ebook img

Spike timing and the coding of naturalistic sounds in a central auditory area of songbirds PDF

9 Pages·0.16 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Spike timing and the coding of naturalistic sounds in a central auditory area of songbirds

2 0 Spike timing and the coding of naturalistic sounds in a 0 2 central auditory area of songbirds n a J Brian D. Wright,1−3 KamalSen,1−3 WilliamBialek1,4,5 and AllisonJ. Doupe1−3 2 1Sloan–Swartz CenterforTheoretical Neurobiology 1 2DepartmentsofPhysiologyand3Psychiatry ] h UniversityofCaliforniaat San Francisco, San Francisco, California94143–0444 p 4NEC Research Institute,4 IndependenceWay,Princeton, New Jersey08540 o- 5DepartmentofPhysics,Princeton University,Princeton,New Jersey08544 bi {bdwright/kamal/ajd}@phy.ucsf.edu,[email protected] . s c February 2,2008 i s y h Abstract p [ Innature, animalsencounter high dimensional sensory stimulithat havecomplex statisticaland dynamical structure. Attempts to study the neural coding of these natural signals face challenges 1 both in the selection of the signal ensemble and in the analysis of the resulting neural responses. v For zebra finches, naturalistic stimuli can be defined as sounds that they encounter in a colony of 7 2 conspecific birds. We assembled an ensemble of these sounds by recording groups of 10-40 zebra 0 finches,andthenanalyzedtheresponseofsingleneuronsinthesongbirdcentralauditoryarea(field 1 L)tocontinuousplaybackoflongsegmentsfromthisensemble. Followingmethodsdevelopedinthe 0 flyvisualsystem,wemeasuredtheinformationthatspiketrainsprovideabouttheacousticstimulus 2 withoutanyassumptionsaboutwhichfeaturesofthestimulusarerelevant.Preliminaryresultsindicate 0 thatlargeamounts of informationarecarried byspike timing, withroughly half of the information s/ accessibleonlyattimeresolutionsbetterthan10ms;additionalinformationisstillbeingrevealedas c timeresolutionisimprovedto2ms. Informationcanbedecomposedintothatcarriedbythelocking si ofindividualspikestothestimulus(ormodulationsofspikerate)vs. thatcarriedbytiminginspike y patterns. InitialresultsshowthatinfieldL,temporalpatternsgiveatleast∼ 20%extrainformation. h Thus,singlecentralauditoryneuronscanprovideaninformativerepresentationofnaturalisticsounds, p inwhichspiketimingmayplayasignificantrole. : v i X 1 Introduction r a Nearlyfiftyyearsago,Barlow[1]andAttneave[2]suggestedthatthebrainmayconstructaneuralcode thatprovidesanefficientrepresentationforthesensorystimulithatoccurinthenaturalworld. Slightly earlier, MacKay and McCulloch [3] emphasized that neurons that could make use of spike timing— ratherthanacoarser“ratecode”—wouldhaveavailableavastlylargercapacitytoconveyinformation, althoughtheyleftopenthequestionofwhetherthiscapacityisusedefficiently.Theoriesfortimingcodes andefficientrepresentationhavebeendiscussed extensively,buttheevidenceforthese attractiveideas 1 remainstenuous.Arealattackontheseissuesrequires(atleast)thatweactuallymeasuretheinformation contentand efficiencyof the neuralcode understimulus conditionsthat approximatethe naturalones. In practice, constructing an ensemble of “natural” stimuli inevitably involves compromises, and the responsestosuchcomplexdynamicsignalscanbeverydifficulttoanalyze. Atpresenttheclearestevidenceonefficiencyandtiminginthecodingofnaturalisticstimulicomes from central invertebrate neurons [4, 5] and from the sensory periphery [6, 7] and thalamus [8, 9] of vertebrates. Thesituationforcentralvertebratebrainareasismuchlessclear. Hereweusethesongbird auditorysystemasanaccessibletestcasefortheseideas.Thesetofsongbirdtelencephalicauditoryareas knownasthefieldLcomplexisanalogoustomammalianauditorycortexandcontainsneuronsthatare stronglydrivenby naturalsounds, includingthe songsof birdsof the same species(conspecifics) [10, 11,12,13]. WerecordfromthezebrafinchfieldL,usingnaturalisticstimulithatconsistofrecordings from groups of 10-40 conspecific birds. We find that single neurons in field L show robust and well modulated responses to playback of long segments from this song ensemble, and that we are able to maintain recordings of sufficient stability to collect the large data sets that are required for a model independentinformationtheoreticanalysis. Herewegiveapreliminaryaccountofourexperiments. 2 A naturalistic ensemble Auditoryprocessingof complexsoundsis criticalfor perceptionandcommunicationin manyspecies, includinghumans,butsurprisinglylittleisknownabouthowhighlevelbrainareasaccomplishthistask. Songbirdsprovideausefulmodelfortacklingthisissue,becauseeachbirdwithinaspeciesproducesa complexindividualizedacousticsignalknownasasong,whichreflectssomeinnateinformationabout thespecies’songaswellasinformationlearnedfroma“tutor”inearlylife. Inadditiontolearningtheir ownsong, birdsuse the acoustic informationin songsofothersto identifymatesand groupmembers, to discriminate neighbors from intruders, and to control their living space [14]. Consistent with how ethologicallycriticalthesefunctionsare,songbirdshavealargenumberofforebrainauditoryareaswith strong and increasingly specialized responses to songs [11, 15, 16]. The combination of a rich set of behaviorallyrelevantstimuliandaseriesofhigh-levelauditoryareasresponsivetothosesoundsprovides anopportunitytorevealgeneralprinciplesofcentralneuralencodingofcomplexsensorystimuli. Many prior studies have chosen to study neuralresponses to individualsongs or altered versionsthereof. In order to make the sounds studied increasingly complex and natural, we have made recordings of the soundsencounteredby birdsin ourcolonyofzebra finches. To generatethe soundensemblethat was used in this study we first created long records of the vocalizations of groups of 10-40 zebra finches in a soundproof acoustic chamber with a directional microphone above the bird cages. The group of birdsgeneratedawidevarietyofvocalizationsincludingsongsandavarietyofdifferenttypesofcalls. Segmentsofthesesoundswerethenjoinedtocreatethesoundspresentedintheexperiment.Oneofthe segmentsthatwaspresented(∼30sec)wasrepeatedinalternationwithdifferentsegments. We recordedthe neuralresponsesin field L of one of the birds fromthe groupto the ensemble of naturalsoundsplayedbackthroughaspeaker,atanintensityapproximatelyequaltothatinthecolony recording. This bird was lightly anesthetized with urethane. We used a single electrode to record the neuralresponsewaveformsandsortedsingleunitsoffline.Furtherdetailsconcerningexperimentaltech- niquescanbefoundinRef.[13]. 2 Figure 1: A. Spike raster of 4 seconds of the responses of a single neuron in field L to a 30 second segment of a natural sound ensemble of zebra finch sounds. The stimulus was repeated 80 times. B. Peri-stimulustimehistogram(PSTH)with1msbins.C.Soundpressurewaveformforthenaturalsound ensemble.D.BlowupofsegmentshownintheboxinA.Thescalebaris50ms. 3 Information in spike sequences TheauditorytelencephalonofbirdsconsistsofasetofareasknownasthefieldLcomplex,whichreceive inputfromtheauditorythalamusandprojecttoincreasinglyselectiveauditoryareassuchasNCM,cHV andNIf[12, 17]andultimatelytothebrainareasspecializedforthebird’sownsong. FieldLneurons respond to simple stimuli such as tone bursts, and are organized in a roughly tonotopic fashion [18], butalso respondrobustlyto manycomplexsounds, includingsongs. Figure 1 shows4 secondsof the responsesof a cell in field L to repeated presentationsof a 30 sec segmentfromthe naturalensemble describedabove. Averagingoverpresentations,weseethatspikeratesarewellmodulated. Lookingat theresponsesonafinertimeresolutionweseethataspectsofthespiketrainarereproducibleonatleast a∼ 10mstimescale. Thisencouragesustomeasuretheinformationcontentoftheseresponsesovera rangeoftimescales,downtomillisecondresolution. OurapproachtoestimatingtheinformationcontentofspiketrainsfollowsRef.[4]. Atsometimet (definedrelativetotherepeatingstimulus)weopenawindowofsizeT tolookattheresponse. Within this window we discretize the spike arrival times with resolution ∆τ so that the response becomes a 3 40 Total Entropy Noise Entropy 35 Mutual Info 30 c) e s s/ 25 bit e ( Rat 20 n o ati m 15 or nf I 10 5 0 0 0.01 0.02 0.03 0.04 0.05 0.06 1/N repeats Figure2: Mutualinformationrateforthespiketrainisshownasafunctionofdatasizefor∆τ = 2ms andT =32ms. “word”withT/∆τ letters. Ifthetimeresolution∆τ isverysmall,theallowedlettersareonly1and0, butas∆τ becomeslargeronemustkeeptrackofmultiplespikeswithineachbin. Examiningthewhole experiment,wesampletheprobabilitydistributionofwords,PT(W),andtheentropyofthisdistribution setsthecapacityofthecodetoconveyinformationaboutthestimulus: Stotal(T;∆τ)=− PT(W)log2PT(W)bits, (1) XW wherethenotationremindsusthattheentropydependsbothonthesizeofthewordsthatweconsiderand onthetimeresolutionwithwhichweclassifytheresponses. Wecanthinkofthisentropyasmeasuring thesizeoftheneuron’svocabulary. Becausethewholeexperimentcontributestodefiningthevocabularysize,estimatingthedistribution PT(W) and hence the total entropy is not significantly limited by the problems of finite sample size. ThiscanbeseeninFig.2inthestabilityofthetotalentropywithchangingthenumberofrepeatsused intheanalysis. Hereweshowthetotalentropyasarateinbitspersecondbydividingtheentropybythe timewindowT. Whilethecapacityofthecodeislimitedbythetotalentropy,toconveyinformationparticularwords inthevocabularymustbeassociated,moreorlessreliably,withparticularstimulusfeatures. Ifwelook 4 atonetimetrelativetothe(long)stimulus,andexaminethewordsgeneratedonrepeatedpresentations, we sample the conditional distribution PT(W|t). This distribution has an entropy that quantifies the noiseintheresponseattimet,andaveragingoveralltimesweobtaintheaveragenoiseentropy, Snoise(T;∆τ)=(cid:28)− PT(W|t)log2PT(W|t)(cid:29) bits, (2) XW t whereh···it indicatesatimeaverage(ingeneral,h···ix denotesanaverageoverthevariablex). Tech- nically,theaboveaverageshouldbeanaverageoverstimulis,however,forasufficientlylongandrich stimulus, the ensemble average over s can be replaced by a time average. For the noise entropy, the problemofsamplingismuchmoresevere,sinceeachdistributionPT(W|t)isestimatedfromanumber ofexamplesgivenbythenumberofrepeats. Still,asshowninFig.2,wefindthatthedependenceofour estimateonsamplesizeissimpleandregular;specifically,wefind A S(T;∆τ;N )=S(T;∆τ;∞)+ +···. (3) repeats N repeats This is what we expect for any entropy estimate if the distribution is well sampled, and if we make strongerassumptionsaboutthesamplingprocess(independenceoftrialsetc.) wecanevenestimatethe correction coefficient A [19]. In systems where much larger data sets are available this extrapolation procedure has been checked, and the observation of a good fit to Eq. (3) is a strong indication that largersamplesizeswillbeconsistentwithS(T;∆τ)=S(T;∆τ;∞);further,thisextrapolationcanbe testedagainstboundsontheentropythatarederivedfrommorerobustquantities[4]. Mostimportantly, failuretoobserveEq.(3)meansthatweareinaregimewheresamplingisnotsufficienttodrawreliable conclusionswithoutmoresophisticatedarguments,andweexcludetheseregionsofT and∆τ fromour discussion. Ideally,tomeasurethespiketraintotalandnoiseentropyrates,wewanttogotothelimitofinfinite word duration. A true entropy is extensive, which here means that it grows linearly with spike train worddurationT,sothattheentropyrateS =S/T isconstant. Forfiniteworddurationhowever,words sampled at neighboring times will have correlations between them due, in part, to correlations in the stimulus(forbirdsongthesestimulusautocorrelationtimescalescanextendupto∼100ms). Sincethe wordsamplesarenotcompletelyindependent,therawentropyrateisanoverestimateofthetrueentropy rate. Theeffectislargerforsmallerworddurationandtheleadingdependenceoftherawestimateis B S(T;∆τ;∞)=S(∞;∆τ;∞)+ +···, (4) T whereB > 0 andwe have alreadytaken the infinite datasize limit. We cannotdirectlytake the large T limit, since for large word lengths we eventually reach a data sampling limit beyond which we are unabletoreliablycomputetheworddistributions. Ontheotherhand,ifthereisarangeofT forwhich the distributions are sufficiently well sampled, the behavior in Eq. (4) should be observed and can be usedtoextrapolatetoinfinitewordsize[4]. Wehavecheckedthatourdatashowsthisbehaviorandthat it sets in for word sizes below the limit where the data sampling problemoccurs. For example, in the caseofthenoiseentropy,for∆τ = 2ms,itappliesforT belowthelimitof50ms(abovethiswerun intosamplingproblems).Thetotalentropyestimateisnearlyperfectlyextensive. Finally,wecombineestimatesoftotalandnoiseentropiestoobtaintheinformationthatwordscarry aboutthesensorystimulus, I(T;∆τ)=S (T;∆τ)−S (T;∆τ)bits. (5) total noise 5 Figure2showsthetotalandnoiseentropyratesaswellasthemutualinformationrateforatimewindow T = 32 msandtime resolution∆τ = 2 ms. Theerrorbarsonthe raw entropyand informationrates wereestimatedtobeapproximately±0.2bits/secusingasimplebootstrapprocedureovertherepeated trials. The extrapolation to infinite data size is shown for the mutual information rate estimate (error barsintheextrapolatedvalueswillbe< ±0.2bits/sec)andisconsistentwiththepredictionofEq.(3). Sincethetotalentropyisnearlyextensiveandthenoiseentropyratedecreaseswithworddurationdue tosubextensivecorrectionsasdescribedabove,themutualinformationrateshowninFig.2growswith word duration. We find that there is an upward change in the mutual information rate (computed at ∆τ = 2 msand T = 32ms) of∼ 7%, in the largeT limit. For simplicity in the following, we shall lookatafixedworddurationT = 32msthatisinthewell-sampledregionforalltimeresolutions∆τ considered. Themutualinformationratemeasurestherateatwhichthespiketrainremovesuncertaintyaboutthe stimulus. However,themutualinformationestimate doesnotdependonidentifyingeithertherelevant featuresofthestimulusortherelevantfeaturesoftheresponse,whichiscrucialinanalyzingtheresponse to such complex stimuli. In this sense, our estimates of information transmission and efficiency are independentofanymodelforthe code, andprovidea benchmarkagainstwhichsuchmodelscouldbe tested. OnewaytolookattheinformationresultsistofixourtimewindowT andaskwhathappensaswe changeourtimeresolution∆τ. When∆τ = T,the“word”describingtheresponseisnothingbutthe numberofspikesinthewindow,sowehavearateorcountingcode. Aswedecrease∆τ,wegradually distinguish more and more detailin the arrangementof spikes in the window. We chose a range of T values from 30−100 ms in our analyses to cover previously observed response windows for field L neurons and to probe the behaviorally relevant time scale (∼ 100 ms) of individual song syllables or notes. For T = 32 ms, we show the results (extrapolated to infinite data size) in the upper curve of Fig.3. Thespiketrainmutualinformationshowsaclearincreaseasthetimingresolutionisimproved. Inaddition,Fig.3showsthatroughlyhalfoftheinformationisaccessibleattimeresolutionsbetterthan 10msandadditionalinformationisstillbeingrevealedastimeresolutionisimprovedto2ms. 4 Information in rate modulation Knowing the mutualinformationbetween the stimulus and the spike train (defined in the window T), we would like to ask whether this can be accounted for by the information in single spike events or whetherthereissomeadditionalinformationconveyedbythepatternsofspikes. Inthelattercase, we havepreciselywhatwemeanbyatemporalortimingcode:thereisinformationbeyondthatattributable totheprobabilityofsinglespikeeventsoccurringattimetrelativetotheonsetofthestimulus. Byevent at time t, we meanthat the eventoccursbetweentime t and time t+∆τ, where ∆τ is the resolution atwhichwearelookingatthespiketrain. Thisprobabilityissimplyproportionalto thefiringrate(or peri-stimulustimehistogram(PSTH))r(t)attimetnormalizedbythemeanfiringrater¯. Specificallyif thedurationofeachrepeatedtrialisT wehave repeat r(t)∆τ ′ P(1spk@t|s(t))= , (6) r¯T repeat wheres(t′)denotesthestimulushistory(t′ <t).Theprobabilityofaspikeeventatt,aprioriofknowing the stimulus history, is flat: P(1spk@t) = ∆τ/T . Thus, the mutual information between the repeat 6 5 4.5 Spike Train 4 c) e s s/ Independent Events bit3.5 e ( at R n atio 3 m or nf I2.5 2 1.5 0 5 10 15 20 25 30 35 ∆τ (ms) Figure3: Informationratesforthespiketrain(T =32ms)andsinglespikeeventsasafunctionoftime resolution∆τ ofthespikerasters,correctedforfinitedatasizeeffects. stimulusandthesinglespikeeventsis[20]: I(1spike;∆τ) = S[P(1spk@t)]−hS[P(1spk@t|s)]i s r(t) r(t) = log bits, (7) (cid:28) r¯ 2(cid:18) r¯ (cid:19)(cid:29) t where r(t) is the PSTH binned to resolution ∆τ and the stimulus average in the first expression is replacedby a time averagein the second (as discussed in the calculationof the noise entropyin spike train wordsin the previoussection). We find that this informationis approximately1 bit for ∆τ = 2 ms. Supposingthattheindividualspikeeventsareindependent(i.e.nointrinsicspiketraincorrelations), theinformationrateinsinglespikeeventsisobtainedbymultiplyingthemutualinformationperspike (Eq. 7) by the mean firing rate of the neuron (∼ 3.5 Hz). This gives an upper bound to the single spike event contribution to the information rate and is shown in the lower curve of Fig. 3 (error bars are again < ±0.2 bits/sec). Comparing with the spike train information(uppercurve), we see that at a resolution of ∆τ = 2 ms, there is at least ∼ 20% of the total information in the spike train that cannot be attributable to single spike events. Thus there is some pattern of spikes that is contributing synergisticallytothemutualinformation.Thefactdiscussed,intheprevioussection,thatthespiketrain 7 informationrategrowssubextensivelywiththetheworddurationouttothepointwheredatasampling becomesproblematicis furtherconfirmationof the synergyfromspike patterns. Thuswe haveshown model-independentevidenceforatemporalcodeintheneuralresponses. 5 Conclusion Untilnow,fewexperimentsonneuralresponsesinhighlevel,centralvertebratebrainareashavemea- suredtheinformationthattheseresponsesprovideaboutdynamic,naturalisticsensorysignals. Asem- phasizedin earlier workon invertebratesystems, informationtheoreticapproacheshavethe advantage thattheyrequirenoassumptionsaboutthefeaturesofthestimulustowhichneuronsrespond.Usingthis method in the songbirdauditory forebrain, we found that patterns of spikes seem to be special events intheneuralcodeoftheseneurons,since theycarrymoreinformationthanexpectedbyaddingupthe contributionsofindividualspikes. Itremainstobedeterminedwhatthesespikepatternsare,whatstim- ulusfeaturestheymayencode,andwhatmechanismsmayberesponsibleforreadingsuchcodesateven higherlevelsofprocessing. Acknowledgments Work at UCSF was supported by grants from the NIH (NS34835) and the Sloan-Swartz Center for TheoreticalNeurobiology.BDWandKSsupportedbyNRSAgrantsfromtheNIDCD.WethankKatrin SchenkandRobertLiuforusefuldiscussions. References [1] Barlow,H.B.(1961).Possibleprinciplesunderlyingthetransformationofsensorymessages.InSen- soryCommunication,W.A.Rosenblith,ed.,pp.217–234(MITPress,Cambridge,MA). [2] Attneave,F.(1954).Someinformationalaspectsofvisualperception.Psychol.Rev.61,183–193. [3] MacKay,D.andMcCulloch,W.S.(1952).Thelimitinginformationcapacityofaneuronallink.Bull. Math.Biophys.14,127–135. [4] Strong,S.P.,Koberle,R.,deRuytervanSteveninck,R.andBialek,W.(1998).Entropyandinforma- tioninneuralspiketrains,Phys.Rev.Lett.80,197–200. [5] Lewen,G.D.,Bialek, W. anddeRuytervanSteveninck,R.R. (2001).Neuralcodingofnaturalistic motionstimuli.Network12,317–329,physics/0103088. [6] Rieke, F., Bodnar,D.A.andBialek, W.(1995).Naturalisticstimuliincreasetherateandefficiency ofinformationtransmissionbyprimaryauditoryafferents.Proc.R.Soc.Lond.B262,259–265. [7] Berry II, M.J., Warland, D.K. and Meister, M. (1997).The structureand precisionof retinalspike trains.Proc.Nat.Acad.Sci.(USA)94,5411–5416. [8] Reinagel,P.andReid,R.C.(2000).Temporalcodingofvisualinformationinthethalamus.J.Neu- rosci.20,5392–5400. 8 [9] Liu, R.C., Tzonev, S., Rebrik, S. and Miller, K.D. (2001).Variability and informationin a neural codeofthecatlateralgeniculatenucleus.J.Neurophysiol.86,2789–2806. [10] Scheich,H.,Langner,G.andBonke,D.(1979).Responsivenessofunitsintheauditoryneostriatum oftheguineafowl(Numidameleagris)tospecies-specificcallsandsyntheticstimuliII.Discrimination ofIambus-LikeCalls.J.Comp.Physiol.A132,257–276. [11] Lewicki,M.S.andArthur,B.J.(1996).Hierarchicalorganizationofauditorytemporalcontextsen- sitivity.J.Neurosci.16(21),6987–6998. [12] Janata,P.andMargoliash,D.(1999).Gradualemergenceofsongselectivityinsensorimotorstruc- turesofthemalezebrafinchsongsystem.J.Neurosci.19(12),5108–5118. [13] Theunissen,F.E., Sen, K. andDoupe,A.J.(2000).Spectraltemporalreceptivefieldsofnonlinear auditoryneuronsobtainedusingnaturalsounds.J.Neurosci.20(6),2315–2331. [14] Searcy,W.A.andNowicki,S.(1999).InTheDesignofAnimalCommunication,M.D.Hauserand M.Konishi,eds.,pp.577–595(MITPress,Cambridge,MA). [15] Margoliash,D.(1983).Acousticparametersunderlyingtheresponsesofsong-specificneuronsin thewhite-crownedsparrow.J.Neurosci.3(5),1039–1057. [16] Sen,K.,Theunissen,F.E.andDoupe,A.J.(2001).Featureanalysisofnaturalsoundsinthesongbird auditoryforebrain.J.Neurophysiol.86,1445–1458. [17] Stripling,R., Kruse, A.A.andClayton, D.F. (2001).Developmentofsongresponsesin thezebra finchcaudomedialneostriatum: roleofgenomicandelectrophysiologicalactivities.J.Neurobiol.48, 163–180. [18] Zaretsky,M.D.andKonishi,M.(1976).Tonotopicorganizationintheaviantelencephalon.Brain Res.111,167–171. [19] Treves,A.andPanzeri,S.(1995).Theupwardbiasinmeasuresofinformationderivedfromlimited datasamples.NeuralComput.,7,399–407. [20] Brenner, N., Strong, S., Koberle, R. and Bialek, W. (2000). Synergy in a neural code, Neural Comput.12,1531–1552,physics/9902067. 9

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.