ebook img

Spin-Statistic Selection Rules for Multiphoton Transitions: Application to Helium Atom PDF

0.17 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Spin-Statistic Selection Rules for Multiphoton Transitions: Application to Helium Atom

Spin-Statistic SelectionRules forMultiphoton Transitions: Applicationto Helium Atom T. Zalialiutdinov1, D. Solovyev1, L. Labzowsky1,2 and G. Plunien3 1 Department of Physics, St.Petersburg State University, Ulianovskaya 1, Petrodvorets, St.Petersburg 198504, Russia 2 Petersburg Nuclear Physics Institute, 188300, Gatchina, St.Petersburg, Russia 3 Institutfu¨rTheoretischePhysik,TechnischeUniversita¨tDresden,Mommsenstrasse13,D-10162,Dresden,Germany Atheoreticalinvestigationofthethree-photontransitionrates21P →21S ,11S and23P →21S ,11S 1 0 0 2 0 0 fortheheliumatomispresented.Photonenergydistributionsandprecisevaluesofthenonrelativistictransition 6 ratesareobtainedwithemployment of correlatedwavefunctionsof theHylleraastype. Thepossibleexperi- 1 mentsforthetestsoftheBose-Einsteinstatisticsformultiphotonsystemsarediscussed. 0 2 n I. INTRODUCTION a J Thispaperpresentsatheoreticalinvestigationofthethree-photondecayratesfrom21P and23P statesintheheliumatom. 6 1 2 1 TheprimarymotivationforthesecalculationsistherecentseriesofspectroscopictestsofBose-Einsteinstatisticsforthesystem oftwophotons[1]-[4].Theexperimentsuseaselectionrule[2,3]foratomictransitionsthatiscloselyrelatedtotheLandau-Yang ] theorem(LYT)[5,6]. Theselectionrulestatesthattwoequivalentsphotonscannotparticipateinanyprocessthatwouldrequire h themtobeinastatewithtotalangularmomentumequaltoone.Anevidentexampleinthehigh-energyphysicsistheprohibition p - ofthetwo-photondecayfortheneutralspin-oneZ0-boson.Thesameconcernstheannihilationdecayoforthopositronium(also m spin-1 state). However both these decays are also forbidden by charge-parity conservation law. Positronium presents a real o neutralsystem (it coincideswith itself after chargeconjugation),thereforeit possesses a definite chargeparity [9], connected t withthetotalspinvalueS: parapositronium(S =0)ischarge-positiveandorthopositronium(S =1)ischargenegative. Since a . the chargeparity of a system of Nγ photonsequals ( 1)Nγ [10], parapositroniumcan notdecay into an odd numberof (not s necessarilyequivalent)photonsandorthopositroniumc−annotdecayintoanevennumberofphotons.TheZ0-bosonasacharge- c i parity-negativeparticlecannotdecayintoanevennumberofphotons.RecentlyLYTwasemployedfortheproofthattheheavy s particlediscoveredatLHC[11]hasspinS =0,i.e. presentsHiggsboson.Asimilarsituationexistsforatomictransitions. The y h earlycalculationsofthetwo-photondecayofthesinglet21S0 (1s2s)1S0 andtriplet23S1 (1s2s)3S1 excitedstatesofHe p andHe-likeionstotheground11S0 (1s)21S0 state reveale≡dthecrucialdifferenceinthe≡photonfrequencydistributionsin ≡ [ bothcases[12], [13]. Thedecayprobabilityforthe tripletcase turnstozero whenthefrequenciesof theemitted photonsare equal. Latertheseconclusionswereconfirmedwithinthefullyrelativisticcalculations(see,forexample[14]). Aneutralatom 1 unlikepositroniumisnotarealneutralsystemanddoesnotpossessadefinitechargeparity.Thereforethedifferenciesinatomic v 6 transitionsareexclusivelyduetotheBose-Einsteinstatistics. 5 In[15]theSpin-StatisticsSelectionsRules(SSSRs) formultiphotontransitionswith equalphotonsinatomicsystemswere 1 establishedwhichpresentanextensionofLYTtothe3-and4-photonsystems. TheSSSR-1soundslike:twoequivalentphotons 4 cannotparticipateinanyatomictransitionthatwouldrequirethemtohavetotal(common)oddangularmomentum.TheSSSR-2 0 is: threeequivalentdipolephotonscannotparticipateinanyatomictransitionthatwouldrequirethetohavetotalevenangular . 1 momentum.TheSSSR-3claimsthatfourequivalentdipolephotonscannothavetotaloddangularmomentum. 0 FortheexperimentaltestsofSSSRsitispossibletouselasersource. UnlikeoriginalLYTformulation(thiswasmentioned 6 both by Landau [5] and Yang [6]) the derivation [15] is valid also for the collinear i.e. for the laser photons. As particular 1 examplesthetwo-,three-andfour-photontransitionsinHe-likeUwereconsideredin[15]. Thischoicewasexplained,fromthe : v onesidebytherelativesimplicityofthecalculationsintwo-electronionswiththefullneglectoftheinterelectroninteraction. i ThisneglectdoesnotchangetheSSSRsbutmakesthenumericalresultsinaccurate. Theinaccuracydropsdownwithincrease X ofthenuclearchargeandisminimal(about1%)forU.Fromtheothersidethespectrumintwo-electronatomsisreachenough r a toprovideallinterestingmultiphotontransitions. HoweversuchatomicsystemasHe-likeuraniumarenotsuitableforpossible experimentaltestsofSSSRs. ForZ =92theenergydifferencebetweenstates21P ,23P andgroundstate11S isofhundreds 1 2 0 KeVandpreventstheuseofopticallasers. Anadvantageoftheuseofthelasersourceisthatallthephotonswillhavethesame frequency. Ifwedividetheenergyintervalω betweenappropriateatomicstatesbyanintegernumberN andadjustthelaser a γ frequencyω tothisvalue,ω =ω /N ,thenumberofphotonsN intheabsorptionprocesswillbefixed.Thevalueofthetotal l l a γ γ angularmomentumJ forN -photonsystemcanbefixedbychoosingtheappropriatevaluesJ andJ fortheinitial(lower) γ ei ef andfinal(upper)atomiclevelsinthetransitionprocess.Forexample,ifwechooseJ =0,J =2andN =3theSSSR-2can ei ef γ betestedforN = 3,J =2whichprohibitsthreedipolephotonswiththesameparityandequalfrequencytobeinaquantum γ statewithtotalangularmomentumJ =2. Whatwecannotfixisthemultipolarityofphoton,i.e.atotalangularmomentumjof everyseparatephoton.Alaserlightinthebeamcanbedecomposedinallpossiblemultipolarities.Thismeans,forexamplethat togetherwithE1E1E1transition,alltransitionswiththesametotalparityconstructedwiththehighermultipoles,i.e. E1M1E2, E1E1M2etc. willbealwaysabsorbed. Howeverthe processeswiththe photonsofhighermultipolaritiesareusuallystrongly suppressed in atoms, therefore the E1E1E1 transition will be dominant. Measuring the absorption rate at the ω = ω /N l a γ 2 frequencyonecanestablishthevalidityornon-validityoftheparticularSSSR:theatomicvapourshouldbetransparentforthe laserlightatthefrequencyω = ω /N . Notealsothatunlikethe spontaneousemissionwhichisveryweakformultiphoton l a γ transitions,themultiphotonabsorptiondependsonthelaserintensityandcanbewellobservedintheexperiments[16]. Forthe testofSSSR-2 onecan choose,in particularthe transition21S 23P with transitionenergy0.35eV. Thistran- 0 2 → sitionshouldobeytheSSSR-2, i.e. three-photonabsorptionofthelaserphotonswithequalfrequenciesshouldbeabsent. For comparisonitisconvenienttoemploy21S 21P transitionwiththetransitionenergy0.60eV,whichshouldnotexhibitsuch 0 1 − propertiessince in this case three equalphotonsshouldhave the totalangularmomentumJ = 1. It is importantthatin both casestheinitial21S stateismetastablewhatenablestoperformlaserabsorptionexperiments. 0 ThemostadvantageousfortheexperimentaltestsofSSSRsisneutralheliumatomwheretransitionscorrespondtotheoptical orinfraredregion.ForexampleforthetestofSSSR-2three-photontransitionsbetweenthe21S stateandexcited21P and23P 0 1 2 statescanbeused. UnlikeU90+ ionthecalculationsforneutralHeatomcanbeperformedwithhighaccuracy.Theapplication ofSSSRstoneutralHeisthemainpurposeofthepresentpaper.Accuratevariationalcalculationsofthethree-photontransitions aregiven,basedontheemploymentofthevariationalwavefunctions. UnlikethecaseofU90+ thesecalculationscanbedone with nonrelativisticwave functions(overallaccuracyof about0.01%). A powerfulmethodfor obtainingthe variationalwave functionsofHylleraastypedevelopedin[17]-[19]wasemployedforthesecalculations. II. THEORY Wehavecalculated23P 11S ,23P 21S ,21P 11S and21P 21S three-photontransitionrates. Transitions 2 0 2 0 1 0 1 0 → → → → from23P levelexhibitthebehaviourgovernedbySSSR-2andtransitionsfrom23P levelwerecalculatedforcomparison. 2 1 Thethree-photondecayof21P stateisqualitativelydifferentfrom23P three-photondecaysincetheSSSR-2playssignif- 1 2 icantrolein23P 11S +3γ(E1)transition. Thisdifferenceaffectsboththeangularandtheenergydistributionsofthree 2 0 photons.In[15]itw→asshownthatinHe-likeuranium23P 11S +3γ(E1)transitionrateturnstozerowhenthefrequencies 2 0 → ofthreephotonsareequalwhile21P 11S +3γ(E1)transitionratehasthemaximuminthesamesituation. Thisisalso 1 0 → truefortheneutralheliumbecausetheangularpartremainsthesame. Fullyrelativisticformofthedifferentialtransitionrateinconjunctionwiththeintegrationoverphotondirections~ν =~k/~k | | andsummationoverthephotonpolarizations~eofallthephotonswiththeaccountforallpermutationsofphotonsis[15] dW (ω ,ω ) ω ω ω i→f 1 2 = 3 2 1 (1) dω dω (2π)5 1 2 λ3Xλ2λ1jγ3Xjγ2jγ1mγ3mXγ2mγ1 Q(λ3) Q(λ2) Q(λ1) Q(λ3) Q(λ1) Q(λ2) jγ3mγ3ω3 fn′ jγ2mγ2ω2 n′n jγ1mγ1ω1 ni jγ3mγ3ω3 fn′ jγ1mγ1ω1 n′n jγ2mγ2ω2 ni + + (cid:12) (cid:16) (cid:17) (cid:16) (cid:17) (cid:16) (cid:17) (cid:16) (cid:17) (cid:16) (cid:17) (cid:16) (cid:17) (cid:12)(cid:12)Xn′n (En′ −Ef −ω3)(En−Ef −ω3−ω2) Xn′n (En′ −Ef −ω3)(En−Ef −ω3−ω1) (cid:12) (cid:12) (cid:12) Q(λ1) Q(λ3) Q(λ2) Q(λ1) Q(λ2) Q(λ3) (cid:12) jγ1mγ1ω1 fn′ jγ3mγ3ω3 n′n jγ2mγ2ω2 ni jγ1mγ1ω1 fn′ jγ2mγ2ω2 n′n jγ3mγ3ω3 ni + + (cid:16) (cid:17) (cid:16) (cid:17) (cid:16) (cid:17) (cid:16) (cid:17) (cid:16) (cid:17) (cid:16) (cid:17) n′n (En′ −Ef −ω1)(En−Ef −ω1−ω3) n′n (En′ −Ef −ω1)(En−Ef −ω1−ω2) X X 2 Q(λ2) Q(λ3) Q(λ1) Q(λ2) Q(λ1) Q(λ3) jγ2mγ2ω2 fn′ jγ3mγ3ω3 n′n jγ1mγ1ω1 ni jγ2mγ2ω2 fn′ jγ1mγ1ω1 n′n jγ3mγ3ω3 ni + , (cid:16) (cid:17) (cid:16) (cid:17) (cid:16) (cid:17) (cid:16) (cid:17) (cid:16) (cid:17) (cid:16) (cid:17) (cid:12) Xn′n (En′ −Ef −ω2)(En−Ef −ω2−ω3) Xn′n (En′ −Ef −ω2)(En−Ef −ω2−ω1) (cid:12)(cid:12) (cid:12) (cid:12) (cid:12) whereωi (i=1,2,3)arethephotonfrequencies,jγ,mγ arethephotonangularmomentaandtheirprojections,λi =0(cid:12), 1, 1, the indices i, n, f representthe initial, intermediate and final atomic states respectively. Summation over n, n′ in Eq.−(1) extendsoverentireatomicspectrum.Thefollowingnotationsareused[20] Q(0) =α~A~(0) (~r), (2) jγmγω jγmγ Q(1) =α~A~(1) (~r)+G A(−1)(~r), (3) jγmγω jγmγ γ γmγ whereA~(0) (~r),A~(1) (~r)aremagneticandelectricvectorpotentials,A~(−1) (~r)isthescalarpotential jγmγ jγmγ jγmγ A~(j0γ)mγ(~r)=ijγgjγ(ωr)Y~j∗γjγmγ(~n), (4) 3 j j +1 A~(1) (~r)=ijγ+1 γ g (ωr)Y~∗ (~n) γ g (ωr)Y~∗ (~n) (5) jγmγ (s2jγ +1 jγ+1 jγjγ+1mγ −s2jγ +1 jγ−1 jγjγ−1mγ j +1 j +G γ g (ωr)Y~∗ (~n)+ γ g (ωr)Y~∗ (~n) , jγ s2jγ +1 jγ+1 jγjγ+1mγ s2jγ +1 jγ−1 jγjγ−1mγ !) Aj(−γm1)γ(~r)=ijγgjγ(ωr)Yj∗γmγ(~n). (6) g =4πj (ωr) (7) jγ jγ Here G is the gauge parameter defining gauge for the electromagnetic potentials, j (kr) is a spherical Bessel function, jγ jγ ~n= ~r . |r| Actuallyforourpurposes(calculationsforHeatom)thefullynonrelativisticcalculationoftransitionenergiesaswellasfully nonrelativisticexpressionforthephotonemissionoperatorsarequitesufficient.Wehaveonlytotakeintoaccountthespin-orbit interactionfordescribingtheintercombinationtransitions. Inthenonrelativisticlimit(kr 1)withG = jγ+1 andj =1forthedipolephotonsEq. (3)reducestotheform ≪ jγ jγ γ q 4√2 Q(1) =i πωrY∗ (~n), (8) 1mγω 3 1mγ Usingdefinitionforthesphericalcomponentsofvector~r 4π rm = ~r Y∗ (~n) (9) 1 3 | | 1m r Eq. (8)canbepresentedintheform 8π Q(1) =i ω rm . (10) 1mγω 3 1 r SubstitutionofEq. (10)totheexpressionforthedifferentialthree-photontransitionrateEq. (1)yields dW (ω ,ω ) 16 i→f 1 2 = (ω ω ω )3 (11) dω dω 27π2 3 2 1 1 2 mγ3mXγ2mγ1 (rmγ3)fn′(rmγ2)n′n(rmγ1)ni (rmγ3)fn′(rmγ1)n′n(rmγ2)ni + + (cid:12)(cid:12)Xn′n (En′ −Ef −ω3)(En−Ef −ω3−ω2) Xn′n (En′ −Ef −ω3)(En−Ef −ω3−ω1) (cid:12)(cid:12) (rmγ1)fn′(rmγ3)n′n(rmγ2)ni (rmγ1)fn′(rmγ2)n′n(rmγ3)ni (cid:12) + + n′n (En′ −Ef −ω1)(En−Ef −ω1−ω3) n′n (En′ −Ef −ω1)(En−Ef −ω1−ω2) X X (rmγ2)fn′(rmγ3)n′n(rmγ1)ni (rmγ2)fn′(rmγ1)n′n(rmγ3)ni 2 + . Xn′n (En′ −Ef −ω2)(En−Ef −ω2−ω3) Xn′n (En′ −Ef −ω2)(En−Ef −ω2−ω1)(cid:12)(cid:12) (cid:12) IntheNe-electronatomrmγ = Ne rimγ,whererimγ arethesphericalcomponentsofradius-vectorfori-th(cid:12)(cid:12)electron. Thenthe i=1 totaltransitionratecanbedefinedPas 1 1 dW (ω ,ω ) W = i→f 1 2 dω dω . (12) i→f 1 2 3!2j +1 dω dω ei meXi,mef ZZ 1 2 Summationoverallprojectionsappearingintheexpression(11)canbeperformednumericallyforeachvalueofcorresponding angularmomenta. Toperformthenumericalcalculationsofthree-photontransitionsintwo-electronatomicsystemsweusethevariationalwave functionsofHylleraastype[19]. ThewavefunctionforastatewithatotalelectronorbitalangularmomentumL ,itsprojection e Meandtotalspatialparityπe =( 1)Le isexpandedasfollows − Ψ (~r ~r )= YLeMe(~n ,~n )GLeπe (r ,r ) (1 2) , (13) LeMe 1 2 le1le2 1 2 le1le2 1 2 ± ↔ le1+Xle2=Leh i 4 whereGLeπe istheradialpart,correspondingtoacertainbipolarharmonicsYLeMe [21]. Thesefunctionareobtainedbythe le1le2 le1le2 variational method developed in [17]-[19]. The method consists of expansion of GLeπe in the exponential basis set with a le1le2 complexparametersα ,β andγ generatedinaquasirandommanner[17]withthesizeofbasisdefinedbyintegernumberN i i i N GLeπe (r ,r )= U Re[exp( α r β r γ r )]+W Im[exp( α r β r γ r )] , (14) le1le2 1 2 { i − i 1− i 2− i 12 i − i 1− i 2− i 12 } i=1 X wherer = r~ r~ ,U andW arelinearparameters. 12 1 2 i i | − | SinceweareinterestedinthetransitionsbetweenstateswithacertainvaluesoftotalmomentumJ~ =L~ +S~ ,theL S J M e e e e e e e couplingschemeneedstobeused,whereS~ isthetotalspinvalue[9,21]. Then e (rmγ)n′L′eSe′Je′Me′nLeSeJeMe =δSe′Se(−1)Je′−Me′ (cid:18)−JMe′e′ m1γ MJee(cid:19) (15) × (2Je′ +1)(2Je+1)(−1)L′e+Se′+Je+1 LJe′e LJee′ S1e′ hn′L′e||r||nLei (cid:26) (cid:27) p EvaluationofreducedmatrixelementinEq. (15)onthebasisofHylleraas-typewavefunctionsisdescribedin[22]. As an illustration of SSSR-2 for three equal photons we consider 23P 11S +3γ(E1) transition in the helium atom 2 0 → and demonstrate that the value J = 2 of the total angular momentum for the three equivalent dipole photons is prohibited. In principle, this decay can proceed via several channels. First, 23P n3S + γ(E1) n′3P n′1P + 2γ(E1) 2 1 1 1 → → → 11S + 3γ(E1); this channel is prohibited since the transition n3S 11S + 2γ(E1) is prohibited by SSSR-1. Second, 23P0 n3D +γ(E1) n′3P n′1P +2γ(E1) 11S +3γ1(E→1);this0channelisalsoprohibite(cid:2)dbyS(cid:3)SSR-1sincethe 2 1 1 1 0 → → → transitionn3D 11S +2γ(E1)isprohibitedbythisrule. Thecontributionofthethirdchannel23P n3D n1D + 1 → 0 (cid:2) (cid:3) 2 → 2 2 γ(E1) n′3P n′1P +2γ(E1) 11S +3γ(E1)doesnotturntozerosoevidently. Thestatesadmixedbythespin-orbit interact→ionarep1lacedin1 thesquarebr→ackets,0n, n′aresequentialnumbersforthestateswiththesamesymmetryintw(cid:2)o-elect(cid:3)ron (cid:2) (cid:3) atoms. The23P 11S +3γ(E1)transitionunlikethe21P 11S +3γ(E1)transitionproceedsonlythroughspin-orbitmixing 2 0 1 0 → → oftheintermediatestates. Following[13,23]wewritethetrueP andDwavefunctionsintheform ∞ n′ 3P = n′ 3P + ǫ(P) n′′ 1P , (16) 1itrue 1i n′n′′ 1i n′′=2 (cid:12) (cid:12) X (cid:12) (cid:12) (cid:12) (cid:12) ∞ n′ 1P = n′ 1P ǫ(P) n′′ 3P , (17) 1itrue 1i− n′′n′ 1i n′′=2 (cid:12) (cid:12) X (cid:12) (cid:12) (cid:12) (cid:12) ∞ n′ 3D = n′ 3D + ǫ(D) n′′ 1D , (18) 2itrue 2i n′n′′ 2i n′′=3 (cid:12) (cid:12) X (cid:12) (cid:12) (cid:12) (cid:12) ∞ n′ 1D = n′ 1D ǫ(D) n′′ 3D , (19) 2itrue 2i− n′′n′ 2i n′′=3 (cid:12) (cid:12) X (cid:12) (cid:12) (cid:12) (cid:12) where n′ 3P H n′′ 1P ǫ(P) = h 1| 3| 1i , (20) n′n′′ E(n′ 3P) E(n′′ 1P) − n′ 3D H n′′ 1D ǫ(D) = h 2| 3| 2i (21) n′n′′ E(n′ 3D) E(n′′ 1D) − and H is the spin-orbit interaction operator [24]. In the absence of external electric and magnetic fields, the lowest-order 3 spin-dependentrelativisticcorrectionsH consistofthespin-orbitterm(inatomicunits) 3 Z ~r p~ H = i× i s (22) so 2c2 r3 · i i (cid:20) i (cid:21) X b 5 andthespin-other-orbitterm 1 ~r p~ H = ij × i (s +2s ) . (23) soo 2c2 i6=j" ri3j #· i j X b b MatrixelementsofEqs. (22)and(23)canbereducedto[25,26] hLeSe′JeMe|Hso|LeSeJeMei= c22(−1)Le+Se′+Je(cid:26)J1e LSee′ LSee(cid:27)(cid:28)Le(cid:12)(cid:12)~r1r×13p~1(cid:12)(cid:12)Le(cid:29)hSe′||s1||Sei , (24) (cid:12)(cid:12) (cid:12)(cid:12) (cid:12)(cid:12) (cid:12)(cid:12) b (cid:12)(cid:12) (cid:12)(cid:12) hLeSe′JeMe|Hsoo|LeSeJeMei= c12(−1)Le+Se′+Je(cid:26)J1e LSee′ LSee(cid:27)(cid:28)Le(cid:12)(cid:12)~r12r×132p~1(cid:12)(cid:12)Le(cid:29)hSe′||s1+2s2 ||Sei . (25) (cid:12)(cid:12) (cid:12)(cid:12) EvaluationofreducedmatrixelementsinEqs. (24)-(25)ontheHylleraastypew(cid:12)(cid:12)avefunctio(cid:12)(cid:12)nswaspresbentedibn[13].Inthisway (cid:12)(cid:12) (cid:12)(cid:12) forthe23P 11S +3γ(E1)transitionprobabilityweobtain 2 0 → 2 dW (ω ,ω ) 16 i→f 1 2 = (ω ω ω )3 (U γ1,γ2,γ3 +Dγ1,γ2,γ3)+5permutations , (26) dω1dω2 27π2 3 2 1 mγ3mXγ2mγ1(cid:12)(cid:12)n′X′n′n{ n′′n′n n′′n′n }(cid:12)(cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) Unγ′1′,nγ′2n,γ3 =(rmγ3)11S0n′′ǫnS′′Tn′(rmγ2)n′n(rmγ1)n23P2 × (27) 1 1 , (ES E ω )(ET E ω ω ) − (ET E ω )(ET E ω ω ) (cid:26) n′′ − f − 3 n − f − 3− 2 n′ − f − 3 n − f − 3− 2 (cid:27) Dnγ1′′,nγ′2n,γ3 =(rmγ3)11S0n′′(rmγ2)n′′n′ǫnS′Tn(rmγ1)n23P2 × (28) 1 1 . (ES E ω )(ES E ω ω ) − (ES E ω )(ET E ω ω ) (cid:26) n′′ − f − 3 n′ − f − 3− 2 n′′ − f − 3 n − f − 3− 2 (cid:27) Here ES and ET are the energies of the singlet or triplet n-states respectively. Permutations in Eq. (26) are understood as n n permutationsoftheindices1,2,3. FromEq. (26)itisclearthattheprobabilityof23P decayissuppressedbythesmallness 2 ofthespin-orbitinteraction. Thesamewasobservedalsoforthetwo-photondecayof23S state[13]and,inprinciple,should 1 holdforanyintercombinationtransitions. Forthe23P 11S +3γ(E1)transitioninthechannel23P n3S +γ(E1) n′3P n′1P +2γ(E1) 11S + 2 0 2 1 1 1 0 → → → → 3γ(E1)thereistheresonance(thesituationwhentheenergydenominatorturnstozero).Thepresenceofthecascade-producing state 23S in the sum overall the intermediatestates in the transition amplitudeEq. (26) leads(cid:2)to the(cid:3)arrivalof the high, but 1 narrow ”ridge” in the frequency distribution dW(ω1,ω2). Analogous situation arises for 21P 11S +3γ(E1) transition. dω1dω2 1 → 0 Howevertheexistenceofthis”ridge”doesnotinfluencethevalidityoftheSSSR-2,since”ridge”correspondstothenonequal frequenciesfortheall3-photon. III. TECHNICALDETAILSANDRESULTS TransitionprobabilitiesobtainedfromtheexpressionEq.(12)werecheckedfortheconvergencewithadifferentlengthofthe basissetN.ResultsofcalculationswiththeN =30, 50, 100,150forthe23P 21S +3γ(E1)and21P 21S +3γ(E1) 2 0 1 0 → → transitionsarepresentedinTableI.Correspondingplotforthe23P 21S +3γ(E1)transitionispresentedinFig.1.However 2 0 → itismoreconvenienttopresent2-dimensionalsectionalcutofFig. 1,withthefixedfrequencyofthethirdphotonatthepoint ω = ∆/3, where ∆ = E(23P ) E(21S ). This two-dimensionalcut is presented in Fig. 2. Two-dimensionalplots for 3 2 0 the 23P 11S +3γ(E1) and 2−1P 11S +3γ(E1) transition are presented in Fig. 3 and Fig. 4 respectively. The 2 0 1 0 → → maindifferencebetweenFig. 3andFig. 4,arisesatthepointwithcoordinatesω = ω = ∆/3inthefrequencydistribution. 1 2 Forthetransition23P 11S +3γ(E1)differentialtransitionratebecomeszeroduetoSSSR-2. Thesetwotransitionsare 2 0 → notsuitableforexperimentsduetothetransitionfrequencieswhichisoutoftheopticalrange,butarecalculatedforadditional demonstrationofSSSR-2. Inordertointegrateoverphotonfrequency,the32pointsofGauss-Legendrequadraturemethodwasemployed.Thenumerical valuesforthespin-orbit(Eq.(24))andspin-other-orbit(Eq.(25))matrixelementsforsomelowestP andDstatesarepresented 6 inTableIIandareinagoodagreementwiththepreviouscalculations[26],[25]. Nonrelativisticvariationalenergiesofbound statesobtainedandusedinthisworkarepresentedinTableIII.Theyareinaverygoodagreement(13significantdigits)with previouscalculations.Weshouldstressthatforourpurposesitissufficienttoemploynonrelativisticenergylevels:theyprovide anoverallaccuracyinourcalculationsatthelevel0.01%. In[15]wesuggestedamethodforapossibleexperimentaltestoftheSSSRsbymeansoflaserlightabsorptionandpresented numericalexampleswith the highlychargedHe-like ions. The photonfrequenciesin this case are in the X-ray regionwhich makesitdifficulttoperformthetests. Inthepresentpaperwesuggesttheheliumatomasthemostadequatesystemforthetest of SSSRs with the opticallasers. The helium atom has long served as a testing groundfor both theoreticaland experimental studiesandseveralreviewshavechronicledtheprogressin bothareas(see, forexample,[30]). Thenumericalcalculationsof three-photon23P 21S +3γ(E1)and21P 21S +3γ(E1)transitionsinheliumarelistedinTableI.Thesetransitions 2 0 1 0 → → aremostsuitableforthelasertestingofSSSR-2duetothevaluesofthecorrespondingtransitionfrequencies(andhencetolaser onesafterdividingbyN ),belongingtotheopticalorinfraredregion. γ Correspondingone-photondecayrates,arealsopresentedandareingoodagreementwithpreviouscalculations[27,28](see TableI).Ourresultscoincidewiththenumbersgivenin[28]with4significantfigureswhichmeanstheaccuracyof0.01%.The sameaccuracyshouldhavethe3-photontransitionprobabilities. Fromthe energydifferenceslisted in Table I onecan see thatproposedtransitionsaresuitable forthe test ofSSSR-2 since each emitted (absorbed)photon is in the optical (infrared) range. As it was mentioned in the introductionthe corresponding one-photondecayissuppressedatthefrequencyω . Note,thattheenergydifferencebetweentripletandsingletP statesinHe l atomareresolvableforthelasersource. Acknowledgments TheauthorsareindebtedtoV.I.KorobovforthepermissiontousethecomputercodesfortheconstructionoftheHevariational wavefunctionsandforvaluableconsultations. ThisworkwassupportedbyRFBR (grantNo. 14-02-00188). T.Z., D. S.and L.L.acknowledgethesupportbySt.-PetersburgStateUniversitywitharesearchgrant11.38.227.2014. TheworkofT.Z.was also supportedby grantof German-RussianInterdisciplinaryScience Center (G-RISC) P-2015b-10and non-profitfoundation ”Dynasty”(Moscow). [1] D.DeMille,D.Budker,N.DerrandE.Deveney,Phys.Rev.Lett.83,3978(1999). [2] D.English,V.V.YashchukandD.Budker,Phys.Rev.Lett.104,253604(2010). [3] R.W.Dunford,Phys.Rev.A69,062502(2004). [4] D.Angom,K.Bhattacharya,S.D.Rindani,Int.J.Mod.Phys.A22,707(2007). [5] L.D.Landau,Dokl.Akad.NaukSSSR60,207(1948). [6] C.N.Yang,Phys.Rev.77,242(1950). [7] G.W.F.DrakeandA.Dalgarno,Astrophys.J.152,L121(1968). [8] K.D.BoninandT.J.McIlrath,J.Opt.Soc.Am.B1,52(1984). [9] V.B.Berestetskii,E.M.LifshitzandL.P.Pitaevskii,QuantumElectrodynamics,Oxford,Pergamon,1982. [10] A.I.AkhiezerandV.B.Berestetskii,QuantumElectrodynamics,NewYork,Wiley1965. [11] R.Wolf,TheHiggsBosonDiscoveryattheLargeHadronCollider,Springer,2015 [12] O.Bely,J.Phys.B:Atom.Molec.Phys.1,718(1968). [13] G.W.F.Drake,G.A.VictorandA.Dalgarno,Phys.Rev.180,25(1969). [14] A.DereviankoandW.R.Johnson,Phys.Rev.A56,1288(1997). [15] T.Zalialiutdinov,D.Solovyev,L.LabzowskyandG.PlunienPhys.Rev.A91,033417(2015). [16] P.H.MoklerandR.W.Dunford,2004,Phys.Scr.69C1. [17] V.I.Korobov,D.BakalovandH.J.Monkhorst,Phys.Rev.A59,R919-R921(1999). [18] V.I.KorobovandS.V.Korobov,Phys.Rev.A59,3394-3396(1999) [19] V.I.Korobov,Phys.Rev.A,61,064503(2000). [20] L.N.Labzowsky,A.V.ShoninandD.A.Solovyev,J.Phys.B:At.Mol.Opt.Phys.38265(2005). [21] D.A.Varshalovich,A.N.MoskalevandV.K.Khersonskii,QuantumTheoryofAngularMomentum,WorldScientific,Singapore(1988). [22] G.W.F.Drake,Phys.Rev.A18,820(1978). [23] J.S.Mathis,Astrophys.J.125,318(1957). [24] H.A.Bethe,E.ESalpeter,QuantumMechanicsofOne-and-Two-ElectronAtoms,Berlin,Springer,1957. [25] G.W.F.DrakeandZ.C.Yan,Phys.Rev.A46,2378(1992). [26] S.A.Alexander,SumitaDatta,andR.L.Coldwell,Phys.Rev.A81,032519(2010). [27] G.W.F.Drake,Astrophys.J.158,1199(1969). [28] S.A.Alexander,R.L.Coldwell,InternationalJournalofQuantumChemistry,Vol.111,2820-2824(2011). [29] G.W.F.Drake,inAtomic,MolecularandOpticalPhysicsHandbook,editedbyG.W.F.Drake(AIPPress,NewYork,1996). [30] G.W.F.DrakeandZ.C.Yan,inX-RayandInter-ShellProcesses,editedbyR.W.Dunfordetal.(AIPPress,NewYork,2000). 7 FIG. 1: (Color Online) 3-dimensional plot for frequencies distributionof the transitionrate 23P → 21S +3γ(E1) in Helium. On the 2 0 verticalaxisthetransitionrate dW ins−1isplotted;onthehorizontalaxesthephotonfrequenciesareplottedinunitsω /∆,ω /∆where dω1dω2 1 2 ∆ denotestheenergy difference E(23P)−E(21S). Thelowest (zero) point isthepoint withcoordinates ω /∆ = ω /∆ = 1/3 at the 1 2 bottomofthe”pit”inthefrequencydistributionforthetransitionrate.This”pit”arisesduetoSSSR-2. FIG.2: (Color Online) 2-dimensional sectional cut for frequencies distributionof thetransitionrate23P → 21S +3γ(E1) inHelium. 2 0 On the vertical axis the transition rate dW in s−1 is plotted; on the horizontal axis the photon frequency is plotted in units ω /∆ where dω1 1 ∆ = E(23P)−E(21S). Second frequency ω isfixedatthepoint ω /∆ = 1/3. Thelowest (zero) point isthepoint withcoordinates 2 2 ω /∆=ω /∆=1/3atthebottomofthe”pit”inthefrequencydistributionforthetransitionrate.This”pit”arisesduetoSSSR-2. 1 2 FIG.3: (Color Online) 2-dimensional sectional cut for frequencies distributionof thetransitionrate23P → 11S +3γ(E1) inHelium. 2 0 On the vertical axis the transition rate dW in s−1 is plotted; on the horizontal axis the photon frequency is plotted in units ω /∆ where dω1 1 ∆ = E(23P)−E(11S). Second frequency ω isfixedatthepoint ω /∆ = 1/3. Thelowest (zero) point isthepoint withcoordinates 2 2 ω /∆=ω /∆=1/3atthebottomofthe”pit”inthefrequencydistributionforthetransitionrate.This”pit”arisesduetoSSSR-2. 1 2 8 TABLEI:Probabilitiesforthethree-photon23P →21S +3γ(E1),21P →21S +3γ(E1)andone-photon23P →21S +1γ(M2), 2 0 1 0 2 0 21P →21S +1γ(E1)transitionsins−1.Thenumberinparenthesesindicatesthepoweroften.Transitionenergies∆EineVarelistedin 1 0 twolastcolumns. N W233γP(E2−1)21S0 W231γP(E1−1)21S0 W213γP(M2−22)1S0 W211γP(E1−1)21S0 ∆E23P−21S ∆E21P−21S 30 3.727(−27) 4.430(−15) 50 3.763(−27) 6.651(−15) 100 3.763(−27) 6.575(−15) 0.35 0.60 150 3.764(−27) 6.573(−15) 500 − − 1.1953(−8) 1.9746(6) 1.1952(−8)[27], [28] TABLEII:Valuesofsinglet-triplet(ST)spin-orbitandspin-other-orbitmatrixelementscomputedwithN =500(ina.u.) State hH i hH i so ST soo ST 2P −0.0000019049679 −0.000000688044 −0.000001907[26] −0.000000689[26] −0.000001904968[25] −0.000000688043[25] 3P −0.000000558930 −0.000000191302 −0.0000005604[26] −0.0000001926[26] −0.000000558929[25] −0.000000191301[25] 4P −0.00000023446 −0.000000078773 −0.0000002346[26] −0.0000000793[26] −0.000000234440[25] −0.000000078772[25] 3D −0.00000016289 −0.000000080 −0.00000016270[26] −0.00000007996[26] −0.000000162750[25] −0.000000079992[25] TABLEIII:Nonrelativisticenergiesforboundstatesofheliumina.u. State/N 30 50 100 150 500 Drake[29] 11S −2.903701 −2.903722 −2.903724357 −2.90372437162 −2.903724377034044 −2.9037243770341195 23S −2.175178 −2.175225 −2.175229365 −2.17522937745 −2.175229378236739 −2.17522937823679130 21S −2.144864 −2.145681 −2.14597379 −2.14597398 −2.145974046042 −2.145974046054419 23P −2.13272 −2.13314 −2.133164 −2.133164171 −2.133164190756 −2.133164190779273 21P −2.123819 −2.123839 −2.123843017 −2.123843067 −2.123843086358 −2.123843086498093 33D −2.055521 −2.055634 −2.055636 −2.055636027 −2.055636047 −2.055636309453261 31D −2.055553 −2.055606 −2.05561892 −2.05561895 −2.05561897 −2.055620732852246 9 FIG.4: (Color Online) 2-dimensional sectional cut for frequencies distributionof thetransitionrate21P → 11S +3γ(E1) inHelium. 1 0 On the vertical axis the transition rate dW in s−1 is plotted; on the horizontal axis the photon frequency is plotted in units ω /∆ where dω1 1 ∆=E(21P)−E(11S).Secondfrequencyω isfixedatthepointω /∆=1/3. 2 2

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.