ebook img

Spin Hamilton Operators, Symmetry Breaking, Energy Level Crossing and Entanglement PDF

0.08 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Spin Hamilton Operators, Symmetry Breaking, Energy Level Crossing and Entanglement

Spin Hamilton Operators, Symmetry Breaking, Energy Level Crossing and Entanglement Willi-Hans Steeb, Yorick Hardy and Jacqueline de Greef International School for Scientific Computing, 2 University of Johannesburg, Auckland Park 2006, South Africa, 1 0 e-mail: [email protected] 2 n a J 7 2 Abstract We study finite-dimensional product Hilbert spaces, coupled spin sys- ] tems, entanglement and energy level crossing. The Hamilton operators are based h p on the Pauli group. We show that swapping the interacting term can lead from un- - t entangled eigenstates to entangled eigenstates and from an energy spectrum with n a energy level crossing to avoided energy level crossing. u q [ 2 v 1 Introduction 4 0 2 Let 1, 2 be Hilbert spaces and 1 2 be the tensor product Hilbert space 4 H H H ⊗ H . [1,2]. Quiteoftena self-adjoint Hamiltonoperatoracting onthethe tensor product 0 1 Hilbert space 1 2 can be written as 1 H ⊗H 1 v: Hˆ = Hˆ1 I2 +I1 Hˆ2 +ǫVˆ (1) ⊗ ⊗ i X r where the self-adjoint Hamilton operator Hˆ1 acts in the Hilbert space 1, the a H self-adjoint Hamilton operator Hˆ2 acts in the Hilbert space 2, I1 is the iden- H tity operator acting in the Hilbert space 1 and I2 is the identity operator acting H in the Hilbert space 2. The self-adjoint operator Vˆ acts in the product Hilbert H space andǫ isa real parameter. The main taskwould beto findthe spectrum ofHˆ. In the following we consider the finite-dimensional Hilbert space 1 = 2 = Cn H H and then denotes the Kronecker product [3,4,5,6]. Let I be the n n identity n ⊗ × matrix. We consider the two hermitian Hamilton operators Hˆ = αA I +I βB +ǫ(A B) (2) n n ⊗ ⊗ ⊗ Kˆ = αA I +I βB +ǫ(B A) (3) n n ⊗ ⊗ ⊗ where A, B are nonzero n n hermitian matrices and α, β, ǫ are real parameters × with ǫ 0. We assume that [A,B] = 0. The vector space of the n n matrices ≥ 6 × over C form a Hilbert space with the scalar product X,Y := tr(XY∗). We also h i assume that A,B = 0, i.e. the nonzero n n hermitian matrices A and B are h i × orthogonal to each other. Of particular interest would be the case where A and B are elements of a semi-simple Lie algebra. We discuss the eigenvalue problem for the two Hamilton operators and its connection with entanglement and energy level crossings for specific choices of A and B. In the following the matrices A and B are realized by Pauli spin matrices. The Hamilton operator will be a linear combination of elements of the Pauli group . The Pauli group [7] is defined by n P n := I2, σx, σy, σz ⊗n 1, i . (4) P { } ⊗{± ± } Suchtwo-level andhigherlevelquantumsystemsandtheirphysical realizationhave beenstudiedbymanyauthors(see[8]andreferences therein). Thethermodynamic behaviour is determined by the partition functions Zˆ(β) = tr(exp( βHˆ)), Zˆ(β) = tr(exp( βKˆ)). H − K − Since tr(Hˆ) = tr(Kˆ) = αntr(A)+βntr(B)+ǫ(tr(A))(tr(B)) the sum of the eigenvalues of the operators Hˆ and Kˆ are the same. However, in general, the partition functions will be different. 2 Commutators, Eigenvalues and Eigenvectors Let us first summarize the equations we utilize in the following. Let A, B be n n × matrices over C. First note that we have the following commutators [A I ,I B] = 0, [A I ,A B] = 0, [I B,A B] = 0 n n n n ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ and [A I ,B A] = ([A,B]) A, [I B,B A] = B ([B,A]). n n ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ Thelasttwocommutatorswouldbe0if[A,B] = 0. Thereisann2 n2 permutation × matrix P (swap gate) such that P(A B)P−1 = B A. ⊗ ⊗ This implies that P(A I )P−1 = I A and P(I B)P−1 = B I . n n n n ⊗ ⊗ ⊗ ⊗ Now let A and B be n n hermitian matrices. If the eigenvalues and normalized × eigenvectors of A and B are λ ,u , µ ,v , (j = 1,2,...,n), respectively, then the j j j j eigenvalues and normalized eigenvectors of the Hamilton operator (2) are given by [3,4,5,6] αλ +βµ +ǫλ µ , u v j,k = 1,2,...,n. j k j k j k ⊗ Thustheeigenvectors arenotentangledsincetheycanbewrittenasproductstates. These results can be extended to the Hamilton operator Hˆ = α(A I I )+β(I B I )+γ(I I C)+ǫ(A B C) n n n n n n ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ and higher dimensions. 3 Pauli Spin Matrices and Entanglement Since we realize the linear operators A and B by Pauli spin matrices we summarize some results for the Pauli spin matrices and their Kronecker products. Consider the Pauli spin matrices σ , σ , σ . The eigenvalues are given by +1 and 1 with z x y − the corresponding normalized eigenvectors 1 0 1 1 1 1 1 i 1 i , , , , − , (cid:18)0(cid:19) (cid:18)1(cid:19) √2 (cid:18)1(cid:19) √2 (cid:18) 1(cid:19) √2 (cid:18) 1 (cid:19) √2 (cid:18)1(cid:19) − for σ , σ and σ , respectively. Consider now the three hermitian and unitary z x y 4 4 matrices σ σ , σ σ , σ σ . These matrices appear in Mermin’s magic x x y y z z × ⊗ ⊗ ⊗ square [9] for the proof of the Bell-Kochen-Specker theorem. Since the eigenvalues of the Pauli matrices are given by +1 and 1, the eigenvalues of the 4 4 matrices − × σ σ , σ σ , σ σ are +1 (twice) and 1 (twice). The eigenvectors can x x y y z z ⊗ ⊗ ⊗ − be given as product states (unentangled states), but also as entangled states (i.e. they cannot be written as product states). Obviously 1 1 1 0 0 1 0 0 , , , (cid:18)0(cid:19)⊗(cid:18)0(cid:19) (cid:18)0(cid:19)⊗(cid:18)1(cid:19) (cid:18)1(cid:19)⊗(cid:18)0(cid:19) (cid:18)1(cid:19)⊗(cid:18)1(cid:19) are four normalized product eigenstates of σ σ . The normalized product eigen- z z ⊗ states of σ σ are x x ⊗ 1 1 1 1 1 1 1 1 1 1 1 1 , , , . 2 (cid:18)1(cid:19)⊗(cid:18)1(cid:19) 2 (cid:18)1(cid:19)⊗(cid:18) 1(cid:19) 2 (cid:18) 1(cid:19)⊗(cid:18)1(cid:19) 2 (cid:18) 1(cid:19)⊗(cid:18) 1(cid:19) − − − − The normalized product eigenstates of σ σ are y y ⊗ 1 i i 1 i i 1 i i 1 i i , − , − , − − . 2 (cid:18)1(cid:19)⊗(cid:18)1(cid:19) 2 (cid:18)1(cid:19)⊗(cid:18) 1 (cid:19) 2 (cid:18) 1 (cid:19)⊗(cid:18)1(cid:19) 2 (cid:18) 1 (cid:19)⊗(cid:18) 1 (cid:19) All three 4 4 matrices also admit the Bell basis × 1 0 1 0 1 0 1 1 1  0  1  1  , , , √2 0 √2 1 √2 0 √2 1       −  1 0  1  0      −    as normalized eigenvectors which are maximally entangled. As measure for entan- glement the tangle [5,7,10,11] will be utilized. Consider now the hermitian and unitary 4 4 matrices σ σ , σ σ . Since the x z z x × ⊗ ⊗ eigenvaluesofthePaulimatricesaregivenby+1and 1,theeigenvaluesofthe4 4 − × matrices σ σ and σ σ , are +1 (twice) and 1 (twice). The eigenvectors can x z z x ⊗ ⊗ − be given as product states (unentangled states), but also as entangled states (i.e. they cannot be written as product states). The normalized product eigenstates of σ σ are x z ⊗ 1 1 1 1 1 0 1 1 1 1 1 0 , , , . √2 (cid:18)1(cid:19)⊗(cid:18)0(cid:19) √2 (cid:18)1(cid:19)⊗(cid:18)1(cid:19) √2 (cid:18) 1(cid:19)⊗(cid:18)0(cid:19) √2 (cid:18) 1(cid:19)⊗(cid:18)1(cid:19) − − The normalized product eigenstates of σ σ are z x ⊗ 1 1 1 1 1 1 1 0 1 1 0 1 , , , . √2 (cid:18)0(cid:19)⊗(cid:18)1(cid:19) √2 (cid:18)0(cid:19)⊗(cid:18) 1(cid:19) √2 (cid:18)1(cid:19)⊗(cid:18)1(cid:19) √2 (cid:18)1(cid:19)⊗(cid:18) 1(cid:19) − − The two 4 4 matrices also admit × 1 1 1 1 − − 1  1 1  1  1  1 1  1  − , , − , 2 1 2 1 2 1 2 1 −      −   1   1   1   1          as normalized eigenvectors which are maximally entangled. Note that σ σ also y y ⊗ admits these maximally entangled eigenvectors besides the Bell basis as eigenvec- tors and the product eigenvectors. For the triple spin interaction term σ σ σ we obtain the eigenvalues +1 x y z ⊗ ⊗ (fourfold) and 1 (fourfold) and all the eight product states as eigenstates given − by the eigenstates of σ , σ , σ . Owing to the degeneracies of the eigenvalues we x y z also find fully entangled states such as 1 (1 1 0 0 0 0 i i)T 2 − with the three-tangle as measure [11]. 4 Examples Consider now a specific example for αA and βB with n = 2 and ǫ > 0. Utilizing the Pauli spin matrices αA = ~ω1σz, βB = ~ω2σx where α = ~ω1, β = ~ω2 and ω1, ω2 are the frequencies. Note that [σz,σx] = 2iσy and tr(Hˆ) = 0, tr(Kˆ) = 0. The elements of the set I I ,σ I ,I σ ,σ σ 2 2 z 2 2 x z x { ⊗ ⊗ ⊗ ⊗ } form a commutative subgroup of the Pauli group 2. The elements σz I2, I2 σx, P ⊗ ⊗ σx σz are generators of the Pauli group 2. Now the eigenvalues and eigenvectors ⊗ P of αA are given by 1 0 λ1 = ~ω1, u1 = , λ2 = ~ω1, u2 = (cid:18)0(cid:19) − (cid:18)1(cid:19) and the eigenvalues and eigenvectors of βB are given by 1 1 1 1 µ1 = ~ω2, u1 = , µ2 = ~ω2, u2 = . √2 (cid:18)1(cid:19) − √2 (cid:18) 1(cid:19) − The Hamilton operator Hˆ is given by the 4 4 matrix which can be written as × direct sum of two 2 2 matrices × ~ω1 ~ω2 +ǫ 0 0 ~ω2 +ǫ ~ω1 0 0  H = . 0 0 ~ω1 ~ω2 ǫ  − −  e  0 0 ~ω2 ǫ ~ω1   − −  The eigenvalues of H are E1(ω1,ω2,ǫ) e= ~ω1 +~ω2 +ǫ, E2(ω1,ω2,ǫ) = ~ω1 ~ω2 ǫ − − E3(ω1,ω2,ǫ) = ~ω1 +~ω2 ǫ, E4(ω1,ω2,ǫ) = ~ω1 ~ω2 +ǫ − − − − with the corresponding eigenvectors (which can be written as product states) 1 1 1 1 1 1 , , (cid:18)0(cid:19)⊗ √2 (cid:18)1(cid:19) (cid:18)0(cid:19)⊗ √2 (cid:18) 1(cid:19) − 0 1 1 0 1 1 , . (cid:18)1(cid:19)⊗ √2 (cid:18)1(cid:19) (cid:18)1(cid:19)⊗ √2 (cid:18) 1(cid:19) − The Hamilton operator Kˆ is given by the 4 4 matrix × ~ω1 ~ω2 ǫ 0 ~ω2 ~ω1 0 ǫ  K = − ǫ 0 ~ω1 ~ω2  −  e  0 ǫ ~ω2 ~ω1  − −  with the four eigenvalues k1(ω1,ω2,ǫ) = ~2(ω1 +ω2)2 +ǫ2, − p k2(ω1,ω2,ǫ) = ~2(ω1 +ω2)2 +ǫ2, p k3(ω1,ω2,ǫ) = ~2(ω1 ω2)2 +ǫ2, − − p k4(ω1,ω2,ǫ) = ~2(ω1 ω2)2 +ǫ2 − p and the corresponding unnormalized eigenvectors ǫ ǫ  ǫ   ǫ  , , k1 ~(ω1 +ω2) k2 ~(ω1 +ω2)  −   −  k2 +~(ω1 +ω2) k1 +~(ω1 +ω2)     ǫ ǫ  ǫ   ǫ  − , − . k3 ~(ω1 ω2) k4 ~(ω1 ω2)  − −   − −  k3 ~(ω1 ω2) k4 ~(ω1 ω2)  − −   − −  Thus for the Hamilton operator Hˆ we have energy level crossing [10,12] which is due to the discrete symmetry of the Hamilton operator Hˆ. For the Hamilton operator Kˆ we have no energy level crossing for ǫ > 0. The symmetry is broken. For ǫ and fixed frequencies the eigenvalues for the two Hamilton operators → ∞ approach ǫ (twice) and ǫ (twice). The four eigenvectors are entangled for ǫ > 0. − Extensions to higher order spin systems are straightforward. An extension is to study the Hamilton operators with triple spin interactions Hˆ = ~ω1(σx I2 I2)+~ω2(I2 σy I2)+~ω3(I2 I2 σz) ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ +γ12(σx σy I2)+γ13(σx I2 σz)+γ23(I2 σy σz) ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ +ǫ(σ σ σ ) x y z ⊗ ⊗ and Kˆ = ~ω1(σx I2 I2)+~ω2(I2 σy I2)+~ω3(I2 I2 σz) ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ +γ12(σx σy I2)+γ13(σx I2 σz)+γ23(I2 σy σz) ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ +ǫ(σ σ σ ). z y x ⊗ ⊗ Triplespin interacting systems have beenstudied by several authors[13,14,15]. For Hˆ we find the eight product states given by the eigenstates of σ , σ , σ . We also x y z have energy level crossing owing to the symmetry of the Hamilton operator Hˆ. For the Hamilton operator Kˆ the symmetry is broken and no level crossing occurs. We also find entangled states for this Hamilton operator. As an entanglement measure the three-tangle can be used [11]. Also the permutations σ σ σ , σ σ σ z x y y z x ⊗ ⊗ ⊗ ⊗ of the interacting term could be investigated. The question discussed in the introduction could also be studied for Bose systems with a Hamilton operator such as Hˆ = α(b†b I)+β(I (b† +b))+γ(b†b (b† +b)) ⊗ ⊗ ⊗ where I is the identity operator and denotes the tensor product. ⊗ In conclusion we have shown that swapping the terms in the interacting part of Hamilton operators acting in a product Hilbert space breaks the symmetry and thus the behaviour about entanglement and energy level crossing will change. References [1] E. Prugove´cki, Quantum Mechanics in Hilbert Space, second edition, Academic Press (1981) [2] W.-H. Steeb, Hilbert Spaces, Wavelets, Generalised Functions and Modern Quantum Mechanics, Kluwer (1998) [3] W.-H. Steeb and Y. Hardy, Matrix Calculus and Kronecker Product, second edition Singapore, World Scientific (2011) [4] W.-H. Steeb, Problems and Solutions in Introductory and Advanced Matrix Cal- culus, World Scientific, Singapore (2006) [5] W.-H. Steeb and Y. Hardy, Problems and Solutions in Quantum Computing and Quantum Information, third edition, Singapore, World Scientific (2011) [6] W.-H. Steeb, Problems and Solutions in Theoretical and Mathematical Physics, third edition, Volume II: Advanced Level, Singapore, World Scientific (2009) [7] M. A. Nielsen and I. L. Chuang, Quantum Computing and Quantum Informa- tion, Cambridge University Press (2000) [8] D. Kielpinski, J. Opt. B: Quantum Semiclass. Opt. 5 R121-R135 (2003) [9] N. D. Mermin, Rev. Mod. Phys. 65, 803-815 (1993) [10] W.-H. Steeb and Y. Hardy, Quantum Mechanics using Computer Algebra, 2nd edition, World Scientific, Singapore (2010) [11] A. Wong and N. Christensen, Phys. Rev. A 63, 044301 (2001) [12] W.-H. Steeb, A. J. van Tonder, C. M. Villet and S. J. M. Brits, Found. Phys. Lett. 1, 147-162 (1988) [13] C. Vanderzande and F. Iglo´i, J. Phys. A: Math. Gen. 20, 4539-4549 [14] R. Somma, G. Ortiz, E. Knill and J. Gubernatis, Int. J. Quant. Inf. 1, 189- 206 (2003) [15] B. P. Lanyon, C. Hempel, D. Nigg, M. Mu¨ller, R. Gerritsma, F. Z¨ahringer, P. Schindler, J. T. Barreiro, M. Rambach, G. Kirchmair, M. Heinrich, P. Zoller, R. Blatt and C. F. Roos, arXiv:1109.1512v1 [quant-ph]

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.