ebook img

Spin Current PDF

460 Pages·2012·25.482 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Spin Current

SERIES ON SEMICONDUCTOR SCIENCE AND TECHNOLOGY SeriesEditors R.J.Nicholas UniversityofOxford H.Kamimura UniversityofTokyo SERIES ON SEMICONDUCTOR SCIENCE AND TECHNOLOGY 1. M.Jaros:Physicsandapplicationsofsemiconductormicrostructures 2. V.N.DobrovolskyandV.G.Litovchenko:Surfaceelectronictransport phenomenainsemiconductors 3. M.J.Kelly:Low-dimensionalsemiconductors 4. P.K.Basu:Theoryofopticalprocessesinsemiconductors 5. N.Balkan:Hotelectronsinsemiconductors 6. B.Gil:GroupIIInitridesemiconductorcompounds:physicsandapplications 7. M.Sugawara:Plasmaetching 8. M.BalkanskiandR.F.Wallis:Semiconductorphysicsandapplications 9. B.Gil:Low-dimensionalnitridesemiconductors 10. L.Challis:Electron-phononinteractioninlow-dimensionalstructures 11. V.Ustinov,A.Zhukov,A.Egorov,N.Maleev:Quantumdotlasers 12. H.Spieler:Semiconductordetectorsystems 13. S.Maekawa:Conceptsinspinelectronics 14. S.D.Ganichev,W.Prettl:Intenseterahertzexcitationofsemiconductors 15. N.Miura:Physicsofsemiconductorsinhighmagneticfields 16. A.V.Kavokin,J.J.Baumberg,G.Malpuech,F.P.Laussy:Microcavities 17. S.Maekawa,S.O.Valenzuela,E.Saitoh,T.Kimura:Spincurrent Spin Current Editedby Sadamichi Maekawa Sergio O. Valenzuela Eiji Saitoh Takashi Kimura 1 3 GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom OxfordUniversityPressisadepartmentoftheUniversityofOxford. IffurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries (cid:2)c SadamichiMaekawa,SergioO.Valenzuela,EijiSaitoh,TakashiKimura2012 Themoralrightsoftheauthorshavebeenasserted FirstEditionpublishedin2012 Impression:1 Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer BritishLibraryCataloguinginPublicationData Dataavailable LibraryofCongressCataloginginPublicationData LibraryofCongressControlNumber:2012936272 ISBN 978–0–19–960038–0 Printedandboundby CPIGroup(UK)Ltd,Croydon,CR04YY Preface Sincethediscoveryofthegiantmagnetoresistance(GMR)effectinmagneticmul- tilayersin1988,anewbranchofphysicsandtechnology,calledspin-electronicsor spintronics, has emerged, where the flow of electrical charge as well as the flow of electron spin, the so-called “spin current,” are manipulated and controlled together. Whereas charge current flows without decay (owing to fundamental charge conservation), spin current decays on a length-scale of less than a few micrometers. In other words, it exists only at nanometer scales. Recent progress in the physics of magnetism and the application of spin current has progressed in tandem with the nanofabrication technology of magnets and the engineering of interfaces and thin films. Thisbookisintendedtoprovideanintroductionandguidetothenewphysics andapplicationofspincurrent.Theemphasisisplaceontheinteractionbetween spin and charge currents in magnetic nanostructures. TheInternationalConferenceonMagnetism(ICM),thelargestconferencein the physics of magnetism, has been held triennially since the first one organized by Louis N´eel at Grenoble, France in 1958. The Eighteenth Conference in the ICM series took place in Karlsruhe, Germany in July 2009, where a paradigm in physics was epitomized by “a flood of spin current,” which introduces a new front in the evolution of traditional research in magnetism. I am glad to note that the achievements of the research in spin current by Sergio O. Valenzuela, Eiji Saitoh, and Takashi Kimura were recognized through the Young Scientist in Magnetism Awards at the Eighteenth ICM sponsored by the International Union of Pure and Applied Physics (IUPAP), an agency under the auspices of UNESCO (United Nations Educational, Scientific, and Cultural Organization). In this book, three of them give introductions to spin current, the spin Hall effect, spin torgues, and the spin Seebeck effect based on their achievements. Although the chapters make up a coherent whole, each chapter is self-contained and may be read independently. The physics based on spin current is growing rapidly. Therefore, we have tried to introduce the most recent results up to August2011.Ihopethisbookisasoundguidetothenewphysicsandtechnology. August 2011 Sadamichi Maekawa (On behalf of the Editors) This page intentionally left blank Contents Contributors xv Part I Spin current 1 Introduction 3 E. Saitoh 1.1 Spin of electrons 3 1.1.1 Spin angular momentum 3 1.1.2 Dirac equation and spin 5 1.1.3 Nonrelativistic approximation 7 1.2 Spin current 9 1.2.1 Concept of spin current 9 1.2.2 An exact definition of spin current 10 References 14 2 Incoherent spin current 15 K. Ando and E. Saitoh 2.1 Fermi–Dirac distribution 15 2.2 Diffusion equation 18 2.3 Spin diffusion equation 19 References 24 3 Exchange spin current 25 E. Saitoh and K. Ando 3.1 Magnetic order and exchange interaction 25 3.2 Exchange spin current 25 3.2.1 Landau–Lifshitz–Gilbert equation 25 3.2.2 Rewriting the Landau–Lifshitz–Gilbert equation 27 3.3 Spin-wave spin current 28 3.3.1 Spin-wave formulation 28 3.3.2 Spin current carried by a spin wave 31 References 32 viii CONTENTS 4 Topological spin current 33 E. Saitoh 4.1 Bulk topological spin current 33 4.2 Surface topological spin current 35 References 35 5 Spin polarization in magnets 36 K. Takanashi and Y. Sakuraba 5.1 Spin polarization in ferromagnets 36 5.2 Half-metallic ferromagnets 37 5.3 Experimental techniques for spin-polarization measurement 39 5.3.1 Point-contact Andreev reflection (PCAR) 39 5.3.2 Superconducting tunneling spectroscopy (STS) 41 5.3.3 Spin-resolved photoemission spectroscopy (SP-PES) 43 5.4 Magnetoresistive devices with half-metals 43 5.4.1 Magnetic tunnel junctions with half-metals 43 5.4.2 Current-perpendicular-to-plane magnetoresistive device with half-metals 45 References 46 6 Optically induced and detected spin current 49 A. Hirohata 6.1 Introduction 49 6.1.1 Optical generation of spins 49 6.1.2 Spin polarization in GaAs 49 6.1.3 Photoexcitation model 50 6.2 Optical spin injection 55 6.2.1 Photoexcitation 55 6.2.2 Schottky diodes 55 6.2.3 Spin-polarized scanning tunneling microscopy (spin STM) 57 6.3 Optical spin detection 58 6.3.1 Spin-polarized light-emitting diodes (spin LED) 58 6.3.2 Schottky diodes 60 6.3.3 Spin injection into Si 62 References 62 7 Theory of spinmotive forces in ferromagnetic structures 65 S. E. Barnes 7.1 Introduction 65 7.2 Spin Faraday’s law 65 CONTENTS ix 7.2.1 Magnetic momentum, spin electric, and magnetic fields 66 7.2.2 Calculation of magnetic momentum for adiabatic electrons 66 7.2.3 The spin fields E(cid:2) and B(cid:2) and Faraday’s law 68 s s 7.2.4 Landau–Lifshitz equations 69 7.2.5 Spin-torque-transfer (STT), spin valves, and magnetic tunnel junctions (MTJs) 69 7.2.6 Spinmotive force (smf), spin valves and MTJs 71 7.2.7 The spin electric field E(cid:2) 73 s 7.3 Examples of spinmotive forces 74 7.3.1 A plain N´eel domain wall 74 7.3.2 Reciprocal relations 75 7.3.3 The spinmotive force and magnons 76 7.3.4 Spin forces and Doppler shifts for phonons 77 7.3.5 Voltage steps and magnetoresistance 77 7.3.6 Static magnetic vortices 78 7.3.7 Field-driven magnetic vortices 78 7.4 Ferromagnetic resonance (FMR) and spinmotive forces 80 7.4.1 Field-driven FMR 80 7.4.2 STT-FMR and a-FMR resonance 80 7.4.3 The spin Seebeck effect and the smf 80 7.4.4 FMR with thermal gradients 81 7.5 Spinmotive forces, magnons, and phonons 82 7.5.1 The s=1 nature of magnons and phonons 82 7.5.2 Realization of smf effects with magnons and phonons 83 References 84 8 Spin pumping and spin transfer 87 A. Brataas, Y. Tserkovnyak, G. E. W. Bauer, and P. J. Kelly 8.1 Introduction 87 8.1.1 Technology pull and physics push 87 8.1.2 Discrete versus homogeneous 87 8.1.3 This chapter 88 8.2 Phenomenology 89 8.2.1 Mechanics 89 8.2.2 Spin-transfer torque and spin pumping 89 8.2.3 Onsager reciprocity relations 99 8.3 Microscopic derivations 103 8.3.1 Spin-transfer torque 103 8.3.2 Spin pumping 109

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.