1o2f2PPhaydsoicvsa,aIntdalAystronomy, Universityof British Irfu/Service d’Astrophysique, CEA Saclay, Orme de Merisiers, Columbia,Vancouver,BCV6T1Z1,Canada 9111791ScGuiofl-asurI-nYtevrenttaeziConedaleex,SFurapnecrieore di Studi Avanzati, Via 30Institute for Computational Cosmology, Durham University, SouthRoad,Durham,DH13LE,UK Bo1n8oSmUePaA2,65I,nIs-t3it4u1t3e6TforriesAtest,rIotnaolymy, University of Edinburgh, 31Astrophysics Branch, NASA Ames Research Center, Mail Stop245-6,MoffettField,CA94035, USA Ro1y9aSlcOhbosoelrovfatPohryy,siEcsdiannbdurAghst,rEonHo9m3yH, UJ,nUivKersityofNottingham, 32Herschel Science Centre, European Space Agency, P.O. Box 78,28691VillanuevadalaCan˜ada,Madrid,Spain Un2i0veNrasittiyonPaalrRk,aNdioottAinsgthroanmomNyG7Ob2RseDrv,aUtoKry P.O. Box 2, Green 33Leiden Observatory, Leiden University, P.O. Box 9513, NL 2300Leiden,TheNetherlands Ba2n1kU,KWVAs2t4ro9n4o4m, UySTAechnology Center, Royal ObservatoryEdin- 34Oxford Astrophysics, Denys Wilkinson Building, University ofOxford,KebleRoad,Oxford,OX13RH,UK bu2r2ghS,coEtdtiisnhbuUrgnhi,veErHsit9ie3sHPJ,hUysKics Alliance, University of Edin- 35School of Astronomy, Institute for Research in Fundamental Sciences(IPM),POBox19395-5746, Tehran,Iran burgh,RoyalObservatory,Edinburgh,EH93HJ,UK 2 Hopwood et al. by Herschel and aims to survey 550 deg2 and detect 2, respectively. > 300,000 galaxies. A new methodology for selecting gravitational lenses using wide-area submillimeter (sub- mm) surveys (Blain 1996, Perrotta et al. 2002; Negrello etal.2007)hasbeentestedforthefirsttimeduringHer- schel’s science demonstration phase (SDP; Negrello et al. 2010, N10 hereafter). Candidates are selected us- ing a flux cut of 100mJy at 500µm, a limit based on the steep number counts slope in the sub-mm (Negrello et al. 2007). Above this flux limit only gravitationally lensed objects and easily identifiable ‘contaminants’ re- maine.g. blazarsandlocalspiralgalaxies. Initialresults show that this selection method has ∼100% efficiency and should deliver a sample of hundreds of new grav- itational lenses in planned wide area Herschel surveys, probing galaxieswith intrinsic fluxes below the Herschel confusion limit. Five lens candidates in the SDP H-ATLAS data (Pas- cale et al. 2010; Rigby et al. 2010; N10) were confirmed withspectroscopicredshiftsobtainedviathedetectionof carbon monoxide (CO) emission lines (Lupu et al. 2010; Frayer et al. 2011) of the background galaxies and opti- cal spectra (Negrello et al. 2010)of the lens galaxies. In this Letter we study two of these gravitational lenses, H-ATLAS J090311.6+003906 (SDP.81) and H-ATLAS J091305.0-005343 (SDP.130), which are submillimeter galaxy (SMG) at redshifts of z = 3.04 and z = 2.63 being lensed by ellipticals at z = 0.30 and z = 0.22, respectively. Submillimeter Array (SMA) imaging re- veals the sub-mm morphology, consistent with a lensing event, with multiple peaks distributed around the po- sition of the foreground elliptical galaxy (N10). While Fig.1.—Kecki-band(toprow),IRACChannel1(middlerow), no lensed background images were detectable in optical and Channel 2 (bottom row) postage stamp images for SDP.81. imaging, the spectral energy distribution (SED) models The corresponding residual (right column) is presented after sub- suggestthatflux fromthe backgroundsourcesshouldbe traction of single de Vaucouleurs profiles modeled on the Keck i- band data. The Keck residuals show no signs of structure asso- detectableabove∼10µJyatnear-IRwavelengths,from2 ciable with the overlaid 880 µm SMA signal-to-noise ratio (S/N) to5 µm(N10). Atthesewavelengths,the emissionfrom contours. For the IRAC residual there is structure that can be the foreground lenses, at z ∼ 0.25, and the background associated with the SMA contours, which suggests this is lensed structureoftherespectivebackgroundgalaxy. TheSMAcontours SMGs becomes comparable. are overlaid in steps of 3σ, 8σ, 13σ etc. SMA peaks with S/N > In this Letter we present Spitzer/IRAC imaging, light 8(four for ID81 and two for ID130) have amaximum rms on the profile models, photometry and physical characteristics positionofapoint sourceof 0.1′′. Allpostage stamps areplotted forSDP.81andSDP.130derivedfromSEDfitting. Inthe with the same pixel intensity scaling after normalizing the Keck next section, we present a summary of the Spitzer data, i-banddatatothedynamicpixelvaluerangeoftheIRACdata. while in Section 3 we discuss modeling of the light pro- file of the foreground lenses. We perform SED modeling Corrected basic calibrated data pre-processed by the of background SMGs and present results related to the SpitzerScienceCenter(SSC),usingthestandardpipeline properties of these two sources in Section 4. Through- version S18.18.0, were spatially aligned, resampled, and out the Letter we assume flat ΛCDM cosmology with combined into a mosaic image using version 18.3.1 of Ω =0.3 and H = 70 kms−1Mpc−1. the SSC’s MOPEX software suite (Makovoz & Marleau M 0 2005). The IRAC mosaics havea resampledpixelsize of 2. SPITZERIRANDKECKOPTICALIMAGINGDATA 0.6′′ and angular resolution of 2 to 2.5′′. For the work presentedhere, we also use the IRAC point spreadfunc- The IR imaging data are part of Spitzer program 548 tion (PSF; version 2010 April) file as provided by the (PI: A.Cooray), released for analysis on 2010 July 30. SSC 36. For this program, Infrared Array Camera (IRAC; Fazio We also make use of optical images of SDP.81 and et al. 2004) images of SDP.81 and SDP.130 were taken SDP.130that wereacquiredon 2010March10 using the at 3.6µm (Channel 1) and 4.5µm (Channel 2). Both dual-arm Low Resolution Imaging Spectrometer (LRIS; lensing systems were imaged with a 36-position dither Oke et al. 1995, McCarthy et al. 1998) on the Keck I pattern and an exposure time of 30 s for each frame to telescope and reported in N10 (see Figures 1 and 2). achieve an effective total exposure time of 1080 s. The Eachtarget received simultaneous 3×110 s integrations rms depth reached is 0.3 and 0.4 µJy in Channels 1 and with the g-filter and 3×60 integrations with the i-filter 35 Herschel is an ESA space observatory with science instru- using the blue and red arms of LRIS, respectively. A ments provided by European-led Principal Investigator consortia andwithimportantparticipationfromNASA. 36http://ssc.spitzer.caltech.edu/irac/calibrationfiles/psfprf/ Spitzer imaging of Herschel-ATLAS lenses 3 20′′ dither patternwasemployedtogenerateon-skyflat- field frames. We performed photometric calibration us- ing 1 s g- andi-band observations of brightstars in each field. The data were reduced using IDL routines and combined and analyzed using standard IRAF tasks; the seeing FWHM of the final science exposures is ∼0.8′′. Fig.2.—Kecki-band(toprow),IRACChannel1(middlerow) and Channel 2 (bottom row) postage stamp images for SDP.130. Fig.3.—Multi-componentlightprofilemodelsforSDP.81(top) Thecorrespondingresidualsarepresentedaftersubtractionofsin- andSDP.130(bottom), forthe IRAC Channel 1data. Shownare gledeVaucouleurs profilesmodeledontheKeck i-banddata. Al- the un-subtracted data, the lens model (a single S´ersic profile for though the Keck residuals show no signs of significant structure, SDP.81 and a S´ersic plus exponential disk profile for SDP.130 ), thesubtracted IRAC data haveresidualstructurethat canbeas- the residual after subtraction of the lens model profile only and sociated with the SMA contours, which suggests lensed structure the total model residual (full residual). The SMA contours are oftherespectivebackgroundgalaxyispresent. TheSMAcontours presentedasinFigure1. Alldataareplottedwiththesamepixel arepresented asinFigure1. Allpostage stamps areplotted with intensityscaling. thesamepixelintensityscalingafternormalizingtheKecki-band datatothedynamicpixelvaluerangeoftheIRACdata. IRAC band residuals strongly suggest that a more com- plex structure, associated with the background SMG, is presentforbothSDP.81andSDP.130(see Figures1and 3. MODELINGTHELENSES 2). To construct models of the light profiles for each lens- We verify that these residuals are significant, and not ing system we use GALFIT (Peng et al. 2002), which anartifactofimperfectionsintheIRACPSF,bycompar- allows multiple profiles per object and performs a si- ing them with residuals derived for three (non-lensing) multaneousnonlinearminimization. Priortofitting pro- elliptical-likegalaxiesinthesamefield,afterfittingthem files to SDP.81 and SDP.130 in the IRAC data, de Vau- with single S´ersic profiles. For both the lensing systems couleurs profile (de Vaucouleurs 1948) models are con- and the comparison ellipticals aperture flux ratios were structed for the Keck i-band imaging,to take advantage determinedfortheresidualimageandthecorresponding of the comparatively higher resolution of these images, un-subtracted data. To consider only positive structure, and the presence of only one component per system i.e. pixel values > 2σ below the local background were re- the lens galaxy. placedwith the medianlocalsky value. The SMG resid- To look for any potentially lensed structure in the uals were found to have flux ratios ∼ 3−5 greater than IRAC data, the Keck models are used to fit the IRAC those for the random elliptical galaxies. Channels 1 and 2 data, keeping the effective radius and In order to more precisely disentangle the lens and ellipticity fixed, and using the appropriate IRAC PSF background components we represent the flux from the 36. On subtraction of the results, and in comparison to lensed SMGs with S´ersic profiles. Peaks were identified the model subtracted Keck data and SMA contours, the in the IRAC single profile fit residual images, by fitting 4 Hopwood et al. Gaussian profiles. We add three profiles for SDP.81 and TABLE 1 two for SDP130,which allcorrespondto significantsub- Parametersof the ForegroundLens andBackgroundSMG mm contour peaks in the SMA data, within 0.8′′. N10 for SDP.81and SDP.130 modeled the Keck i band with a S´ersic profile plus an exponential disk, as this combination gave a marginally Parameters SDP.81 SDP.130 improved χ2 over single profile models, and found that Foregroundlens the exponential component significantly contributes to RA 09h03m11.6s 09h13m05.0s thetotalprofileforSDP.130. Therefore,aS´ersicplusex- Dec 00d39m06s −00d53m43s ponentialdiskprofileisadoptedfortheSDP.130lensand Redshifta 0.299 0.220 a single S´ersic profile for the SDP.81 lens. To produce SDSSu(µJy) 3.9±2.0 1.7±1.7 the final models for the lens and background galaxies, SDSSg(µJy) 24.9±1.1 19.4±0.7 we refit the profile representing the lens galaxy and the SDSSr(µJy) 115±2 66.1±1.2 SDSSi(µJy) 198±4 109±2 additional S´ersic profiles simultaneously for each system SDSSz(µJy) 278±8 143±7 withGALFIT.Thesefinalmodelfitsforthebackground UKIDSSY(µJy) 320±20 ... componentofSDP.81showapartial“Einsteinring”-like UKIDSSJ(µJy) 370±20 ... morphologicalstructureforthelensedsource(Figure.3). UKIDSSH(µJy) 510±50 ... ForSDP.130,thelensedcomponentismorecompactand UKIDSSK(µJy) 570±70 ... in close proximity to the lens profile. The resulting best Spitzer3.6µm(mJy) 0.35±0.04 0.213±0.03 fit profiles for the background galaxies agree well with Spitzer4.5µm(mJy) 0.22±0.04 0.230±0.01 BackgroundSMG:observedquantities the SMA contours, and the combined models subtract a Redshift 3.042 2.625 cleanly, suggesting successful lens/source decoupling. Magnificationa 25±7 6±1 4. SPECTRALENERGYDISTRIBUTIONOFTHELENSED Keck/LRISg(µJy) <0.13 <0.20 Keck/LRISi(µJy) <0.20 <0.35 SMGS UKIDSSY(µJy) <6.27 ... The GALFIT-integrated magnitudes for each com- UKIDSSJ(µJy) <9.23 ... ponent of the final SDP.81 and SDP.130 models were UKIDSSH(µJy) <8.52 ... converted to flux density to extend the existing multi- UKIDSSK(µJy) <13.5 ... waveband photometry (see table 1 and N10, and refer- Spitzer3.6µm(mJy) 0.062±0.04 0.044±0.01 Spitzer4.5µm(mJy) 0.126±0.05 0.047±0.01 ences therein) into the near-IR. We assign 1σ errors to b PACS70µm(mJy) <8.0 <9.0 the photometry obtained from the final GALFIT model PACS100µm(mJy) <62 ... profiles, using the magnitude distributions for all the PACS160µm(mJy)b 51±5 45±8 GALFIT trials that converged. PACS re-imaging of the SPIRE250µm(mJy) 130±20 105±17 lensed H-ATLAS sources provides new photometry at SPIRE350µm(mJy) 180±30 128±20 160µmandupperlimitsat70µm(I.Valtchanovetal.in SPIRE500µm(mJy) 170±30 108±18 preparation; Ibar et al. 2010). For the goal of deriving SMA880µm(mJy) 76±4 39±2 physical properties, the IRAC photometry adds partic- IRAM1200µm(mJy) 19.6±0.9 11.2±1.2 ularly important constraints to the SMG SEDs, which BackgroundSMG:derivedquantities previously consisted of just upper limits at wavelengths LIR(1012L⊙)c 2.0±0.6 5.6±1.2 below 250µm for SDP.130 and 160µm for SDP.81. AV 4.4±0.6 5.0±0.5 MH −25.7±0.3 −26.01±0.17 The SEDs of the SMGs are fitted using the models SFR(M⊙ yr−1) 74±30 150±50 of da Cunha et al. (2008), calibrated to reproduce the M(H2)(1010 M⊙)d 1.4 2.7 ultraviolet-to-infraredSEDsoflocal,purelystar-forming M⋆ (1011 M⊙)e 2.5±1.7 4.5±2.5 Ultra Luminous Infrared Galaxies (ULIRGs; 1012 ≤ Mdust (108 M⊙)f 3.4±1.0 11±2 LIR/L⊙ < 1013; da Cunha et al. 2010). The SED µg 0.05±0.01 0.08±0.01 models assume a Chabrier (2003) initial mass function (IMF) that is cutoff below 0.1 and above 100 M⊙; using Note. —Theopticalandsub-mmfluxdensitiesand3σ upperlim- a Salpeter IMF instead gives stellar masses that are a itsaretakenfromN10,unlessotherwisenoted. Derivedquantitiesare factor of ∼ 1.5 larger. We find that a significant atten- correctedformagnificationandtheerrorsquotedaccountforthetab- ulateduncertaintyinthemagnification. uation by dust (AV ∼4-5) is required to be consistent (a)Spectroscopicredshifts(N10). with the IRAC photometry and optical/near-IR upper (b) From PACS re-imaging data (I. Valtchanov et al. in preparation 2011;Ibaretal.2010). limits(Figure4),whichisconsistentwithotherULIRGs (c)2to1000µmluminositybasedonthebest-fitSED; and SMGs (e.g. Geach et al. 2007; Hainline et al. 2010; (d)Frayeretal.2011,uncertaintyisatleastafactorof∼2. Michal owski et al. 2010; Wardlow et al. 2010). (e)Thereisanadditionalsystematicuncertaintyuptoafactorof∼10 (seetext). Using the Chabrier (2003) IMF, with parameters de- (f)Calculatedwithadustmassabsorptioncoefficientapproximatedas rived from the SED fits, we find that SDP.81 and κλ ∝ λβ with β = 1.5 for warm dust and β = 2 for cold dust, and SDP.130havestellarmasses(M⋆)of(2.5±1.7)×1011M⊙ a normalization of 0.77 g−1 cm2 at 850 µm. There is an additional and(4.5±2.5)×1011M⊙,respectively(seetable1). How- (sgy)stGemasatfricacutniocner,tµai=ntyMo(fHa2t)/le[aMst⋆a+fMac(tHor2o)]f,∼un2c.ertaintyisafactorof ever,wenotethatthereisanadditionalsystematicerror 2–3. of up to a factor of 10, due to uncertainty in the appro- priate mass-to-light ratio (see Wardlow et al. 2010 for a discussion)andmagnificationfactors,aswellasalackof observations at optical/near-IR wavelengths. J and Ks photometric data on these galaxies with VLT/HAWK-I observations(A.Vermaetal. inpreparation2011)could Spitzer imaging of Herschel-ATLAS lenses 5 Fig.4.— Left: photometry and best-fit SEDs for the foreground elliptical (blue) and background SMG (red) for SDP.81 and SDP.130. The photometric points and upper limits are taken from Negrello et al. (2010), with updated PACS flux densities at 160 µm and upper limits at 70 µm. Photometry from the best fitting light profiles to the IRAC data are added for the foreground lens galaxies (turquoise points)andforthebackgroundSMG(pinkpoints). TheSEDsarefittedusingthemodelsofdaCunhaetal.(2008). Wefindthathighlevels ofvisualextinctionoftheSMGsarerequired(AV>4)tobeconsistentwiththeoptical-to-NIRdata. Topright: aplotof(magnification corrected)rest-frameabsoluteH-band(MH)magnitudeagainstredshiftforSDP.81andSDP.130,showingtheapproximatecorrespondence ofMH withstellarmass. Forcomparison,wealsoshow850-and870-µmselectedgalaxies(Hainlineetal.2010;Wardlowetal.2010). The twolensed H-ATLASsources arebrighter than ∼95% of the comparisonsample,and correspondingly, arelikelytobeamongst the most massive. Error bars are omitted from the comparison sample for clarity. Bottom right: ratio of CO and H-band luminosity against CO linevelocityfortheH-ATLASlensedgalaxiesand850µmselectedSMGs. LCO/LH isindependentofthelensingmodel(tothefirstorder; see discussioninthe text) and represents the gas-to-stellar mass ratio. σCO is indicative of dynamical mass, although italsodepends on theinclinationangleandsizeoftheCOemittingregion,whichincreasestheobservedscatter. SDP.81andSDP.130havesmalldynamical massesandsmallgasfractions,relativetothecomparisonsample. potentially improve the estimates of extinction and stel- (Hainline et al. 2010). σ is independent of L /L CO CO H lar mass. andisindicativeofthedynamicalmassofthesystem,al- Rest-frameabsoluteH-bandmagnitudes(M )provide thoughsomescatterisintroducedduetothedependence H a guide to galaxy stellar masses that is not complicated on the inclination angle and the size of the CO emitting by the details of the assumedstar formationhistory and region. PublishedCOluminositiesofthe850µmselected is straightforwardto compare to other similarly selected sample (Greve et al. 2005, Coppin et al. 2008; Frayer samples. InthetoppanelofFigure4weplotM against et al. 2008, Tacconi et al. 2008; Bothwell et al. 2010) H redshift for SDP.81 and SDP.130 compared to 850 and are converted to the equivalent CO(1−0) values using 870 µm selected SMGs (Hainline et al. 2010; Wardlow L /L =0.6 and L /L =0.6 CO(3−2) CO(1−0) CO(4−3) CO(1−0) et al. 2010). The H-ATLAS lensed galaxies are brighter (Ivison et al. 2010). Galaxies with poorly defined σ CO than the majority of the 850–870 µm selected SMGs, are excluded. The H-ATLAS lensed galaxies have low thus if there is no active galacticnucleus contributionto L /L (representative of gas fraction) and low σ CO H CO their H-band luminosities they are likely to be amongst (representative of dynamical mass) compared to 850- the most massive. µm selected galaxies (Figure 4). There may also be a We next consider the CO(1−0)-to-H-band luminosity weakinversetrendbetweenL /L andσ for allthe CO H CO ratio (LCO/LH), a representation of the gas-to-stellar SMGs,althoughalargersampleisrequiredforconfirma- mass fraction that is mostly independent of the lensing tion. model. However, the IRAC data trace stellar emission, which may originate from a spatially different region of Summary: We have studied the background SMGs of the SMG to the far-infrared emission. As such there two sub-mm brightgravitationallenses, identified in the may be variationin the lensing amplifications acrossthe H-ATLASSDPdata. Theintrinsicsub-mmfluxdensities source plane, potentially leading to a small effect on oftheseSMGarebelowtheHerschelconfusionnoiseand, LCO/LH The bottom panel of Figure 4 shows LCO/LH therefore,undetectablewithoutthe fortuitouslensingby against the CO linewidth (σCO) for the two H-ATLAS foreground ellipticals. The full 550 deg2 survey area of lensed galaxies, compared to 850-µm selected SMGs H-ATLAS will recover a sample of > 200 lensed SMGs, 6 Hopwood et al. andSpitzerfollow-upobservationswillenableustostudy the Science and Technology Facilities Council, grant the physical properties of SMGs over a wide range of D/002400/1 and studentship SF/F005288/1. This work redshiftand far-IRluminosities. Studies suchas this are is based in part on observations made with the Spitzer necessary to further understand the nature of sources SpaceTelescope,whichisoperatedbytheJetPropulsion that contribute to the bulk of the cosmic far-infrared Laboratory, California Institute of Technology under a background. contractwithNASA.Supportforthisworkwasprovided Herschel-ATLAS is a project with Herschel, which is by NASA through an award issued by JPL/Caltech. an ESAspace observatorywith science instruments pro- US participants in H-ATLAS also acknowledge support vided by European-led Principal Investigator consortia from NASA Herschel Science Center through a contract and with important participation from NASA. The H- fromJPL/Caltech. IA andDHH arepartiallyfunded by ATLAS Web site is http://www.h-atlas.org/. We thank CONACyT grants 50786 and 60878. REFERENCES Blain,A.W.1996,MNRAS,283,1340 Makovoz,D.,&Marleau,F.R.2005, PASP,117,1113 Bothwell,M.S.,etal.2010, MNRAS,405,219 McCarthy,J.K.,etal.1998,Proc.SPIE,3355,81 Chabrier,G.2003,PASP,115,763 Micha lowski,M.J.,Hjorth,J.,&Watson, D.2010,A&A,514, Coppin,K.,etal.,2008,MNRAS,389,45 A67 daCunha,E.,Charlot,S.,&Elbaz,D.2008,MNRAS,388,1595 Negrello,M.,Perrotta,F.,Gonz´alez-Nuevo, J.,Silva,L.,deZotti, daCunha,E.,Charmandaris,V.,D´ıaz-Santos,T.,Armus,L., G,Granato,G.L.,Baccigalupi,C.&Danese,L.2007, Marshall,J.A.,&Elbaz,D.2010, A&A,523,A78 MNRAS,377,1557 deVaucouleurs,G.1948, Ann.Astrophys.,11,247 Negrello,M.,etal.2010, Science,330,800 Eales,S.,etal.2010, PASP,122,499 Oke,J.B.,etal.,1995,PASP,107,375 Fazio,G.G.,etal.2004,ApJS,154,10 Pascale,E.,etal.2010,MNRAS,submitted(arXiv:1010.5782) Frayer,D.T.,etal.2008,ApJ,680,L21 Peng,C.Y.,Ho,L.C.,Impey, C.D.,&Rix,H.-W.2002, AJ, Frayer,D.,etal.2011,ApJ,726,L22 124,266 Geach, J.E.,Smail,I.,Chapman, S.C.,Alexander,D.M.,Blain, Perrotta,F.,Baccigalupi,C.,Bartelmann,M.,DeZotti,G.& A.W.,Stott, J.P.,&Ivison,.R.J.2007,ApJ,655,L9 Granato, G.L.2002, MNRAS,329,445 Greve,T.R.,etal.2005,MNRAS,259,1165 Pilbratt,G.L.,etal.2010, A&A,518,L1 Hainline,L.J.,Blain,A.W.,Smail,I.,Alexander,D.M.,Armus, Rigby,E.E.,etal.2010, MNRAS,submitted(arXiv:1010.5787) L.,Chapman,S.C.,&Ivison,R.J.2010,MNRAS,submitted Tacconi,L.J.,etal.2008, ApJ,680,246 (arXiv:1006.0238) Treu,T.2010,ARA&A,48,87 Ibar,E.,etal.2010, MNRAS,409,38 Wardlow,J.L.,etal.2010,MNRAS,submitted, Ivison,R.J.,Papadopoulos,P.P.,SmailI.,Greve,T.R., (arXiv:1006.2137) Thomson,A.P.,Xilouris,E.M.,&Chapman,S.C.2010, MNRAS,inpress(arXiv:1009.0749) Lupu,R.,etal.2010,ApJ,submitted(arXiv:1009.5983)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.