ebook img

SPIRITS: Uncovering Unusual Infrared Transients With Spitzer PDF

5.1 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview SPIRITS: Uncovering Unusual Infrared Transients With Spitzer

DRAFTVERSIONJANUARY6,2017 PreprinttypesetusingLATEXstyleAASTeX6v.1.0 SPIRITS:UNCOVERINGUNUSUALINFRAREDTRANSIENTSWITHSPITZER MANSIM.KASLIWAL1,JOHNBALLY2,FRANKMASCI3,ANNMARIECODY4,HOWARDE.BOND7,10,JACOBE.JENCSON1, SAMAPORNTINYANONT1,YICAO1,CARLOSCONTRERAS5,DEVINA.DYKHOFF6,SAMUELAMODEO6,LEEARMUS3,MARTHA BOYER8,22,MATTEOCANTIELLO9,ROBERTL.CARLON6,ALEXANDERC.CASS6,DAVIDCOOK1,DAVIDT.CORGAN6,JOSEPH FAELLA6,ORID.FOX10,WAYNEGREEN2,ROBERTGEHRZ6,GEORGEHELOU3,ERICHSIAO11,JOELJOHANSSON12,RUBABM. KHAN8,RYANM.LAU1,20,NORBERTLANGER13,EMILYLEVESQUE14,PETERMILNE15,SHAZRENEMOHAMED16,21,23,NIDIA MORRELL5,ANDYMONSON7,ANNAMOORE1,ERANO.OFEK12,DONALO’SULLIVAN1,MUDUMBAPARTHASARTHY17,ANDRES PEREZ1,DANIELA.PERLEY18,MARKPHILLIPS5,THOMASA.PRINCE1,DINESHSHENOY6,NATHANSMITH15,JASONSURACE19, SCHUYLERD.VANDYK3,PATRICIAWHITELOCK16,21,ROBERTWILLIAMS10 7 1 0 1DivisionofPhysics,MathematicsandAstronomy,CaliforniaInstituteofTechnology,Pasadena,CA91125,USA 2 2 CenterforAstrophysicsandSpaceAstronomy,UniversityofColorado,389UCB,Boulder,CO80309,USA n 3InfraredProcessingandAnalysisCenter,CaliforniaInstituteofTechnology,Pasadena,CA91125,USA a 4 NASAAmesResearchCenter,MoffettField,CA94035,USA J 5LasCampanasObservatory,CarnegieObservatories,Casilla601,LaSerena,Chile 4 6 MinnesotaInstituteforAstrophysics,SchoolofPhysicsandAstronomy,116ChurchStreet,S.E.,UniversityofMinnesota,Minneapolis,MN55455,USA ] 7Dept.ofAstronomy&Astrophysics,PennsylvaniaStateUniversity,UniversityPark,PA16802USA E 8 NASAGoddardSpaceFlightCenter,MC665,8800GreenbeltRoad,Greenbelt,MD20771USA H 9 KavliInstituteforTheoreticalPhysics,UniversityofCalifornia,SantaBarbara,CA93106,USA . h 10 SpaceTelescopeScienceInstitute,3700SanMartinDr.,Baltimore,MD21218USA p 11 DepartmentofPhysics,FloridaStateUniversity,77ChieftainWay,Tallahassee,FL,32306,USA - o 12 BenoziyoCenterforAstrophysics,WeizmannInstituteofScience,76100Rehovot,Israel r 13 t Argelander-InstitutfrAstronomieAufdemHgel71.D-53121Bonn,Germany s 14 a DepartmentofAstronomy,UniversityofWashingtonSeattle,Box351580,WA98195-1580USA [ 15 StewardObservatory,UniversityofArizona,Tuscon,AZ85721,USA 16 1 SAAO,POBox9,Observatory,7935,SouthAfrica v 17IndianInstituteofAstrophysics,Koramangala,Bangalore560034,India 1 18 DarkCosmologyCentre,NielsBohrInstitute,JulianeMariesVej30,CopenhagenAF,DK-2100,Denmark 5 19 1 EurekaScientific,Inc.2452DelmerStreetSuite100Oakland,CA94602-3017USA 1 20JetPropulsionLaboratory,CaliforniaInstituteofTechnology,4800OakGroveDrive,Pasadena,CA91109,USA 0 21 AstronomyDepartment,UniversityofCapeTown,UniversityofCapeTown,7701,Rondebosch,SouthAfrica . 1 22DepartmentofAstronomy,UniversityofMaryland,CollegePark,MD20742USA 0 23 NationalInstituteforTheoreticalPhysics,PrivateBagX1,Matieland,7602,SouthAfrica 7 1 : ABSTRACT v i We present an ongoing, systematic search for extragalactic infrared transients, dubbed SPIRITS — SPitzer X InfraRedIntensiveTransientsSurvey. Inthefirstyear, usingSpitzer/IRAC,wesearched190nearbygalaxies r with cadence baselines of one month and six months. We discovered over 1958 variables and 43 transients. a Here,wedescribethesurveydesignandhighlight14unusualinfraredtransientswithnoopticalcounterparts to deep limits, which we refer to as SPRITEs (eSPecially Red Intermediate Luminosity Transient Events). SPRITEs are in the infrared luminosity gap between novae and supernovae, with [4.5] absolute magnitudes between 11 and 14 (Vega-mag) and [3.6]-[4.5] colors between 0.3mag and 1.6mag. The photometric − − evolution of SPRITEs is diverse, ranging from <0.1 mag yr−1 to >7mag yr−1. SPRITEs occur in star- forming galaxies. We present an in-depth study of one of them, SPIRITS14ajc in Messier83, which shows shock-excitedmolecularhydrogenemission. Thisshockmayhavebeentriggeredbythedynamicdecayofa non-hierarchicalsystemofmassivestarsthatledtoeithertheformationofabinaryoraproto-stellarmerger. Keywords:surveys,infrared,supernovae,AGBandpost-AGB,novae,cataclysmicvariables,mass-loss 1. INTRODUCTION The systematic study of explosive transients and eruptive variablesisgrowingbyleapsandboundsespeciallywiththe 2 advent of wide-field synoptic imaging. Recently, multiple i.e. 66% of the total B-band luminosity of the cluster. Fur- newclassesofopticaltransients(e.g.,Kasliwal2012)andnew thermore, thesegalaxiestotal9.1 1011M i.e. 71%ofthe (cid:12) × radiotransients(e.g.,Thorntonetal.2013)havebeenuncov- totalstellarmassofthecluster. ered. Yet, the dynamic infrared (IR) sky is hitherto largely Tables summarizing properties of galaxies in this sample unexplored. in detail is presented in Kasliwal et al. 2013. In 2015 and Whiletheopticalisapowerfulbandtoexploresupernovae 2016, weadded star-forming regionsin galaxiestoo large to and novae, it is blind to transients and eruptive variables map with IRAC otherwise (Kasliwal et al. 2014a). In 2017 thatareeitherself-obscuredorlocatedindustyregions(e.g., and 2018, we down-sized the sample to focus on the most molecularclouds). IRfollow-upofopticallydiscoveredtran- luminousandmostmassivegalaxies(Kasliwaletal.2016). sients shows that IR emission dominates in supernovae with In2014,eachofthesegalaxieswasimagedthreetimesby circumstellar interaction, particularly at late-time (Fox et al. SPIRITS, with cadence baselines of 1 month and 6 months. 2011, 2013). We are now aware of at least two new classes In 2015 and 2016, additional shorter cadence baselines of 1 of explosive transients where the bulk of the emission is in weekand3weekswereadded. Archivaldataprovidesusad- theIR–stellarmergers(associatedwithluminousrednovae, ditional multi-year baselines. A histogram of cadence base- e.g. V1309 Sco; Tylenda et al. 2011) and electron capture linesisavailableinKasliwaletal.2014a. supernovae(eCSNe;associatedwithintermediateluminosity Each SPIRITS pointing is seven dithered 100s exposures redtransients,e.g.NGC300-OT;Bondetal.2009,SN2008S; ineachIRACfilter. Thelimitingmagnitude(asdefinedfora Prietoetal.2008). 5σ point source Vega magnitude) in each SPIRITS epoch is SomeeffortshavebeenundertakentolookforIRtransients 20mag at [3.6] and 19.1mag at [4.5]. This gives us a [3.6] andvariableswiththeSpitzerSpaceTelescope(Werneretal. depth of up to 8.5mag at 5Mpc and up to 11.5mag at − − 2004;Gehrzetal.2007). AblindsearchforIRtransientsin 20Mpc. repeatedimagingoftheBootesfieldrevealedasuperluminous 2.2. Follow-UpGround-basedobservations supernova(Kozłowskietal.2010). Searchestargetingnearby starformingregionsintheMilkyWayhaveshownaplethora We are undertaking concomitant ground-based surveys to ofyoungstarvariability(Codyetal.2014;Rebulletal.2014). monitortheSPIRITSgalaxysampleinthenear-IRandtheop- Searchesforvariable,obscuredasymptoticgiantbranchstars ticalatroughlyamonthlycadence. AttheUniversityofMin- innearbygalaxiesisbeingundertakenbytheDUSTiNGSsur- nesota’sMtLemmonObservingFacility(MLOF),weusethe vey(Boyeretal.2015). Searchesforobscuredsupernovaein three-channelTwoMicronAllSkySurveycameras(Milligan starburstgalaxies,usingSpitzer(Foxetal.2012),HST(Cresci et al. 1996; Skrutskie et al. 2006) mounted on the 1.52m IR etal.2007)andhigh-resolutionground-basedadaptiveoptics telescope(Lowetal.2007). AtLasCampanas,weundertake imaging(e.g.,Mattilaetal.2007),haverevealedafewcandi- near-IR monitoring with the Retrocam on Dupont 100-inch dates(Kankareetal.2008,2012). telescopeandopticalmonitoringusingtheCCDontheSwope Motivated thus, we began a systematic search for mid-IR 40-inchtelescope.AtPalomar,weusetheSamuelOschin48- transients in nearby galaxies with Spitzer. Here, we present inch(primarilyr-band)andPalomar60-inchtelescopes(gri- the experiment design ( 2), the software pipelines ( 3), the bands)foropticalmonitoring.UsingtheLCOGTnetwork,we § § discoveries in the first year ( 4) and a case-study ( 5). We obtainadditionalopticalmonitoringingi-bands. Inaddition, § § concludewithreflectionsonapossiblewayforwardtochart follow-upofdiscoveredtransientswasundertakenbyamyr- thedynamicIRsky( 6). iadoffacilitiesincludingKeck,Magellan,Palomar200-inch, § SALTandRATIR. 2. EXPERIMENTDESIGN 2.3. Follow-UpwiththeHubbleSpaceTelescope 2.1. GalaxySample,CadenceandDepth Following non-detections from the ground, we were able The SPIRITS experiment uses the IRAC instrument (FoV to set even deeper magnitude limits for two transients based 5’ 5’; Fazio et al. 2004) aboard the warm Spitzer telescope on a small HST Director’s Discretionary program (GO/DD- × tosearchforIRtransientsat3.6µm([3.6])and4.5µm([4.5]). 13935, PI H. Bond). We imaged SPIRITS14aje (in M101) Thisisasearchtargeting190nearbygalaxiesselectedusing and SPIRITS14axa (in M81) with the Wide Field Camera 3 three criteria: (i) 37 galaxies out to 5Mpc spanning diverse (WFC3)in2014September. IntheWFC3UVISchannel,we galaxyenvironments: early-typegalaxies, late-typegalaxies, employed an “I” filter (F814W), and in the IR channel we dwarf galaxies and giant galaxies (ii) 116 luminous galaxies used“J”(F110W)and“H”(F160W)bandpasses. Thesites between5Mpcand15Mpc. Oursampleofgalaxiescaptures ofbothtargetshadbeenobservedwithHST beforetheirout- atotalof2.0 1012 L intheB-bandwithin15Mpc. Thisis bursts, makingitpossibleforustocompareournewimages (cid:12) × 83%ofthetotalB-bandstarlightwithinthe<15Mpcvolume. withthearchivaldata. WeregisteredtheSpitzerframeswith (iii)The37mostluminousandmostmassivegalaxiesinthe the HST frames by measuring the positions of isolated stars Virgo Cluster (17Mpc). These galaxies total 1.6 1012L detectedinbothimages,allowingthesitesofthetransientsto (cid:12) × 3 be located in the HST images to precisions of typically 0(cid:48).(cid:48)1 determined by our transient detection routines. Sky back- (MoredetailsinBondetal. inprep). ground is measured within an annulus from 8 to 16 pixels surrounding each source and subtracted from the total flux. 3. SOFTWAREPIPELINES Finally, fluxes are converted to magnitudes using the Warm 3.1. ImageSubtractionandSourceCatalogs Spitzer/IRACzeropointsof18.8024(channel1)and18.3174 (channel2),alongwithaperturecorrectionsof1.21and1.22, WeconstructreferenceimagesusingarchivalSpitzerimag- respectively, asspecifiedbytheIRACinstrumenthandbook. ing using supermosaics or S4G stacks (Sheth et al. 2010; Sincethesubtractionimagesarenoisy,weconservativelyset wheresupermosaicswereunavailable)orstackingprior“bcd” thedetectionandupperlimitthresholdat9σ. observations in the archive (where neither supermosaics nor S4G stacks were available). We use the “maic” products of 3.3. DatabaseandDynamicWebPortal theSpitzerIRACpipelineasourstartingpointfordifference We architected a postgresql database to ingest the differ- imaging. We adapted an image differencing and transient- ence imaging products. The search for transients is under- source extraction code developed for the Palomar Transient taken via a dynamic web portal. In 2014, Spitzer data was Factory(PTFIDE1)toSpitzerimaging. Thechangesmadeto releasedeverytwoweeks(thetime-laghasnowbeenreduced thissoftwarewere(i)abilitytooperateonco-addsofindivid- to only a few days). Once the data is released, the SIDE ual IRAC exposures; (ii) masking of co-add–image regions pipelineispromptlyrun. Teammembersareassignedgalax- with depths <5 exposures to mitigate cosmic rays and de- ies to look through candidate metadata and postage stamps tector glitches; (iii) execution of the SExtractor tool (Bertin tovisuallyvetandflaginterestingtransients,typicallywithin and Arnouts, 1996) to extract transient candidates from the one day of data release. These transients are then assigned difference images (as opposed to PSF-fitting for PTF); (iv) a name in sequential order by the database. For example, omissionofdynamicphotometric-gainmatchingbetweenref- in the first year, a total of 131722 candidates (on 4396 new erenceandscience-imageco-adds,and(v)amorestreamlined and archival subtraction images) were automatically loaded andsimplerPSF-matchingschemebetweenimages. Updates into our subtraction database. Of these, only 1693 sources (iv)and(v)takeadvantageofthestablethermalenvironment were assigned names and flagged for further inspection as oftheSpitzertelescope.Examplesofdiscoveryimagetriplets transients or variable stars. Additional context information areshowninFigure1. fromvariousground-basedandspace-basedfacilitiesissum- One may expect difference-imaging from space to yield marized on a source-specific webpage for reference. Inter- fewer false positives than from a ground observatory where esting transients are announced via Astronomers Telegrams atmosphericconditionscontinuouslymodifythePSFbetween (e.g.,Kasliwaletal.2014b;Jencsonetal.2015,2016a,b). observations, however, we found this generally not to be the case with Spitzer (in part, due tothe sparselysampled PSF). 4. FIRSTTRANSIENTDISCOVERIES TheSpitzerdifference-imagingispronetoalargenumberof Inthefirstyear,SPIRITSdetectedover1958variablestars false positives when the Spitzer field-of-view had a large ro- and 43 IR transient sources. Of these 43 transients, 21 were tationbetweenthereferenceandscienceimageepochs. The knownsupernovaeand4wereintheluminosityrangeofclas- Spitzer-IRAC PSF profiles follow the fixed detector/optical sical novae. SPIRITS supernovae have been discussed in- diffractionpatternsandthesecouldnotbeeasilymatchedand depth as a Type Ia sample (Johansson et al. 2014), a core- subtracted between rotated apparitions of the same piece of collapse sample (Tinyanont et al. 2016), and a case-study sky. Each of our candidates are visually vetted and we re- of the peculiar low-velocity SN2014dt (Fox et al. 2016). quire at least two detections (in two filters or at two epochs) Four transients had optical counterparts: SPIRITS14axm in to weed out false positives. But, we caution that our search NGC2403 (luminous blue variable; van Dyk et al. in prep), is incomplete and any inferred rates of transients are likely SPIRITS14pzinNGC4490(stellarmergercandidate;Smith lowerlimits. et al. 2016), SPIRITS14bme in NGC300 (high mass X-ray binary; Lau et al. 2016) and SPIRITS14bmc in NGC300 3.2. ForcedPhotometry (Adams et al. in prep). Here, we discuss the remaining 14 We define a source to be transient if there is no detected events (see Table 1), which are unusual IR transients in the quiescent point source underneath the source location in the luminosity gap between novae and supernovae with no opti- referenceframe(else,thesourceisavariable).Toobtainmag- calcounterparts,hereafterreferredtoasSPRITEs(eSPecially nitudesfortransientsources,weperformforcedaperturepho- RedIntermediate-luminosityTransientEvents). tometryonthesubtractedimages,assumingzerofluxpresent ThecommonpropertiesofthisnewclassofSPRITEsare: in the reference image. We sum the flux in an aperture with radius4-pixels(2(cid:48).(cid:48)4)centeredattheRAandDeccoordinates 1. Peak luminosity at [4.5] brighter than 11mag and − fainterthan 14mag(seeTable2). 1 http://web.ipac.caltech.edu/staff/fmasci/home/miscscience/ptfide- − v4.0.pdf 2. IRAC Color [3.6]-[4.5] between 0.3mag and 1.6mag 4 (seeTable2). body(Cardellietal.1989;Chapmanetal.2009),wefindthat anobserved[3.6]-[4.5]colorof1magrequiresvisualextinc- 3. No optical counterpart in concomitant or follow-up tionof30magrespectively! Thisisdifficultespeciallygiven imagingtoatleastr<20mag(seeTable4). the location of SPRITEs in the middle-to-outer galaxy disks (Figure2). Moreover,ifthisiscorrect,giventhattherewere 4. Occurring in star-forming galaxies even though the sixnewopticalsupernovaeintheSPIRITSsamplein2014,it SPIRITS galaxy sample has a mix of all galaxy types wouldsuggestthatopticalsurveysaremissingafourthofthe (seeFigure2) supernovaeduetoobscuration. First,weplaceSPRITEsincontextoftheIRtransientphase Next, thereareafewpossibletheoreticalmodelsthatmay space. We plot the IR luminosity evolution of SPRITEs and explainSPRITEs. Forexample,coalescenceof1–30M(cid:12) bi- comparetowell-knownnovaeandsupernovae(seetoppanel nariesisexpectedtocreatecopiousamountsofdustinanop- ofFigure3). SPRITEsaretooluminoustobeclassicalnovae. tically thick wind launched during the stellar merger (Soker Thehighestabsolutemagnitudethatcanbeachievedbydusty & Tylenda 2006; Ivanova et al. 2013; Nicholls et al. 2013; classicalnovaeisapproximately 11magat[3.6]. Thismax- Pejcha et al. 2016). Another possibility is that these are − imum occurs when an optically thick dust shell forms about electron-captureinducedcollapseof8–10M(cid:12) extremeAGB 50–100daysafteroutburstwhilethecentralengineisstillnear starswheretheshockbreakoutdidnotdestroyallthedustsur- Eddingtonluminosity(e.g. NQVul,LWSer;seeGehrzetal. roundingtheprogenitor(Kochanek2011). Yetanotherpossi- 1995). Atpeakdustproduction,thesenovaecanhavea[3.6]- bilityisthatweakshocksinfailedsupernovaethatformblack [4.5] color of 1.5mag (see Ney & Hatfield 1978; Gehrz holesmayalsonotleadtobrightopticaltransientsbutrather ≈ etal.1980). Someveryfastnovaethatdonotformdust(e.g. IR transients as the ejection of large amounts of material at V1500 Cyg; see Gallagher & Ney 1976; Ennis et al. 1977) low velocity may condense to form dust (Piro 2013; Love- may also reach luminosities of up to 11mag for a few grove&Woosley2013). Weconsiderthelikelihoodofeach ≈ − daysatoutburst. ofthesemodelsbelow. Next, we characterize the light curves of SPRITEs. The The speed of evolution is diagnostic of the origin in that SpitzerlightcurvedataarepresentedinTable5. Webroadly a terminal, explosive event (eCSNe, obscured SNe, failed categorize SPRITEs into two relative speed classes (see Ta- SNe)wouldlikelybelongtothefastclassandastellarmerger ble 2): (i) six SPIRITEs evolve slowly over many year wouldlikelybelongtotheslowclass. Stellarmergerofmas- timescaleswithspeedsslowerthan0.5magyr−1 (Figure6), sive stars may result in a slowly evolving red remnant. As (ii)eightSPRITEsevolvefasterthan0.5magyr−1(Figure4). wasseenwithSPIRITS14pzinNGC4490(Smithetal.2016) Ofthese,fourevolveonfewmonthtimescales,fasterthan1.5 and the transient in M101 (Blagorodnova et al. 2016), the magyr−1andfadebelowdetectabilityinlessthanoneyear. SPRITE luminosities are consistent with late-time observa- But,thelightcurvecomparisonislimitedasthelightcurves tionsofastellarmerger. Theyoungstellarpopulationinthe ofSPRITEsarediverse,infrequentlysampledandtheexplo- vicinityofthesetransientsalsosupportsthepresenceofmas- sion times are poorly constrained. Therefore, we plot IR lu- sive stars. Five slow SPRITEs could be stellar mergers (We minosity versus IR color at all epochs (bottom panel of Fig- exclude SPIRITS14bgq as it repeats – appears, disappears ure3).WefindthatSPRITEsoccupyauniqueregioninphase andre-appears–andcouldeitherbeabackgroundAGNoran spacebetweennovaeandsupernovaeonthisdynamicHRdi- extremeAGBvariable). Ifthishypothesisiscorrect,therates agramofexplosiveIRtransients. WenotethattheIRcolors appear to be higher than that estimated by Kochanek et al. ofSPRITEsareasredasthereddestnovae,core-collapsesu- 2014. pernovaeandILRTs. Thecorrespondingeffectiveblackbody Now for the relatively fast events, the nature of the explo- temperaturesofSPRITEsspan350Kto1000K. sioncanbedisentangledifthereisaprogenitoridentification. The puzzling absence of optical emission from SPRITEs Distinguishing features of the eCSNe class are: (i) the de- challengesasupernovainterpretation. Typicalsupernovaeare tection of an IR progenitor star with an absolute magnitude brighter than 20mag at 20Mpc for many months in the vi- brighterthan 10magandcolorredderthan1mag(Thomp- − sual wavebands. Thus, no prior history of optical detection son et al. 2009; Kochanek 2011), and (ii) subsequently, a (despite the intensive monitoring of nearby galaxies by sev- monotonicdeclineofthetransientemissionbelowtheprogen- eralsynopticsurveysandamateursintheopticalwavebands) itorluminosity(Adamsetal.2016). OnlytwoSPRITEshave suggests that SPRITEs are unlikely to be old supernovae. If detections in archival Spitzer imaging: SPIRITS14bgq and theIRexplosiontimeisstronglyconstrainedandthelifetime SPIRITS14bsb. But neither is a promising eCSN as SPIR- isshorterthanayear,itimpliesthatthepeakluminositywas ITS14bgqiseruptive(notexplosive)andSPIRITS14bsbap- notmuchhigherthanobserved(and, thatthetransientisnot pears to be part of a massive star cluster. The remaining old). We consider the hypothesis that two fast SPRITEs — SPRITEs have upper limits deep enough (see Table 2) to SPIRITS14axa and SPIRITS14bay — are obscured super- ruleoutmostoftheprogenitorparameterspacedelineatedby novae. Applyingasimpleextinctionlawtoa10,000Kblack- Thompsonetal.2009. 5 IfanHSTprogenitorisdetectedandconsistentwithamas- A K-band spectrum obtained with the MOSFIRE spec- sive star, there are two possibilities: an eruption event like trometer (McLean et al. 2012) on the Keck I 10-meter tele- eta Carinae or a terminal explosive event like the forma- scope on 8 June 2014 found five emission lines of molecu- tion of a stellar mass black hole. Both would be consistent larhydrogen,andneitheranycontinuumnoranyotherlines. with a young population. One way to distinguish these two Theobservedpropertiesofthesero-vibrationaltransitionsare wouldbetocontinuemonitoringtoseeifthefadingismono- summarized in Table 3. The velocities are consistent with tonic(hence,terminal)orifthereisanotherepisodeoferup- theCOradialvelocityatthepositionofSPIRITS14ajc. The tion. But none of the SPRITEs with both pre-explosion and relativelineintensitiesofthefourv=1 0ro-vibrationaltran- − post-explosionarchivalHSTimaginghavecandidateprogen- sitions are consistent with shock-excitation at a temperature itor counterparts. Specifically, our HST imaging of SPIR- around 1000 to 2,000 K and similar to the relative intensi- ITS14aje in 2014 September shows only one faint star de- tiesinHerbig-HaroobjectssuchasHH211(O’Connelletal. tected at the edge of a 3σ positional error circle in I-band. 2005). However, theintensityratioofthev=2 1to1 0vi- − − Butthisstardoesnotvarybetween2003and2014,isnotde- brationaltransitioncorrespondstoahighertemperature,pos- tected in the J-band and H-band and likely unrelated to the siblyindicatingthatfluorescentpumpingintheultravioletLy- transient. Similarly, our HST imaging in I-band of SPIR- manandWernerbandsmayplayaroleinexcitingthehigher ITS14axa shows one star that brightened by 0.4 mag be- vibrationalstatesofH ,orthattheshockstructureintheemis- 2 ∼ tween2002and2014,butitisconsistentwithanormalfield sionregionshasamorecomplextemperaturestructure. red giant lying close to the tip of the red-giant branch and ThesiteofSPIRITS14ajcinM83wasfortuitouslyimaged likelyunrelated. byHST withtheWFC3camerain2012(programGO-12513, In summary, the IR photometric data alone is not suffi- PI W. Blair). The SPIRITS14ajc light curve suggests that cient to distinguish between various models. Ground-based theeventwasunderwayin2012,althoughunfortunatelythere spectroscopic data has been difficult to obtain because these were no Spitzer observations in this year. Figure 6 depicts transients are either very faint or not detected in the near- the site of SPIRITS14ajc in the HST V, I, Hα+[N II], and IR/optical wavelengths. Next, we present a detailed case- H bandpasses. Thesourceliesinaverycrowdedstellarfield studyononetransientforwhichweseeshock-excitedemis- with only modest extinction. In the I-filter, there is a faint sion lines in a near-IR spectrum and hence, infer a physical star(26.0mag,M 3.8)whichliesclosetothecenterof I (cid:39) − origin. the error circle and a brighter star (25.0mag, M 2.8) I (cid:39) − whichliesattheeasternedgeofthe3σ positionuncertainty. 5. SPIRITS14AJC:ATRANSIENTDRIVINGASHOCK The absolute magnitudes are consistent with both stars be- INTOAMOLECULARCLOUD ing normal field red giants. Only the brighter of these two SPIRITS14ajc in M83 went into outburst in 2010 and stars is marginally detected at Vand neither star is detected has stayed at a [3.6]-band luminosity of 11 mag and a inH-band. IntheabsenceofanyotherHST imagesinthese − [3.6] [4.5]colorof0.7magforthepastfouryears(Figure6). filters taken at different dates, we cannot definitely rule out − NoquiescentsourcewasdetectedinSpitzerimagestakenbe- that either of the I-band sources is the counterpart of SPIR- tween2006and2008.Noopticalornear-IRcounterpartisde- ITS14ajc,butthelackofadetectionatH arguesagainstthis. tectedinground-basedfollow-upin2014(seeTable4).Based The 5σ limiting magnitude (Vega-scale) for the H-band ex- onthecoolSEDofthetransient,theeffectiveblackbodytem- posure is about 23.5. The Hα+[N II] image (third frame) peratureisapproximately900K. showsnothingatthesite,butnearbyisasmall,faint,bubble- SPIRITS14ajc is located in a spiral arm of M83 with in- like emission nebula just outside the error circle. Its diam- tense star formation (Figure 2). The 2.6 mm 12CO J=1 0 eter is about 0(cid:48).(cid:48)6, or approximately 16 pc. To characterize − emissionatthepositionofSPIRITS14ajc,measuredwiththe the stellar and ISM environment, we show a color rendition Nobeyama Millimeter Array (Hirota et al. 2014), has a peak of its wider surroundings. There are several young associa- brightness temperature of 2.8 K, a velocity integrated flux tions, some containing red supergiants, as well as a network I(CO) = 28.6 Kelvin km s−1 in the 6(cid:48)(cid:48) by 12(cid:48)(cid:48) synthesized ofdarkdustlanes,withinafewarcsecondsofthesite. How- beam, andiscenteredatV =572 15kms−1. TheX- ever,14ajcisnotclearlyassociatedwitheithertheveryyoung LSR ± factormethod(Bolattoetal.2013)toconvertI(CO)intoH clustersordarkdustfeatures. 2 column density using a Solar-vicinity value for the X-factor WeconsidertwomodelsforSPIRITS14ajc: theexplosion (2.0 1020 cm−2 K−1) gives N(H ) 5.7 1021 cm−2 per of a supernova immediately behind or inside a dense molec- 2 × ≈ × beamcorrespondingtoavisual-wavelength(V-band)extinc- ular cloud (Kasliwal et al. 2005), and the production of an tionof6magifthecloudweredistributeduniformlyoverthe eruptiveprotostellaroutflowsimilartotheexplosionthatoc- beam. The NMA beam-size corresponds to a physical scale curredinOrionabout500yearsago(Zapataetal.2009;Bally of 128pc 279pc at the distance of M83, making it likely etal.2011,2015). × that the extinction is patchy and potentially higher along the 5.1. IsSPIRITS14ajcpoweredbyasupernova? lineofsighttoSPIRITS14ajc. 6 Inthesupernovascenario,twomechanismsmaycontribute in the sky (Allen & Burton 1993; Kaifu et al. 2000; Zapata to the IR signal. First, the flash produced by the explosion etal.2009;Ballyetal.2011,2015).Theradialvelocityofthe can be reprocessed into the IR portion of the spectrum by brightestpartoftheH emissionexhibitsaline-widthofless 2 dustasthelightechopropagatesthroughthedenseinterstel- than about 70 km s−1, consistent with the H line-widths of 2 larmedium. Inthisscenario,foregrounddustcompletelyex- SPIRITS14ajc. Radialvelocitiesandpropermotionsofmore tinguishes the visual to near-IR wavelength signature of the than300kms−1 areobservedinvisualandnear-IRspectral event. Second,ifthesupernovaissufficientlyclosetoadense lines such as [OI], [SII], and [FeII]. The momentum and ki- cloud, the impact of the forward shock can excite H emis- netic energy is at least 160 M km s−1 and 4 1046 ergs 2 (cid:12) × sionastheblast-waveslamsintoadensemolecularmedium. (Snelletal.1984)to4 1047 ergs(Kwan&Scoville1976). × There may be two components to this emission: collisional Zapata et al. (2009) presented a CO J = 2–1 interferometric excitation of H in the swept-up, compressed, and acceler- study and found a dynamic age of about 500 years for the 2 ated, post-shock layer, and fluorescent excitation by the UV larger OMC1 outflow. The initial explosion energy required radiation emitted by fast shocks. Shock radiation can ex- todrivetheobservedoutflowisbetween1047to1048ergs. citebothH locatedaheadoftheshock,andsurvivingorre- High-velocity, runaway stars are common among massive 2 formedH intheswept-up,postshocklayer. Avisualextinc- stars(Hoogerwerfetal.2000;Gualandrisetal.2004). Radio- 2 tion of more than 15mag is required to hide the visual and frequencyastrometryhasshownthattworadio-emittingstars near-IRcontinuumofasupernova. inOMC1,the10to15M Becklin-Neugebauer(BN)object, (cid:12) The ionizing radiation of the supernova progenitor should and radio source I, thought to have a mass of about 20 M (cid:12) have created a large ionized cavity in the surrounding ISM. (Goddietal.2011),havepropermotionsof25and14kms−1 However, there is no obvious HII region at the location of respectivelyawayfromaregionlessthan500AUindiameter SPIRITS14ajc. It is possible that foreground dust obscures fromwhichtheywereejectedabout500yearsago(Rodr´ıguez anycavityorHIIregion. Alternatively,ahigh-velocity,‘run- etal.2005;Go´mezetal.2008;Goddietal.2011).Thekinetic away’OB-starwouldhaveonlycarvedasmallcavity. More energyinstellarmotionsisabout4 1047ergs. Thetotalen- × than30%ofmassiveOBstarsareejectedfromtheirbirthsites ergyoftheOMC1event, 1048 ergs,consistsofthekinetic ∼ with velocities greater than 20 km s−1, and more than 10% energy in the ejected stars, the current kinetic energy of the withvelocitieslargerthan100kms−1(Gies&Bolton1986). outflow,andtheenergyradiatedawaybyshocksoverthelast Twoejectionmechanismshavebeenidentified:dynamicalin- 500years(Ballyetal.2011). teractions such as the re-arrangement of the non-hierachical Bally&Zinnecker(2005)proposedthattheOMC1explo- multiplestarsintoahierarchicalconfigurationsuchasacom- sion was triggered by the collision and merging of forming pact binary and ejected members. (Hoogerwerf et al. 2000, massive stars. Dynamic friction and Bondi-Hoyle accretion 2001;Gualandrisetal.2004),andthesupernovaexplosionof ontomassiveprotostellarcoreinsideadensecluster-forming themostmassivememberofanOB-starbinarywhichresults clumpmayhaveleadtorapidmigrationofthemostmassive in the ejection of the surviving member at its pre-supernova protostars to the center of the clump’s potential well where Keplerian orbital speed. Alternatively, if the runaway O star they formed a non-hierarchial system of massive stars with wereinared-supergiantphasepriortoitsdemiseasasuper- similar interstellar separations. Such systems are unstable; nova as it entered a molecular cloud, it would have avoided interactionsledtotheformationofahierarchicalsystemcon- the production of an ionized cavity. It is also possible that sistingofacompactbinaryandadistantthirdmember 500 ∼ the supernova was a Type Ia which happened to drift into a yearsago. Inthisscenario,thefinal3-bodyencounterwould molecularcloud. However,sucheventsmustberaresincethe haveresultedintheformationofacompact,AU-scalebinary, volume filling factor of dense molecular clouds in a galaxy most likely source I, and the ejection of both radio source I tendstobelessthan1%. andBNfromtheOMC1coreBallyetal.(2011). Goddietal.2011usedN-bodysimulationstoshowthatthe 5.2. IsSPIRITS14ajcpoweredbyamassiveprotostellar mostlikelyinitialconfigurationofmassivestarsinOMC1that eruption? ledtotheobservedcurrentconfigurationofejectedstarscon- Inthesecondmodel,theSPIRITS14ajctransientmaytrace sistsofamassivebinarystarinteractingwithanothermassive an explosion triggered by either a protostellar collision or a star. The interaction leads to a hardening of the binary and violent dynamical interaction of several massive protostars consequentreleaseofgravitationalpotentialenergy. (Davies et al. 2006; Dale & Davies 2006). Such an event Binarystarsarecommonamongmassivestarsandthemass issuggestedtohaveoccurredintheOMC1cloudcoreinthe distribution is peaked at similar component masses. A mas- OrionAmolecularcloudlocatedbehindtheOrionNebula,the sivebinarycanformfromthebarinstabilityinamassivedisk. nearestregionofongoingmassivestarformation(D 414pc; Thismechanismtendstoproducecircularorbitsintheplane ≈ Menten et al. 2007). The OMC1 outflow consists of a spec- ofcirumbinaryand/orcircumstellardisks.Informingclusters tacular, wide opening-angle, arcminute-scale (0.1 to 0.3 pc) with a high density of protostars, massive stars surrounded outflowwhichisthebrightestsourceofnear-IRH2emission by massive disks also have a high probability of capturing 7 clusters members to form binaries (Moeckel & Bally 2006, 105L . (cid:12) 2007b). The secondary in such a capture-formed binary is TheOrionOMC1explosionisnotuniqueamongstarform- mostlikelytobeonahigh-eccentricity,high-inclinationorbit ingregions. Zapataetal.(2013)foundevidenceforapower- withrespecttothespinaxisofthemassivestarsanditsdisk ful explosive outflow in the DR 21 complex in Cygnus. If (Moeckel & Bally 2007a; Cunningham et al. 2009). Thus, suchdynamicinteractionsareresponsibleforthelargenum- binary-binary or binary-single star interactions are likely in berofrunawayOstars,andbinariesamongmassivestars,the denseproto-clusters. eventrateofOMC1-likeeventsoughttobecomparabletothe The kinetic energy of the outflow and ejected stars came birth-rate of massive stars. We propose that SPIRITS14ajc fromthereleaseofgravitationalbindingenergyofacompact may trace the IR flare produced by a dynamic interaction of binary formed by the interaction of three or more stars. The forming massive stars that either led to the formation of or total energy liberated by the formation or hardening of a bi- hardeningofacompact,AU-scalebinary,orpossiblyaproto- narydependsonthestellarmasses,M andM ,andtheorbit stellarmerger. 1 2 semi-majoraxis, R, asE GM M /2R. Forstarsinthe B 1 2 massrange10to100M an≈dbinaryseparation0.5<R<10 6. CONCLUSIONANDAWAYFORWARD (cid:12) AU EB rangesfrom 1047 to 1051 ergs. Assumingthat radio SPIRITS has discovered a class of unusual IR transients sourceIconsistsofapairof10M(cid:12) starsandthattheenergy calledSPRITEs. SPRITEsareintheluminositygapbetween requiredtoejectthestars,theoutflow,andtoaccountforra- novaeandsupernovae,withmid-IR[4.5]absolutemagnitudes diative losses is E = 1048 ergs, the semi-major axis of the between 11 to 14mag (Vega) and [3.6]-[4.5] colors be- − − finalbinarymustbeR GM2/2E 0.9AU. tween 0.3mag and 1.6mag. The photometric evolution of ∼ ≈ Forming massive stars accreting at rates of 10−4 to SPRITEsisdiverse,rangingfrom<0.1magyr−1 to>7mag ∼ ∼ 10−3 M(cid:12) yr−1 tend to have bloated, AU-scale photospheres yr−1. SPRITEs appear to represent diverse physical origins and resemble red supergiants (Hosokawa & Omukai 2009). and each one merits an in-depth investigation to decipher its RadiosourceIhasaphotospherictemperatureof 4000K, nature. Next, we address challenges encountered in the first ∼ consistentwithhigh-accretionmodels(Testietal.2010). Ifat yearoftheSPIRITSsurveyandeffortstoovercomethem. least one star before the interaction were accreting at such a AchallengeindecipheringthenatureofSPRITEswasthe highrate,the1048ergenergyrequirementoftheOMC1event sparsesamplingoftheirmid-IRlightcurves(duetothesmall implies that any attempt to form an AU-scale binary would number of epochs) with poor constraints on their explosion haveledtoaprotostellarcollisionandconsequentejectionof date(relativetoarchivalimagestakenmanyyearsago). Sub- some of the bloated star’s photosphere before ejection from sequent transients discovered in later years of the SPIRITS thecloudcore. surveyhavebothabettercadenceontheirlightcurve(1week In the dynamical interaction model, the disruption of cir- and 3 week cadence baselines were added) and better con- cumstellardisksbythefinalclose-in3-bodystellarencounter, straints on their explosion date (as the 2014 SPIRITS data combined with the recoil of the larger-scale envelope power serveasareference). theOMC1outflowandaluminousIRflare. Ejectedmaterial Anotherchallengeinthefirstyearwasthedifficultyofim- slams into the surrounding cloud core and lower-density en- mediate ground-based follow-up due to the delay of avail- velope with speeds comparable to the Kepler speed at their abilityofSpitzerdataandthemismatchbetweenSpitzerand point of origin. Ejecta velocities are expected to range from ground-basedvisibility. Bothofthesehaveimprovedinlater 10sofkms−1formaterialoriginatingtensofAUtoover500 years with Spitzer introducing early data release for time- kms−1forejectafromwithinafewtenthsofanAUofamas- critical programs and the additional SPIRITS cadence base- sivestar. TheX-ray,UV,andvisuallightfromshockswillbe linesbeingscheduledpreferentiallyintimewindowsthatfa- obscured and reprocessed by the surrounding cloud into the cilitateground-basedfollow-up. IR. Powerful shocks can produce an IR flare with luminosi- Yet another challenge was identifying possible progenitor tiesupto1051ergsforthemostmassivestarcollisions(Bally stars due to a combination of a dense stellar population in &Zinnecker2005). these nearby galaxies and the coarse Spitzer resolution. In The duration of the IR-flare is given by the shock cross- ordertoaddressthis,wenowhaveanongoingHubbleSpace ing time of the part of the clump sufficiently dense to repro- TelescopeprogramtoimagetheseIRtransientswhiletheyare cess the shock-energy into the IR. The kinetic energy of the stillactive. outflow is converted by surrounding dust to the mid and far- Our study of SPIRITS14ajc highlights the importance of IR where the clump density is sufficiently large. Taking a spectroscopyinsolvingthemysteryofthephysicalnatureof clumpradius, Rclump 0.01 0.05pcandaninitialejecta thetransient.Specifically,detectingtheexcitedmolecularhy- ∼ − velocity of Vejecta 500 km s−1 implies a crossing time drogenlinespointedtoashockdrivenbythedynamicaldecay ∼ tcross Rclump/Vejecta 20 to 100 years. Emission of ofanon-hierarchicalsystemofmassivestars. However,spec- ∼ ∼ 2 1047ergsin20years,alowerboundontheearlyradiative troscopy has also been extremely challenging as these tran- × losses for an Orion-like event, implies a mean luminosity of sientsaretooredforground-basedinstruments,Spitzeristoo 8 warm now for mid-IR spectroscopy and SOFIA is not sen- Cresci,G.,Mannucci,F.,DellaValle,M.,&Maiolino,R.2007,A&A,462, sitive enough for these faint transients. Spectroscopy with 927 Cunningham,N.J.,Moeckel,N.,&Bally,J.2009,ApJ,692,943 theJamesWebbSpaceTelescope(JWST)ofslowlyevolving Dale,J.E.,&Davies,M.B.2006,MNRAS,366,1424 SPIRITStransientswouldshedlightontheirnature. Specif- Davies,M.B.,Bate,M.R.,Bonnell,I.A.,Bailey,V.C.,&Tout,C.A.2006, ically, the low resolution spectrometer could determine dust MNRAS,370,2038 mass,grainchemistry,iceabundanceandenergeticstodisen- Ennis,D.,Beckwith,S.,Gatley,I.,Matthews,K.,Becklin,E.E.,Elias,J., tangletheproposedorigins. Neugebauer,G.,&Willner,S.P.1977,ApJ,214,478 Fazio,G.G.,etal.2004,ApJS,154,10 Regardlessoftheopenquestionsontheirorigin,thediscov- Fox,O.,Filippenko,A.,Skrutskie,M.,Arendt,R.,Cenko,B.,&VanDyk, eryofSPRITEsrepresentinganewclass(es)ofIRtransients S.2012,ASearchfortheMissingSupernovaeinUltraluminous,Star ataratecomparable(orhigher)thansupernovaeisencourag- FormingGalaxies,SpitzerProposal ingandmotivatesasynopticIRsearch.However,undertaking Fox,O.D.,Filippenko,A.V.,Skrutskie,M.F.,Silverman,J.M., Ganeshalingam,M.,Cenko,S.B.,&Clubb,K.I.2013,AJ,146,2 awide-fieldIRsearchfortransientsbeyondtargetingnearby Fox,O.D.,etal.2011,ApJ,741,7 galaxiesrequiresovercomingtheformidablechallengeposed —.2016,AstrophysicalJournalLetters,816,L13 bythenightskybrightnessanddetectorcost. Conceptswith Gallagher,J.S.,&Ney,E.P.1976,AstrophysicalJournalLetters,204,L35 alternative semiconductors (Sullivan et al. 2014) or creative Gehrz,R.D.,Hackwell,J.A.,Grasdalen,G.I.,Ney,E.P.,Neugebauer,G., optics on polar sites (Moore et al. in prep) are being inves- &Sellgren,K.1980,ApJ,239,570 Gehrz,R.D.,Jones,T.J.,Matthews,K.,Neugebauer,G.,Woodward,C.E., tigated. If WFIRST elects a suitable survey design and pri- Hayward,T.L.,&Greenhouse,M.A.1995,AJ,110,325 oritizes near real-time transient identification, it could be a Gehrz,R.D.,etal.2007,ReviewofScientificInstruments,78,011302 powerfulprobetodiscoverIRtransients. Gies,D.R.,&Bolton,C.T.1986,ApJS,61,419 Insummary,theSPIRITSdiscoveryofSPRITEsbodeswell Goddi,C.,Humphreys,E.M.L.,Greenhill,L.J.,Chandler,C.J.,& Matthews,L.D.2011,ApJ,728,15 forfuturewide-fieldexplorationsofthedynamicIRsky. Go´mez,L.,Rodr´ıguez,L.F.,Loinard,L.,Lizano,S.,Allen,C.,Poveda,A., &Menten,K.M.2008,ApJ,685,333 Gualandris,A.,PortegiesZwart,S.,&Eggleton,P.P.2004,MNRAS,350, WethankO.Pejcha,E.Lovegrove,S.Woosley,A.L.Piro, 615 E. S. Phinney, S. R. Kulkarni, L. Bildsten and E. Quataert Hirota,A.,etal.2014,PASJ,66,46 Hoogerwerf,R.,deBruijne,J.H.J.,&deZeeuw,P.T.2000,Astrophysical forvaluablediscussions. Thisworkisbasedonobservations JournalLetters,544,L133 madewiththeSpitzerSpaceTelescope,whichisoperatedby —.2001,A&A,365,49 the Jet Propulsion Laboratory, California Institute of Tech- Hosokawa,T.,&Omukai,K.2009,ApJ,691,823 nology under a contract with NASA. The SPIRITS team ac- Ivanova,N.,Justham,S.,AvendanoNandez,J.L.,&Lombardi,J.C.2013, knowledgesgeneroussupportfromtheNASASpitzergrants Science,339,433 Jacobs,B.A.,Rizzi,L.,Tully,R.B.,Shaya,E.J.,Makarov,D.I.,& forSPIRITS.MMKthankstheNationalScienceFoundation Makarova,L.2009,AJ,138,332 foraPIREGrantNo. 1545949fortheGROWTHproject. JJ Jang,I.S.,Lim,S.,Park,H.S.,&Lee,M.G.2012,AstrophysicalJournal acknowledgestheNationalScienceFoundationGraduateRe- Letters,751,L19 searchFellowshipunderGrantNo. DGE-1144469. PAWand Jencson,J.E.,etal.2015,TheAstronomer’sTelegram,7929 —.2016a,TheAstronomer’sTelegram,8688 SMaregratefultotheSouthAfricanNationalResearchFoun- —.2016b,TheAstronomer’sTelegram,8940 dation(NRF)foraresearchgrant.RDGandtheMLOFgroup Johansson,J.,etal.2014,ArXive-prints weresupported,inpart,bytheUnitedStatedAirForce. Kaifu,N.,etal.2000,PASJ,52,1 Kankare,E.,etal.2008,AstrophysicalJournalLetters,689,L97 REFERENCES —.2012,AstrophysicalJournalLetters,744,L19 Kashi,A.,&Soker,N.2016,ResearchinAstronomyandAstrophysics,16, 014 Kasliwal,M.,etal.2013,SPIRITS:SPitzerInfraRedIntensiveTransients Adams,S.M.,Kochanek,C.S.,Prieto,J.L.,Dai,X.,Shappee,B.J.,& Stanek,K.Z.2016,MNRAS,460,1645 Survey,SpitzerProposal Allen,D.A.,&Burton,M.G.1993,Nature,363,54 —.2014a,SPIRITS:SPitzerInfraRedIntensiveTransientsSurvey,Spitzer Bally,J.,Cunningham,N.J.,Moeckel,N.,Burton,M.G.,Smith,N.,Frank, Proposal A.,&Nordlund,A.2011,ApJ,727,113 Kasliwal,M.,Lau,R.,Cao,Y.,etal.2016,SpitzerProposal,13053 Bally,J.,Ginsburg,A.,Silvia,D.,&Youngblood,A.2015,A&A,579,A130 Kasliwal,M.M.2012,PublicationsoftheAstronomicalSocietyof Bally,J.,&Zinnecker,H.2005,AJ,129,2281 Australia,29,482 Blagorodnova,N.,Kotak,R.,Polshaw,J.,etal.2016,arXiv:1607.08248 Kasliwal,M.M.,Lovelace,R.V.E.,&Houck,J.R.2005,ApJ,630,875 Bolatto,A.D.,Wolfire,M.,&Leroy,A.K.2013,ARA&A,51,207 Kasliwal,M.M.,etal.2014b,TheAstronomer’sTelegram,6644 Bond,H.E.,Bedin,L.R.,Bonanos,A.Z.,Humphreys,R.M.,Monard, Kochanek,C.S.2011,ApJ,741,37 L.A.G.B.,Prieto,J.L.,&Walter,F.M.2009,AstrophysicalJournal Kochanek,C.S.,Adams,S.M.,&Belczynski,K.2014,MNRAS,443,1319 Letters,695,L154 Kozłowski,S.,etal.2010,ApJ,722,1624 Boyer,M.L.,etal.2015,ApJS,216,10 Kwan,J.,&Scoville,N.1976,AstrophysicalJournalLetters,210,L39 Cardelli,J.A.,Clayton,G.C.,&Mathis,J.S.1989,ApJ,345,245 Lau,R.M.,etal.2016,ArXive-prints Chapman,N.L.,Mundy,L.G.,Lai,S.-P.,&Evans,II,N.J.2009,ApJ,690, Lovegrove,E.,&Woosley,S.E.2013,ApJ,769,109 496 Low,F.J.,Rieke,G.H.,&Gehrz,R.D.2007,ARA&A,45,43 Cody,A.M.,etal.2014,AJ,147,82 Mattila,S.,etal.2007,AstrophysicalJournalLetters,659,L9 9 Table1. SPRITEs: Co-ordinatesandHostGalaxies Name RA(J2000) DEC(J2000) HostGalaxy DistanceModulus SPIRITS14qk 09h55m28.72s +69◦39(cid:48)58.6(cid:48)(cid:48) MESSIER82 27.73(Jacobsetal.2009) SPIRITS14afv 12h50m49.56s +41◦05(cid:48)52.7(cid:48)(cid:48) MESSIER94 28.31(Tullyetal.2013) SPIRITS14agd 13h05m30.87s −49◦26(cid:48)50.8(cid:48)(cid:48) NGC4945 27.90(Mould&Sakai2008) SPIRITS14ajc 13h36m52.95s −29◦52(cid:48)16.1(cid:48)(cid:48) MESSIER83 28.41(Radburn-Smithetal.2011) SPIRITS14ajd 13h37m05.02s −29◦48(cid:48)56.2(cid:48)(cid:48) MESSIER83 28.41(Radburn-Smithetal.2011) SPIRITS14aje 14h02m55.51s +54◦23(cid:48)18.5(cid:48)(cid:48) MESSIER101 29.34(Tikhonovetal.2015) SPIRITS14ajp 13h37m12.71s −29◦49(cid:48)14.9(cid:48)(cid:48) MESSIER83 28.41(Radburn-Smithetal.2011) SPIRITS14ajr 13h36m54.81s −29◦52(cid:48)33.7(cid:48)(cid:48) MESSIER83 28.41(Radburn-Smithetal.2011) SPIRITS14ave 03h47m03.17s +68◦09(cid:48)05.3(cid:48)(cid:48) IC342 27.58(Wuetal.2014) SPIRITS14axa 09h56m01.52s +69◦03(cid:48)12.5(cid:48)(cid:48) MESSIER81 27.80(Jangetal.2012) SPIRITS14axb 07h36m34.70s +65◦39(cid:48)22.4(cid:48)(cid:48) NGC2403 27.51(Radburn-Smithetal.2011) SPIRITS14bay 12h56m43.25s +21◦42(cid:48)25.7(cid:48)(cid:48) MESSIER64 29.37(Tullyetal.2013) SPIRITS14bgq 13h39m50.99s −31◦38(cid:48)46.0(cid:48)(cid:48) NGC5253 27.76(Mould&Sakai2008) SPIRITS14bsb 01h35m06.72s −41◦26(cid:48)13.5(cid:48)(cid:48) NGC625 28.12(Jacobsetal.2009) Table2. LightCurvePropertiesofSPRITEs Name PeakTime PeakMag PeakTime PeakMag ColorPeakTime ColorPeakMag Progenitorlimit Progenitorlimit Lifespan Evolution Lifespan Evolution Speed [3.6] [3.6] [4.5] [4.5] [3.6]-[4.5] [3.6]-[4.5] [3.6] [4.5] [3.6] [3.6] [4.5] [4.5] MJD Mag MJD Mag MJD Mag Mag Mag yr magyr−1 yr magyr−1 SPIRITS14ave 57007.4 −11.2 57007.4 −11.8 57182.2 0.3 −10.6 −10.8 1.0 0.1 1.0 0.5 Slow SPIRITS14afv 56722.7 −11.4 56754.9 −12.1 57250.7 1.2 −10.6 −10.9 1.4 0.9 2.1 0.5 Fast SPIRITS14ajp 56787.2 −11.3 55290.7 −11.9 56915.5 0.7 −10.0 −10.3 5.6 0.2 4.4 <0.1 Slow SPIRITS14axb 56827.4 −11.3 56827.4 −11.9 56827.4 0.6 −7.90 −9.37 0.1 −32.2 0.4 −6.2 Fast SPIRITS14bay 56889.8 −11.4 56889.8 −12.6 56889.8 1.2 −11.4 −11.5 ··· ··· ··· ··· Fast SPIRITS14ajr 56915.5 −11.3 56787.2 −12.2 56915.5 0.8 −11.1 −11.5 4.4 −0.1 5.0 0.1 Slow SPIRITS14axa 56821.9 −11.1 56821.9 −11.6 56821.9 0.5 −9.19 −9.56 ··· ··· ··· ··· Fast SPIRITS14agd 56764.5 −11.5 56544.9 −13.6 56787.1 0.9 −11.3 −11.7 1.1 −0.1 1.6 1.5 Fast SPIRITS14bgq 55424.4 −10.8 55424.4 −11.6 57312.2 0.8 ··· ··· 5.6 <0.1 5.6 <0.1 Slow SPIRITS14qk 56831.7 −10.9 54430.7 −11.2 56846.3 0.4 −10.6 −10.7 0.7 0.9 7.1 <0.1 Fast SPIRITS14ajc 56765.1 −11.3 56765.1 −12.2 57161.2 0.5 −10.6 −11.4 5.1 <0.1 5.1 0.1 Slow SPIRITS14aje 56742.8 −11.9 56742.8 −13.7 56771.8 1.6 −10.5 −11.6 0.4 2.4 0.1 7.3 Fast SPIRITS14ajd 55290.7 −11.2 55290.7 −12.2 56915.5 1.0 −10.3 −10.9 4.4 0.1 5.1 0.3 Slow SPIRITS14bsb 57078.5 −12.5 57085.0 −13.3 57446.6 1.5 ··· ··· 1.9 0.6 1.9 <0.1 Fast Table3. SPIRITS14ajcEmissionLines Transition Wavelength Flux GFWHM RelativeVelocity FluxRatio FluxRatio FluxRatio FluxRatio FluxRatio (Observed) if1000K if2000K if3000K if4000K 1-0S(0) 22275.1 11.43 8.96 28 0.28 0.27 0.21 0.19 0.19 1-0S(1) 21258.9 40.13 6.74 65 1.00 1.00 1.00 1.00 1.00 2-1S(3) 20774.4 8.013 9.74 57 0.20 0.003 0.084 0.27 0.47 1-0S(2) 20376.4 10.61 6.04 53 0.26 0.27 0.37 0.42 0.44 1-0S(3) 19613.6 25.67 6.71 63 0.64 0.51 1.02 1.29 1.45 McLean,I.S.,etal.2012,inProc.SPIE,Vol.8446,Ground-basedand Ney,E.P.,&Hatfield,B.F.1978,AstrophysicalJournalLetters,219,L111 AirborneInstrumentationforAstronomyIV,84460J Nicholls,C.P.,etal.2013,MNRAS,431,L33 Menten,K.M.,Reid,M.J.,Forbrich,J.,&Brunthaler,A.2007,A&A,474, O’Connell,B.,Smith,M.D.,Froebrich,D.,Davis,C.J.,&Eislo¨ffel,J. 515 2005,A&A,431,223 Milligan,S.,Cranton,B.W.,&Skrutskie,M.F.1996,inProc.SPIE,Vol. Pejcha,O.,Metzger,B.D.,&Tomida,K.2016,MNRAS,455,4351 2863,CurrentDevelopmentsinOpticalDesignandEngineeringVI,ed. Piro,A.L.2013,AstrophysicalJournalLetters,768,L14 R.E.Fischer&W.J.Smith,2–13 Prieto,J.L.,Kistler,M.D.,Thompson,T.A.,etal.2008,Astrophysical Moeckel,N.,&Bally,J.2006,ApJ,653,437 —.2007a,AstrophysicalJournalLetters,661,L183 JournalLetters,681,L9 —.2007b,ApJ,656,275 Radburn-Smith,D.J.,etal.2011,ApJS,195,18 Mould,J.,&Sakai,S.2008,AstrophysicalJournalLetters,686,L75 Rebull,L.M.,etal.2014,AJ,148,92 10 Table4. Follow-upPhotometry Name ObservationDate Telescope Instrument Filter Photometry SPIRITS14qk 2014stack(N=74) P48 iPTF R >23.5 SPIRITS14afv 2014stack(N=117) P48 iPTF R >20.1 2014-06-19 MLOF 2MASS J >17.4 2014-06-19 MLOF 2MASS H >17.3 2014-06-19 MLOF 2MASS Ks >16.2 SPIRITS14agd 2014stack(N=16) Swope CCD g >21.7 2014stack(N=16) Swope CCD r >21.2 2014stack(N=16) Swope CCD i >21.0 SPIRITS14ajc 2014-04-20 Swope CCD g >20.0 2014-04-20 Swope CCD r >20.0 2014-04-20 Swope CCD i >19.8 2014-05-18 duPont Retrocam J >19.8 2014-05-18 duPont Retrocam H >18.7 2014-07-02 Keck DEIMOS I >23.5 2014-06-07 Keck MOSFIRE Ks >18.7 2012-09-03 HST WFC3 H >22.0 2012-07-22 HST WFC3 I >25.5 SPIRITS14ajd 2014-04-20 Swope CCD g >20.0 2014-04-20 Swope CCD r >20.0 2014-04-20 Swope CCD i >19.8 2014-06-07 Keck MOSFIRE Ks >19.6 2014-05-24 MLOF 2MASS J >17.3 2014-05-24 MLOF 2MASS H >16.5 2014-05-24 MLOF 2MASS Ks >16.4 SPIRITS14aje 2014stack(N=157) P48 iPTF R >23.9 2014-05-01 MLOF 2MASS J >18.3 2014-05-01 MLOF 2MASS H >16.8 2014-05-01 MLOF 2MASS Ks >16.4 2014-07-02 Keck DEIMOS I >24.3 2014-06-07 Keck MOSFIRE Ks >19.4 2014-06-07 Keck MOSFIRE J >20.5 2014-09-23 HST WFC3 I >26.5 2014-09-23 HST WFC3 J >25.0 2014-09-23 HST WFC3 H >22.5 SPIRITS14ajp 2014-04-20 Swope CCD g >20.0 2014-04-20 Swope CCD r >20.0 2014-04-20 Swope CCD i >19.8 2014-06-07 Keck MOSFIRE Ks >19.2 SPIRITS14ajr 2014-04-20 Swope CCD g >20.0 2014-04-20 Swope CCD r >20.0 2014-04-20 Swope CCD i >19.8 2014-06-07 Keck MOSFIRE Ks >19.2 2014-05-24 MLOF 2MASS J >17.3 2014-05-24 MLOF 2MASS H >16.5 2014-05-24 MLOF 2MASS Ks >16.4 SPIRITS14ave 2014-09-23 LCOGT-1m SBIG i >20.0 2014-10-26 LCOGT-1m SBIG i >20.3 SPIRITS14axa 2014stack(N=117) P48 iPTF R >23.15 2014-09-26 HST WFC3 H >22.5 SPIRITS14axb 2014stack(N=18) P48 iPTF R >22.5 2014-05-01 MLOF 2MASS J >14.2 2014-05-01 MLOF 2MASS H >14.0 2014-05-01 MLOF 2MASS Ks >13.3 SPIRITS14bay 2014stack(N=66) P48 iPTF R >23.3 SPIRITS14bgq 2014stack(N=12) Swope CCD g >21.9 2014stack(N=12) Swope CCD r >20.9 2014stack(N=10) Swope CCD i >21.0 2014-04-30 MLOF 2MASS J >16.9 2014-04-30 MLOF 2MASS H >15.6 2014-04-30 MLOF 2MASS Ks >15.7 SPIRITS14bsb 2014stack(N=13) Swope CCD g >22.9 2014stack(N=13) Swope CCD r >22.6 2014stack(N=13) Swope CCD i >22.1 NOTE—ThisTableispublishedinitsentirety(includingindividualepochalobservations)inthemachine-readableformat.Upperlimitsare5σ.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.