Spin Waves · Daniel D. Stancil Anil Prabhakar Spin Waves Theory and Applications 123 Daniel D. Stancil Anil Prabhakar Carnegie Mellon University Indian Institute of Technology Pittsburgh, PA Chennai USA India [email protected] [email protected] ISBN 978-0-387-77864-8 e-ISBN 978-0-387-77865-5 DOI 10.1007/978-0-387-77865-5 LibraryofCongressControlNumber:2008936559 (cid:2)c SpringerScience+BusinessMedia,LLC2009 All rights reserved. This work may not be translated or copied in whole or in part with- out the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdevelopedisforbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, eveniftheyarenotidentifiedassuch,isnottobetakenasanexpressionofopinionasto whetherornottheyaresubjecttoproprietaryrights. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthe dateofgoingtopress,neithertheauthorsnortheeditorsnorthepublishercanacceptany legalresponsibilityforanyerrorsoromissionsthatmaybemade.Thepublishermakesno warranty,expressorimplied,withrespecttothematerialcontainedherein. Printedonacid-freepaper springer.com To Kathy and Namita Preface The properties and physics of spin waves comprise an unusually rich area of research. Under the proper circumstances, these waves can exhibit either dis- persive or non-dispersive propagation, isotropic or anisotropic propagation, non-reciprocity, inhomogeneous medium effects, random medium effects, fre- quency selective nonlinearities, soliton propagation, and chaos. This richness has also led to a number of proposed applications in microwave and opti- cal signal processing, and spin wave phenomena are becoming increasingly importanttounderstandthedynamicsofthin-filmmagneticrecordingheads. The book can be divided into three major parts. The first is comprised of Chapters 1–3 and is concerned with the physics of magnetism in magnetic insulators. The principal goals of these chapters are to provide a basic un- derstandingofthemicroscopicoriginsofmagnetismandexchange-dominated spin waves, motivate the equation of motion for the macroscopic magnetiza- tion,andtoconstructappropriatesusceptibilitymodelstodescribethelinear responsesofmagneticmaterialstomagneticfields.Thesecondpart,Chapters 5–8,focusesonmagnetostaticmodesanddipolarspinwaves,theirproperties, how to excite them, and how they interact with light. Chapter 4 serves as a bridge between these two parts by discussing how the susceptibility models fromChapter3canbeusedwithMaxwell’sequationstodescribeelectromag- neticandmagneto-quasi-staticwavesindispersiveanisotropicmedia.Finally, Chapters 9 and 10 treat nonlinear phenomena and advanced applications of spin wave excitations. The problems at the end of each chapter are often used to expand the materialpresentedinthetext.Toenhancethebook’susefulnessasareference, many of these problems are “show that” problems with the answer given. For example, although the text discussion of dipolar spin waves in Chapter 5 is limited to an isolated film without a ground plane, the dispersion relations in the presence of a ground plane are given in the problems at the end of the chapter. The book represents a major expansion of the classical, linear treat- ment of magnetostatic excitations contained in the earlier volume, Theory of VII VIII Preface Magnetostatic Waves. Major additions include quantum mechanical treat- ments of angular momentum, exchange, and spin waves; nonlinear phenom- enasuchassolitonsandchaos;andapplicationssuchasthegenerationofspin waves using current-induced spin torques. This book has been fun to write. We hope you find it to be an interesting and useful introduction to spin waves and their applications. Daniel D. Stancil Pittsburgh, USA Anil Prabhakar Chennai, India August 2008 Acknowledgments We are indebted to a number of people for helpful discussions and comments on portions of this book. The accuracy and readability of the earlier work, Theory of Magneto- static Waves,wereimproved considerably bycomments andsuggestions from N. Bilaniuk, N. E. Buris, S. H. Charap, D. J. Halchin, J. F. Kauffman, T. D. Poston, A. Renema, S. D. Silliman, M. B. Steer, and F. J. Tischer. In addition, the present volume benefited from our interactions with C. E. Patton, P. E. Wigen, and A. N. Slavin on nonlinear excitations, auto- oscillations,andsolitonformation;fromdiscussionswithM.Widomonquan- tum mechanics; and from comments and suggestions relating to spin-transfer torques from J. C. Slonczewski. Of course, the remaining errors and idiosyn- crasies are ours. One of us (DDS) would particularly like to thank his mentor, colleague, and friend, Prof. F. R. Morgenthaler, for teaching him much of the material in this book. He is also grateful to Kathy for her love, support, and patience. APthankshiswife,Namita,forherencouragementandherindulgenceduring the many stages of this manuscript. He is also grateful for assistance from IIT-Madras under the Golden Jubilee Book Writing Scheme. Finally, it has been a pleasure to work with A. Greene, K. Stanne, and their capable team at Springer US. IX Contents 1 Introduction to Magnetism ................................ 1 1.1 Magnetic Properties of Materials .......................... 1 1.1.1 Diamagnetism .................................... 3 1.1.2 Paramagnetism ................................... 3 1.1.3 Ferromagnetism................................... 3 1.1.4 Ferrimagnetism and Antiferromagnetism ............. 4 1.2 Spinning Top ........................................... 5 1.3 Magnetism ............................................. 8 1.3.1 Equation of Motion................................ 8 1.3.2 Gyromagnetic Ratio ............................... 10 1.4 Angular Momentum in Quantum Mechanics ................ 12 1.4.1 Basic Postulates of Quantum Mechanics.............. 13 1.4.2 Eigenvalue Equations .............................. 14 1.4.3 Angular Momentum ............................... 14 1.4.4 Addition of Angular Momenta ...................... 20 1.5 Magnetic Moments of Atoms and Ions ..................... 23 1.5.1 Construction of Ground States of Atoms and Ions ..... 23 1.6 Elements Important to Magnetism......................... 28 Problems ................................................... 28 References .................................................. 31 2 Quantum Theory of Spin Waves ........................... 33 2.1 Charged Particle in an Electromagnetic Field ............... 33 2.2 Zeeman Energy ......................................... 36 2.3 Larmor Precession....................................... 38 2.4 Origins of Exchange: The Heisenberg Hamiltonian ........... 39 2.5 Spin Wave on a Linear Ferromagnetic Chain ................ 46 2.6 Harmonic Oscillator ..................................... 50 2.6.1 Harmonic Oscillator Eigenfunctions.................. 50 2.6.2 Raising and Lowering Operators..................... 52 XI XII Contents 2.7 Magnons in a 3D Ferromagnet: Method of Holstein and Primakoff........................................... 55 2.7.1 Magnon Dispersion Relation ........................ 55 2.7.2 Magnon Interactions............................... 60 Problems ................................................... 64 References .................................................. 65 3 Magnetic Susceptibilities .................................. 67 3.1 Diamagnetism .......................................... 67 3.2 Paramagnetism ......................................... 70 3.3 Weiss Theory of Ferromagnetism .......................... 73 3.4 N´eel Theory of Ferrimagnetism............................ 76 3.5 Exchange Field.......................................... 81 3.5.1 Uniform Magnetization............................. 82 3.5.2 Non-uniform Magnetization......................... 83 3.6 Magnetocrystalline Anisotropy ............................ 84 3.6.1 Uniaxial Anisotropy ............................... 84 3.6.2 Cubic Anisotropy ................................. 86 3.6.3 Coordinate Transformations ........................ 87 3.7 Polder Susceptibility Tensor .............................. 91 3.7.1 Equation of Motion for the Magnetization ............ 91 3.7.2 Susceptibility Without Exchange or Anisotropy ....... 91 3.7.3 Susceptibility with Exchange and Anisotropy ......... 93 3.8 Magnetic Damping ...................................... 94 3.9 Magnetic Switching......................................102 3.9.1 Stoner–Wohlfarth Particle ..........................102 3.9.2 Damped Precession................................104 Problems ...................................................106 References ..................................................108 4 Electromagnetic Waves in Anisotropic-Dispersive Media...111 4.1 Maxwell’s Equations .....................................111 4.2 Constitutive Relations ...................................112 4.3 Instantaneous Poynting Theorem ..........................114 4.4 Complex Poynting Theorem ..............................116 4.5 Energy Densities in Lossless Dispersive Media...............117 4.6 Wave Equations.........................................119 4.7 Polarization of the Electromagnetic Fields ..................122 4.8 Group and Energy Velocities..............................124 4.9 Plane Waves in a Magnetized Ferrite.......................127 4.9.1 Propagation Parallel to the Applied Field ............128 4.9.2 Propagation Perpendicular to the Applied Field .......130 4.10 The Magnetostatic Approximation.........................132 Problems ...................................................134 References ..................................................137
Description: