Spiral wave dynamics and ventricular arrhythmias Ditproefschriftkanookwordenbekekenopinternet: http://www-binf.bio.uu.nl/khwjtuss/PhDThesis Opditwebadresstaatnietalleendetekstvanhetproefschrift,maarookdefilm- pjesdievandesimulatiesuitdehoofdstukken1,3,4,5en6zijngemaakt. Thisthesiscanalsobeviewedontheinternet: http://www-binf.bio.uu.nl/khwjtuss/PhDThesis At this webadress one can find both the text of this thesis and the movies that weremadeofthesimulationsfromchapters1,3,4,5and6. OMSLAG KirstentenTusscher DRUK FebodrukBV,Enschede ISBN 90-393-3828-0 Spiral wave dynamics and ventricular arrhythmias Spiraal golf dynamica en ventriculaire aritmiee¨n (meteensamenvattinginhetNederlands) Proefschrift terverkrijgingvandegraadvandoctoraandeUniversiteitUtrecht opgezagvandeRectorMagnificus,Prof.Dr.W.H.Gispen, ingevolgehetbesluitvanhetCollegevoorPromoties inhetopenbaarteverdedigenop maandag29november2004desmiddagste14.30uur door KirstenHendrikaWilhelminaJohannatenTusscher geborenop23februari1976 teEnschede. Promotor: Prof.Dr.P.Hogeweg FaculteitBiologie UniversiteitUtrecht. Co-Promotor: Dr.A.V.Panfilov FaculteitBiologie UniversiteitUtrecht. ThestudiesdescribedinthisthesiswereperformedatthedepartmentofTheor- eticalBiologyandBioinformaticsatUtrechtUniversity. Theinvestigationswere financiallysupportedbythePriorityProgramNonlinearSystemsoftheNether- landsOrganizationforScientificResearch(NWO). Voormijnouders Contents 1 GeneralIntroduction 1 1.1 TheElectricalConductionPathwayoftheMammalianHeart . . . . 1 1.2 EvolutionaryandEmbryologicalDevelopmentoftheMammalian Heart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 CardiacArrhythmias . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3.1 TypesofReentrantCardiacArrhythmias . . . . . . . . . . . 4 1.3.2 MechanismsofReentrantCardiacArrhythmias . . . . . . . 5 1.3.3 CausesofReentrantVentricularArrhythmias. . . . . . . . . 7 1.4 Modelingincardiacelectrophysiology . . . . . . . . . . . . . . . . . 11 1.4.1 Whyusemodelsincardiacelectrophysiology . . . . . . . . 11 1.4.2 Modelformalism . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.4.3 FitzHugh-Nagumoandionicmodels . . . . . . . . . . . . . 13 1.5 ThisThesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 I Theinfluenceofheterogeneityonspiralwavedynamics 23 2 ReentryinheterogeneouscardiactissuedescribedbytheLuo-Rudyven- tricularactionpotentialmodel 25 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.2 MaterialandMethods . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3.1 Spiraldynamicsinhomogeneoustissue . . . . . . . . . . . . 28 2.3.2 Spiraldynamicsintissuewithagradientofheterogeneity . 29 2.3.3 Figure-eightreentryinagradientofheterogeneity . . . . . . 35 2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3 Influence of randomly distributed obstacles on wave propagation and spiralwavedynamicsinexcitablemedia 39 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.3 Wavepropagationin2Dmedia . . . . . . . . . . . . . . . . . . . . . 43 3.3.1 Planewavepropagationin2D . . . . . . . . . . . . . . . . . 43 3.3.2 Curvatureeffectsonwavespeedin2D . . . . . . . . . . . . 43 3.3.3 Vulnerabilityinthepresenceofobstaclesin2D . . . . . . . . 46 3.3.4 Effectofobstaclesonspiralwaverotationin2D . . . . . . . 47 3.3.5 Effectofobstaclesonspiralbreakupin2D . . . . . . . . . . 48 3.4 Wavepropagationin3Dmedia . . . . . . . . . . . . . . . . . . . . . 52 3.4.1 Vulnerabilityinthepresenceofobstaclesin3D . . . . . . . . 52 3.4.2 Effectofobstaclesonspiralbreakupin3D . . . . . . . . . . 54 3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 vii Contents 4 Eikonalformulationoftheminimalprincipleforscrollwavefilaments 61 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.2 Reformulationoftheminimalprinciple . . . . . . . . . . . . . . . . 62 4.3 Shortestpathwavealgorithms . . . . . . . . . . . . . . . . . . . . . 64 4.4 Numericalresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 II Reentrantarrhythmiasinhumanventriculartissue 71 5 Amodelforhumanventriculartissue 73 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.2 MaterialsandMethods . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.2.1 General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.2.2 MembraneCurrents . . . . . . . . . . . . . . . . . . . . . . . 79 5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5.3.1 SingleCell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5.3.2 DifferentCelltypes . . . . . . . . . . . . . . . . . . . . . . . . 96 5.3.3 1-Dpropagation . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.3.4 Spiralwaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 6 Dynamicsofreentrantarrhythmiasinthehumanventricles 109 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 6.3.1 MonomorphicandPolymorphicVentricularTachycardia . . 114 6.3.2 VentricularFibrillation . . . . . . . . . . . . . . . . . . . . . . 115 6.3.3 OrganizationofVentricularFibrillation . . . . . . . . . . . . 119 6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 ColorPlates 131 7 SummarizingDiscussion 135 7.1 AReview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 7.2 Modelcomplexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 7.3 Modellimitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 7.4 FutureDirections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 Bibliography 147 Samenvatting 165 CurriculumVitæ 171 ListofPublications 173 Dankwoord 175 viii 1 General Introduction Information transmission in the form of propagating waves of electrical excita- tionisthefastestformoflong-rangeinternalcommunicationavailabletoanim- als.Itisusedinboththenervoussystemandtheheart.Inthenervoussystemthe electricalwavesencodesuchdiverseinformationasmovements,perceptionsand emotions,whereasinthehearttheelectricalwavesinitiatecontractonofthecar- diacmuscle. Abnormalpropagationoftheelectricalexcitationwavehasserious medical consequences, in the brain it is believed to be associated with epilepsy, whereasintheheartitleadstocardiacarrhythmias. Among the most dangerous cardiac arrhythmias are the so-called reentrant ventricular arrhythmias: ventricular tachycardia and fibrillation, during which cardiaccontractionrateissubstantiallyincreased,and,inthelattercase,becomes completely disorganized. Ventricular fibrillation leads to sudden cardiac death andisthelargestcategoricalcauseofnaturaldeathintheindustrializedworld. In this introduction we briefly discuss the important role of the specialized electricalconductionsystemoftheheartincontrollingnormalheartrhythm,and the evolutionary and embryological development of the cardiac anatomy and conduction system of the mammalian heart. We than describe the two above mentioned reentrant arrhythmias that are the subject of this thesis, and discuss their possible mechanisms. Finally, we focus on the role of modeling studies in gainingabetterunderstandingofcardiacarrhythmiasandthemodelformalisms thatareused. Weendwithashortoutlineofthemodelingstudiesdescribedin thisthesis. 1.1 The Electrical Conduction Pathway of the Mam- malian Heart Themammalianheartconsistsoffourchambers,theleftandrightatriumandthe leftandrightventricle. Therightatriumandventriclefunctionasapumpforthe pulmonarycirculation,whereastheleftatriumandventriclefunctionasapump for the systemic circulation. For an effective pumping of this four-chambered heart a number of processes are important. First, all cells in the left and right atriashouldcontractsynchronouslytoensureafastandpowerfulatrialcontrac- tionandanefficientpumpingofbloodfromtheatriatotheventricles. Timingof 1 1GeneralIntroduction thecontractionofcardiacmusclecellsisregulatedviaanelectricalsignalcalled action potential or excitation that serves as a trigger for contraction. Cardiac muscle cells generate such an action potential and subsequently contract when stimulatedwithanelectricalcurrentofacertainstrength. Sincecardiaccellsare electricallycoupledviaso-calledgapjunctions,anactionpotentialgeneratedina particularcellservesasacurrentsourceforaneighboringcell. Asaconsequence this neighboring cell also generates an action potential and contracts. Because of the strength of the electrical coupling between cardiac cells, fast propagating wavesofelectricalactivity,calledexcitationwaves,leadtovirtuallysynchronous contraction of the cardiac muscle cells. Under normal conditions the excitation wave of the heart originates in the sino-atrial (SA) node, located in the upper right atrium. The SA node consists of so-called pacemaker cells that are auto- matically electrically active: they spontaneously generate action potentials with a certain frequency. From the SA node the electrical wave travels outward and excitesallatrialcells,leadingtoatrialcontraction. As a next step, there should be a delay in cardiac activation and contraction between the atria and ventricles. This delay is necessary, because the ventricles should contract after being filled with blood supplied by the atria and hence afteratrialcontraction. Thedelayisregulatedbytheatrio-ventricular(AV)node. The atria and ventricles are electrically isolated except for the atrio-ventricular node,wheretheelectricalsignalispassedonfromtheatriatotheventricleswith very low velocity, resulting in the required delay. From the AV node the elec- trical signal is passed on to the His bundle, the left and right bundle branches and the Purkinje fibers, which end on the endocardial surface of the left and rightventricularwallandseptum,causinganelectricalwavetospreadthrough the ventricles that initiates ventricular contraction (Eckert et al., 1988; Berne & Levy,1993).Thestrongelectricalcouplingbetweenthecardiacmusclecellsagain ensures a fast propagation of the excitation wave. This leads to a synchron- ized, powerful ventricular contraction and an efficient pumping of blood into thebloodstream. Finally, cardiac output should be adapted to the oxygen demands of the or- ganism.Toachievethis,theautonomousnervoussystemregulatesheartrateand contraction force, with sympathetic innervation increasing heart rate and force, andparasympatheticinnervationhavingtheoppositeeffect. Heartrateisregu- latedbychangingthefiringfrequencyoftheSAnodeandtherateoftransmission oftheAVnode(Eckertetal.,1988;Berne&Levy,1993). Contractionforceisregu- latedbyadaptingintracellularcalciumhandlingandtissuerestitutionproperties. 1.2 Evolutionary and Embryological Development of the Mammalian Heart In very small animals transport occurs through passive diffusion. In larger an- imals, where distances are too long for passive diffusion, hearts and circulatory systemsevolvedinparallelwithincreasingbodysizestoefficientlytransportres- piratorygases,nutrients,wasteproducts,hormonesandheat. 2
Description: