pssheaderwillbeprovidedbythepublisher 7 0 Spin densities in parabolic quantum wires with Rashba spin- 0 2 orbit interaction n a SigurdurI.Erlingsson 1,2,J.CarlosEgues1,3,andDanielLoss1 J ∗ 1 DepartmentofPhysicsandAstronomy,UniversityofBasel,Klingelbergstrasse82,CH-4056,Switzerland 3 2 2 ScienceInstitute,UniversityofIceland,Dunhagi3,IS-107Reykjavik,Iceland 3 DepartmentofPhysicsandInformatics,UniversityofSa˜oPauloatSa˜oCarlos,13560-970Sa˜oCarlos/SP, ] Brazil l l a h - Keywords Rashbainteraction,quantumwires,spindensity s e Using canonical transformations we diagonalize approximately the Hamiltonian of a gaussian wire with m Rashbaspin-orbitinteraction. Thisproceedureallowsustoobtaintheenergydispersionrelationsandthe wavefunctions with good accuracy, even in systems with relatively strong Rashba coupling. With these . t eigenstatesonecancalculatethenon-equilibriumspindensitiesinducedbyapplyingbiasvoltagesacross a thesample.Wefocusonthez-componentofthespindensity,whichisrelatedtothespinHalleffect. m - d Copyrightlinewillbeprovidedbythepublisher n o Thespin-orbitinteractionopensupthepossibilitytomanipulatetheelectronspinusingelectricalmeans, c either with appliedbias orgate voltage[1]. One manifestationof such electricalspin controlis the spin [ Halleffect[2,3,4]wherespincurrentsarecreatedviaaninterplaybetweenspin-orbitinteractionandthe 1 applied electric field. When the spin Hall effect is considered in systems with finite transverse size the v edgesplaysanimportantrole. Indisorderedsystemsonewouldexpectabuildingupofspindensity(spin 4 accumulation)withoppositesignatthetwoedges.Thispictureisnotnecessarilyvalidinballisticsystems 6 andthewavefunctions(orwavepackets)themselvesbecomeimportantquantities[5]. Thewavefunctions 5 1 canthenbeusedtocalculatethebiasvoltageinducedspindensity[6,7,8,9,10,11,12,13,14,15]. 0 Inthis paperwe calculateanalyticallyan approximateeigenspectrumof the RashbaHamiltonianin a 7 gaussianquantumwire. Thisallowsustocalculateanalyticallytherelevantmatrixelementsanddensity 0 of states for each transverse mode in the wire with good accuracy, even for relatively strong spin-orbit / t coupling. TheHamiltonianforthequantumwiremadeina2DEGwithRashbaspin-orbitinteraction,for a m agivenwavevectorkalongthewire,is - ~2k2 1 α d H = + mω2y2+ (~kσ p σ ) (1) n 2m 2 ~ y − y x o ~2k2 1 α α = +~ω(a a+ )+τ αk (a τ +aτ )+ (a τ +aτ ). (2) c 2m † 2 z − √2ℓ † + − √2ℓ † − + : v In Eq. (2) we introduced for convenience new spin matrices where τ = σ and τ raises and lowers i z y ± X betweentheσ eigenstates.Forpositivemomentaonlystates k,n, and k,n+1, crossinenergy.All y r otherstates areseparatedbyatleast~ω, whichallowsusto|treatt↑hieterm| proporti↓oinalto (a†τ+ +aτ ) a perturbativelyink ℓ α/ℓ~ω.NotethatourHamiltonianistimereversalsymmetric(thereisnoextern−al so ≡ sourceofmagneticfield).HencewecanfocusontheposivekstatesandusetheKramesrelationsǫ (k)= n,s ǫ ( k)andψ (r)=ψ (r)toobtainthenegativekstates. n, s k,n,s k,n, s − − − − Asmentionedabove,forthepositivemomentumstatestheperturbativetermis α V = (τ a +τ a), (3) + † −2√2ℓ − ∗ Correspondingauthor:e-mail:[email protected],Phone:+3545254708,Fax:+3545254708 pssdatawillbeprovidedbythepublisher 2 Sh.FirstAuthor,Sh.SecondAuthor,andSh.ThirdAuthor:ShortTitle andthenon-perturbedHamiltonianis ~2k2 1 α H0 = +~ω(a†a+ )+ατzk+ (τ+a+τ a†). (4) 2m 2 √2ℓ − WedefineaneffectiveHamiltonianH =eSHe S whichresultsin eff − 1 1 H = H + [S,V]+ [S,[S,V]]+o((k ℓ)4), (5) eff 0 so 2 3! withS chosentofulfilltheusualconditionV +[S,H ]=0. TheS whichsatisfiestheaboverequirement 0 is S = 2√2ℓ(~ωα+2αk)(τ+a†−τ−a)+ 4ℓ2~ω(~αω2+2αk)τz(a†2−a2)+o((ksoℓ)3). (6) ThenewtermsgeneratedbyS intheeffectiveHamiltonianare 1[S,V] = α2(τz(2a†a+1)−1) + α3 τ+aa†a+τ+a†3+h.c. +o((k ℓ)4). (7) 2 4ℓ2(~ω+2αk) √24ℓ3~ω(~ω+2αk) so (cid:0) (cid:1) 3 The term proportionalto τ a and its hermitian conjugateare perturbative,i.e. they only coupleterms + † whichareseparatedbyatleast3~ω. Furthermore,onecanshowthattheterm 1[S,[S,V]]inEq.(5)con- 3 tainsno’diagonal’terms1andthusthecorrectionstotheHamiltonian,andconsequentlyitseigenenergies, areatmosto((k ℓ)4). TheresultingeffectiveHamiltonianisthus so ~2k2 α2(τ (2a a+1) 1) Heff = 2m +~ω(a†a+1/2)+αkτz + 4zℓ(~ω†+2αk)− α α2a a α2a a −2√2ℓ τ+a 1− 4ℓ~ω(~ω†+2αk) + 1− 4ℓ~ω(~ω†+2αk) τ−a† . (8) (cid:18) (cid:18) (cid:19) (cid:18) (cid:19) (cid:19) TheaboveH canbeexactlydiagonalizedusingageneralizedrotationmatrixinspinspace eff cos(Θ[nˆ+1]/2) sin(Θ[nˆ+1]/2)a U = √nˆ+1 , (9) −a†sin(Θ√[nˆnˆ++11]/2) cos(Θ[nˆ]/2) ! wherenˆ =a aand † 1 k ℓ2k (ksoℓ)2(nˆ+1) cos(Θ[nˆ+1])= 2 − so − 2(1+2ksoℓ2k) . (10) 1 k ℓ2k (k(cid:16)soℓ)2(nˆ+1) 2+ (ksoℓ)2(nˆ+1)(cid:17)1 (ksoℓ)2(nˆ+1) 2 2 − so − 2(1+2ksoℓ2k) 2 − 4(1+2ksoℓ2k) r (cid:16) (cid:17) (cid:16) (cid:17) TheresultingHamiltonianH = U H U isdiagonalinthespinandladderoperatorsanditseigenen- diag † eff ergiesforpositivekare 1 1 (k ℓ)2 ε (k) = ~ω ℓ2k2+ k ℓ2k so (11) 0,↓ (cid:18)2 2 − so − 2(1+2ksoℓ2k)(cid:19) 1 (k ℓ)2 ε (k) = ~ω ℓ2k2+n so +∆ (k) , n>0 (12) n,↓ (cid:18)2 − 2(1+2ksoℓ2k) n (cid:19) 1 (k ℓ)2 ε (k) = ~ω ℓ2k2+(n+1) so ∆ (k) , n 0 (13) n,↑ (cid:18)2 − 2(1+2ksoℓ2k) − n+1 (cid:19) ≥ 1 (k ℓ)2n 2 (k ℓ)2 (k ℓ)2n 2 ∆ (k) = k ℓ2k so + so n 1 so . (14) n s(cid:18)2 − so − 2(1+2ksoℓ2k)(cid:19) 2 (cid:18) − 4(1+2ksoℓ2k)(cid:19) 1 Here,diagonalreferstoa†a,τzandalsothetermscontainingτ+aandτ−a†. (cid:13)c 2003WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim pssheaderwillbeprovidedbythepublisher 3 (a) (b) 7 7 6 6 5 5 ω ω ~ ~ / / k) 4 k) 4 (ns (ns ε ε 3 3 2 2 1 1 0 0 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 kℓ kℓ Fig.1 EnergydispersionsofEqs.(11)-(13)areplotted(solidlines)forthefirst6oscillatorlevelsforksoℓ = 0.2in (a)andksoℓ =0.4in(b). Thedashedlinesaretheresultsofnumericalcalculations. Notethatthenumericalcurves fallontopoftheanalyticalcurvesexceptforthehighestenergycurvesin(b). The negativek branchof the spectrumis obtainedfromthe Kramersrelations. In Fig. 1 the energydis- persionforthefullspectrumisplotted,alongwithresultsofnumericalcalculations(dashedcurves).Even for a relativelylarge (k ℓ = 0.4) perturbationparameter the numericaland analytical curvesare barely so distinguishableexceptforthehighesttransversestates,seeFig.1b. Spindensities: Knowingthewavefunctionsandeigenenergiesallowsonetocalculatemanyphysical quantitiesanalytically,evennon-equilibriumones. Asanexamplewe considerspindensities(transverse tothewiredirection)andfocusonthetheaveragevalueofσ δ(y). Foranappliedbiasvoltage, σ δ(y) z z h i is relatedto the spin-Halleffect[16]. Since the Hamiltonianis time reversalsymmetricthere willbe no equilibriumspindensityinthesystem[17].ApplyingabiasvoltageliftsthissymmetrysinceKramerspairs becomeunequallyoccupied. Forspindensities(andanyquantitywhichisoddundertimereversal)only statesinthebiaswindowneedtobeconsidered. Startingfromthenon-equilibriumGreen’sfunctions[18] itispossibletoshowthatforkT =0thespindensityis τ δ(y) = ψ τ δ(y)ψ f ε (k) (µ+eV) f ε (k) µ , (15) η eV kns η kns ns ns h i| h | | i − − − Xkns h (cid:0) (cid:1) (cid:0) (cid:1)i wherethesumisoverallk whosevelocityispositive(assumingthateV > 0), i.e.thesumcontainsnot onlyk>0statesbutcanalsoincludenegativemomentumstates. Althoughthebiasinducedspindensities are know analytically through the wavefunctions, the equations are quite long and complicated. As an examplewegivethefollowingmatrixelement ψ τ δ(y)ψ = sin(Θ[n+1])φ (y)φ (y) kn x kn n n+1 h ↑| | ↑i − k ℓ + so cos(Θ[n+1]/2)2φ (y)φ (y) 1+2ksoℓ2k n n−1 n sin(Θ[n+1])/2)2φ (y)φ (y) , (16) n+1 n+2 − o where y n = φ (y) are the harmonic oscillator eigenstates. The matrix element in Eq. (16) has the n h | i symmetryproperty ψ σ δ(y)ψ = ψ σ δ( y)ψ . Thisisconsistentwiththespin-Hall kns z kns kns z kns h | | i −h | − | i effectphenomenologywherethetransversespincurrentleadstooppositespinpolarizationatthetwoedges [16,5]. Thispropertyisadirectresultoftheparityoftheharmonicoscillatorstatesφ (y). n Thespin densities(normalizedto the wire length)for differentvaluesof the chemicalpotentialµ are plotted in Fig. 2, assuminglinear response eV ~ω. As expectedthe spin density is oddin y andthe ≪ highesttransversemodecontributesthemostduetoitsdensityofstates beingthe highest. Notethatthe (cid:13)c 2003WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim 4 Sh.FirstAuthor,Sh.SecondAuthor,andSh.ThirdAuthor:ShortTitle (a) (b) 0.2 0.4 0.15 µµµµµ=====11122.....57913 0.3 µµµµµ=====35344.....57913 i i eV~2ωℓ 0.1 eV~2ωℓ 0.2 h h y)i 0.05 y)i 0.1 σδ(z 0 σδ(z 0 h h -0.05 -0.1 -0.1 -0.2 -0.15 -0.3 -0.2 -0.4 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 y/ℓ y/ℓ Fig. 2 Thespin-density for different µ such that 2(a), and 4(b) harmonic oscillator levels for ksoℓ = 0.4. The spin-densityislargestclosetoeachbandbottom,wherethedensityofstatesisgreatest. sizeofthespindensityiscomparabletotheinducedparticledensitysincethematrixelementinEq.(15) isorderunityduetothestrongcouplingofadjacentoscillatorstateswithoppositespin(seeEq.(8)) To summarize, we have calculated the eigenspectrumof a gaussian quantumwire with Rashba inter- action. The spectrumallows usto calculate the non-equilibriumspin densityanalytically. We presented results for the σ density for a few low lying oscillator states but the formalism can well handle higher z statesalso. Acknowledgements ThisworkwassupportedbytheIcelandicResearchFund,theSwissNSF,theNCCRNanoscience, EUNoEMAGMANet,DARPA,ARO,ONR,JSTICORP,CNPq,andFAPESP. References [1] Semiconductor SpintronicsandQuantum Computation, editedbyD.D.Awschalom, D.Loss,andN.Samarth (Springer-Verlag,Berlin,2002). [2] J.Sinova,D.Culcer,Q.Niu,N.A.Sinitsyn,T.Jungwirth,andA.H.MacDonald, Phys.Rev.Lett.92,126603 (2004). [3] O.ChalaevandD.Loss,Phys.Rev.B71,245318(2005). [4] J.Schliemann,Int.J.Mod.Phys.B20,1015(2006). [5] G.UsajandC.Balseiro,Europhys.Lett.72,631(2005). [6] M.LeeandC.Bruder,Phys.Rev.B72,045343(2005). [7] A.Reynoso,G.Usaj,andC.Balseiro,Phys.Rev.B73,115342(2006). [8] J.Wang,K.Chan,andD.Xing,Phys.Rev.B73,033316(2006). [9] J.YaoandZ.Yang,Phys.Rev.B73,033314(2006). [10] S.BellucciandP.Onorato,Phys.Rev.B73,045329(2006). [11] S.DebaldandB.Kramer,Phys.Rev.B71,115322((2005)). [12] F.MiralesandG.Kircznow,Phys.Rev.B64,024426(2001). [13] L.Serra,D.Sa´nchez,andR.Lopez,Phys.Rev.B72,235309(2005). [14] M.GovernaleandU.Zu¨licke,Phys.Rev.B66,073311(2002). [15] B.Nikolic´,L.Za´rbo,andS.Welack,Phys.Rev.B72,075335(2005). [16] B.K.Nikolic´,S.Souma,L.P.Zaˆrbo,andJ.Sinova,Phys.Rev.Lett.95,046601(2005). [17] E.I.Rashba,Phys.Rev.B68,241315R(2003). [18] S.Datta,ElectronicTransportinMesoscopicSystems,(CambridgeUniversityPress,Cambridge,1995). (cid:13)c 2003WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim