ebook img

Spider biodiversity patterns and their conservation in the Azorean archipelago, with descriptions of PDF

34 Pages·2008·1.74 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Spider biodiversity patterns and their conservation in the Azorean archipelago, with descriptions of

SystematicsandBiodiversity6(2):249–282 Issued6June2008 doi:10.1017/S1477200008002648PrintedintheUnitedKingdom (cid:2)C TheNaturalHistoryMuseum PauloA.V. Borges1∗ & Spider biodiversity patterns and their Joerg Wunderlich2 1AzoreanBiodiversityGroup, conservation in the Azorean archipelago, DepartamentodeCieˆncias Agra´rias,CITA-A,Universidade with descriptions of new species dosAc¸ores.CampusdeAngra, Terra-Cha˜;AngradoHero´ısmo– 9700-851–Terceira(Ac¸ores); Portugal. Email:[email protected] 2ObererHa¨uselbergweg24, Abstract In this contribution, we report on patterns of spider species diversity of 69493Hirschberg,Germany. the Azores, based on recently standardised sampling protocols in different hab- Email:joergwunderlich@ itats of this geologically young and isolated volcanic archipelago. A total of 122 t-online.de species is investigated, including eight new species, eight new records for the submittedDecember2005 Azorean islands and 61 previously known species, with 131 new records for indi- acceptedNovember2006 vidualislands.Biodiversitypatternsareinvestigated,namelypatternsofrangesize distribution for endemics and non-endemics, habitat distribution patterns, island similarity in species composition and the estimation of species richness for the Azores.Newlydescribedspeciesare:Oonopidae–OrchestinafurcillataWunderlich; Linyphiidae:Linyphiinae–PorrhommaborgesiWunderlich;Turinyphiacavernicola Wunderlich;Linyphiidae:Micronetinae–AgynetadepigmentataWunderlich;Linyph- iidae:Erigoninae–Acorigonegen.nov.withitstypespeciesAcorigonezebraneus Wunderlich;Clubionidae–CheiracanthiumfloresenseWunderlich;Cheiracanthium jorgeenseWunderlich;Salticidae–NeonacoreensisWunderlich.Othermajortaxo- nomicchangesare:DiplocentriaacoreensisWunderlich,1992(Linyphiidae)istrans- ferredtoAcorigone(comb.nov.),LeucognathaWunderlich1995(Tetragnathidae)is notanendemicgenusoftheAzoresbutanAfricantaxonandsynonymouswithSan- cusTullgren,1910;LeucognathaacoreensisWunderlich,1992istransferredtoSan- cus.MiniciapicoensisWunderlich,1992isasynonymofM.floresensisWunderlich, 1992.Foreachspeciesadditionalinformationispresentedaboutitsknowndistribu- tionintheislands,itscolonisationstatus,habitatoccurrenceandbiogeographical origin. Key words Araneae, Azores, biodiversity patterns, biogeography, cave species endemic,islands,newtaxa,MacaronesianIslands,spiders Introduction Duetotheabilityofmanyfamiliesofspiderstodisperse over long distances using wind currents (‘ballooning’) these Spiders (Araneae) are an important component of arthropod organismseasilycoloniseisolatedislandarchipelagoslikethe faunas(Wise,1995),withtheirpredatorybehaviourbeing,for Azores and should have disproportionally higher species di- instance, of great relevance for biological control in agroe- versity.However,spidersarenotaparticularlyattractivearth- cosystems. Members of this order play an important role ropodgroupforhumans,andtheircurrentworldandAzorean in most terrestrial foodwebs, may be very abundant in sev- taxonomicknowledgearefarfrombeingsatisfactory.Forin- eral habitats and are among the most numerous arthropods stance,intheAzorestherateofnewspeciesrecordsandnew from many samples in all kinds of habitats in the Azores speciesdescriptionindicatesthatonlyrecentlyareweachiev- (Borges&Brown,2001,2004)andelsewhere(Basset,1991). ingasatisfactorypictureoftheAzoreanspiderdiversity(see Moreover,despitetheimportanceofspidersinterrestrialeco- moredetailsbelow). systems,inbothspeciesrichnessandabundance,thisarachnid The difficulty in spider biodiversity assessment in the group is rarely considered in evaluating networks of protec- Azores seems to be related to the absence of historical ted areas (but see Skerl, 1999; Cardoso, 2004; Borges et al., expeditions focusing only on this group of arthropods and 2005a). on the high richness and variability in microhabitats they occupy. Historical investigations include the works of Denis ∗Correspondingauthor. (1964), that reported 70 species for the archipelago, and 249 250 PauloA.V.Borges&JoergWunderlich Figure1 Mapofthestudiedregion,showingthenineislandsoftheAzores. Wunderlich (1992), who listed 103 species and a few inde- andbiogeographicalorigin;(iii)toestimatespiderspeciesrich- terminedtaxa.Specialsamplingprotocolsandastandardised nessintheAzores;and(iv)toplansomesuggestionsforthe sampling of different habitats are urgently needed for the conservationofAzoreanspiderdiversity. adequate inventory of spiders and other arthropod groups in the Azores. This contribution is part of a larger study Materials and methods conductedsince1998intheAzoreanislands(ProjectBALA– Biodiversity of the Arthropods of the Laurisilva of the Azores) (see Borges et al., 2000a, 2005a) that aims to Areaofstudy:TheAzores survey the Azorean arthropod fauna using standardised TheAzoreanIslandsarevolcanicinoriginbeinglocatedinthe sampling protocols at different spatial scales covering most NorthAtlantic,roughlybetweenthecoordinates37◦to40◦N protectedareasandnativeforestsinsevenofthenineAzorean latitudeand25◦to31◦Wlongitude(Fig.1).Thisarchipelago islands. For this current contribution we use as a starting comprises nine main islands and some small islets and is point the last list of Azorean spiders (Wunderlich, 1992), located at the triple junction between the African–Eurasian and include data from recent field studies in pasturelands and North-American plates, emerging from the Azores Plat- (Borges, 1999; Borges & Brown, 1999, 2001, 2004), cav- eau, a topographic and gravity high near the Mid Atlantic ernicolous fauna (Borges & Orom´ı, in press), native forest ridge (MAR). The archipelago is situated over two tectonic and grassland habitats (Borges et al., 2000b, 2005a), and plates: the westernmost islands of Flores and Corvo lie over fruit orchards (Santos et al., 2005). The recently published theAmericanplateandareseparatedfromtheeasternislands updatedlistofAzoreanfaunaandflora(Borgesetal.,2005b) by the Mid-Atlantic Ridge (MAR); the other seven main is- also includes a revised list of Azorean spiders (Borges & lands are located in a large triangular plateau with a com- Wunderlich,2005)thatisreproducedwithsomeupdatesand plicated structure known as ‘Azores Plateau’ (Nunes, 1999; additionalinformation(e.g.newrecords,habitatdistribution, Franc¸a et al., 2003). The distance between the Azores and biogeographical origin) in Appendix 1 (which is available the European mainland is about 1584km, calculated from as “Supplementary data” on Cambridge Journals Online: CabodaRoca(themostwesterlypointoftheEuropeancon- http://www.journals.cup.org/abstract_S1477200008002648) tinent). The nine islands are divided into three groups: the andwillbethebasisofourbiodiversitypatternanalysis. occidental group of Corvo and Flores; the central group of Studiesonislandbiodiversityandislandbiogeographical Faial,Pico,Graciosa,Sa˜oJorgeandTerceira;andtheoriental patternsforspidersarescarceglobally(butseeBaert&Jocque´, groupofSa˜oMiguelandSantaMaria,plustheFormigasislets 1993; Real et al., 1999; Schoener et al., 2003). Therefore, (Fig. 1). The largest island is S. Miguel (757km2), and the we are trying to make some headway by investigating some smallestisCorvo(17km2).S.Mariaisthesouthernmostisland biodiversitypatternsintheAzoreanspiderfauna. (37◦N,25◦W),andFloresisthewesternmostone(31◦W).The Thepurposesofthisworkare:(i)toupdateallthetax- mostnortherlyoneisCorvo(39,7◦N).Thedistancebetween onomydataoftheAzoreanspiderfauna,describingnewtaxa, Corvo and Santa Maria, the islands farthest apart, is about listingnewrecordsforindividualislandsandrevisingnomen- 615km. Corvo lies approximately at the same distance from clature;(ii)toinvestigatesomebiodiversitypatternsconcern- the Iberian Peninsula and from Newfoundland. All the in- ingdistributionbetweenislands,habitats,colonisationstatus formationconcerningthelongitude(long.),latitude(lat.),area, Islandspiderdiversity 251 maximumaltitude,distancesfromthemainlandandgeological conservation management scheme, was launched covering ageofeachislandaregiveninTableS1inSupplementaryMa- about13%oftheareaofAzoresislands.Selectedareaswere terial. chosenbothfortheprotectionofselectedspeciesofbirds(Spe- The acceptance of the Plate Tectonic Theory and the cial Protection Areas – SPAs; Portuguese ZPEs; n=15) and confirmedvolcanicoriginoftheseislands,madetheAzoresa fortheprotectionofhabitatsand(non-bird)species(Special totallyoceanicarchipelago.TheeasternpartofeveryAzorean AreasofConservation–SACs;PortugueseSICs;n=23). island is geologically the oldest. This is a consequence of theparticularseismovolcanicmechanismsofthisarchipelago (Nunes,1999;Franc¸aetal.,2003). Spidersamplinganddatabases Locatedatameanlatitudeof38◦30(cid:5) andsurroundedby Since1994spidersweresampledinastandardisedwayindif- the Atlantic Ocean, the Azores enjoy the benefits of a mild ferenthabitats.Datafromsemi-naturalpasturesandintensive andagreeableclimate.ThewarmGulfStreamisresponsible pastureswerecollectedonthreeislands(Terceira,PicoandS. for quite similar temperatures at sea level in the southeast- Maria) in the years 1994 and 1995 by means of pitfall traps ern as well as in the northwestern islands. The same can be anda‘Vortis’suctionsamplingmachine(seedetailsinBorges, said of humidity levels in the different islands (Agostinho, 1999; Borges & Brown, 1999, 2001, 2004). The bulk of our 1966).Amarkedoceanicclimatewithlowthermalamplitude data comes from project BALA (Biodiversity of the Arthro- andhighprecipitationandhumidityarecharacteristicofthis podsfromtheLaurisilvaoftheAzores),inwhichfrom1999 archipelago. to 2005 arthropods were collected by means of pitfall traps Discovered by the Portuguese navigators in 1432, the inthenativeforestsofsevenislands(CorvoandGraciosaex- Azores seem already to have been vaguely known, as indic- cluded)(seedetailsinBorgesetal.,2005a),butalsoinnatural atedonoldermaps.ThepresentAzoreanlandscapehasbeen grasslandandsomeexotictreeplantations(Ecucalyptusspp., stronglymodifiedbyitshumaninhabitants,andonlyinsmall Acaciaspp.,PittosporumundulatumandCryptomeriajapon- areas, where the soil or climate was too rough, have primit- ica)(Borgesetal.,unpubl.data). iveconditionsremainedunchanged.Thepopulationexceeded Another habitat surveyed was the canopy of both nat- 300000inthe1960s,butnowadaysonlyabout260000people ive and endemic trees (see Ribeiro et al., 2005; also BALA liveintheseislands(DREPA,1988).S.Miguel,Terceiraand project)andoffruitorchards(seeSantosetal.,2005;project Faialarethemostdenselypopulatedislands. INTERFRUTA). In the case of project INTERFRUTA data According to the recent list of Azorean vascular plants are only available for one island (Terceira). For the canopy by Silva et al. (2005), there are 947 species and subspecies arthropodsamplingamodifiedbeatingtraywasused,which (68 endemic; 7.2% of endemism) in the Azorean vascular consistedofaninvertedclothfunnelpyramid,1mwideand60 flora,butonlyaboutone28%ofthoseareindigenoustothe cmdeep(afterBasset,1999).Aplasticbagwasplacedatthe archipelago.Therelativeimportanceofintroducedtaxabyset- tipwherearthropods,leavesandsmallbrancheswerecollec- tlers is high in most plant groups. In fact, the percentage of ted.Foreachselectedplant,abranchwaschosenatrandom, introducedspeciesisoneofthehighestinaworldwidecompar- thebeatingtrayplacedbeneathandthebranchhitfivetimes ison,evenifoneconsidersexclusivelyoceanicislands(Silva withabeatingstick(formoredetailsseeRibeiroetal.,2005; & Smith, 2004). The predominant native vegetation form is Santosetal.,2005). ‘Laurisilva’,ahumidevergreenbroadleafandmicrophyllous Finally, cave fauna was investigated since 1987 in all (hereaftershort-leaf)laureltypeforestthatoriginallycovered islands (except Corvo) using not only pitfall traps but also mostofWesternEuropeduringtheTertiary(Dias,1996).Re- direct search (see details in Ashmole et al., 1996; Borges & centstudies,however,supportamorerecentorigin,explained Orom´ı,1994,inpress). by insular evolution from an ancestral herbaceous condition All data are organised in several databases, one for the (Emerson,2002).Dominantendemictreesandshrubsinclude cave fauna, one for the pasture fauna, one for the fruit orch- short-leafJuniperusbrevifolia(Seub.)Antoine(Cupressaceae) ard fauna and finally a large database for BALA data that andEricaazoricaHochst.ExSeub.(Ericaceae),thebroadleaf includesbothpitfallandcanopysamples.Dataonnewrecords species Ilex perado Ait. ssp. azorica (Loes.) Tutin (Aquifo- andtaxonomicnotesfrompasturesamplinghavealreadybeen liaceae), Laurus azorica (Seub.) Franco (Lauraceae) and the published(seeBorgesetal.,1999),andthesameappliespar- shrubVacciniumcylindraceumJ.E.Sm.(Ericaceae).Thistype tiallytocavefauna(Wunderlich,1992;Ashmoleetal.,1996; of forest is characterised by reduced tree stature (usually up Borges&Orom´ı,1994,inpress). to5m,rarelyreaching10m),shapedbytheshallowsoiland Thenewtaxaandrecordspresentedinthecurrentwork sinuousterrain,whichisraiseduptotreetopsatsomepoints, come mainly from BALA project. All additional material andloweredfivetosixmetresbelowatothers.Ahighcrown listed and reference to new records is indicated by a SITE foliage density and thus low canopy openness, as well as a CODEthatiscomposedofseverallettersandnumbersasin- particularly dense cover of moss and liverwort epiphytes is dicated previous to the list of Additional Material per taxon typicaloftheseforests.Somebryophytesalsocoverleavesin in Table S2 (which is available as ‘Supplementary data’ higheraltitudehumidforests. on Cambridge Journals Online: http://www.journals.cup.org/ Inspiteofadominanceofnon-nativehabitatsintheseis- abstract_S1477200008002648).Forthegeographicallocation lands(e.g.pastureland,fruitorchards,exotictreesplantations), oftransectswithinreserves(UTMcoordinates)seeTableS3 inthelasttenyearsNATURA2000,aEuropeanCommission inSupplementaryMaterial. 252 PauloA.V.Borges&JoergWunderlich Dataanalysis grassland sampled with pitfalls and a Vortis machine Spider species were classified in one of three colonisation (data available from three islands, Terceira, Pico and categories: natives, endemics and introduced. Native species SantaMaria). arrivedbylong-distancedispersaltotheAzoresandarealso (7) Pasture–epigeansoilandgrassandherbdwellingcom- known in other archipelagoes and on the continental main- munities of intensively managed high altitude grassland land.EndemicspeciesarethosethatoccuronlyintheAzores, sampledwithpitfallsandaVortismachine(dataavailable as a result of either speciation events (neo-endemics) or ex- fromthreeislands,Terceira,PicoandSantaMaria). tinctionofthemainlandpopulations(palaeo-endemics).Intro- (8) Fruit Orchards – canopy samples of four types of fruit ducedspeciesarethosebelievedtobeinthearchipelagoasa orchard (bananas, orange trees, apple trees and peach resultofhumanactivities,someofthembeingcosmopolitan trees) (data available only for one island, Terceira) (see species. detailsonplantssampledinSantosetal.,2005). Onewaytoexaminepatternsofdistributionistoplotthe frequencyhistogramofspeciesdistributions,thatis,aspecies- Toevaluatethesimilaritybetweenland-usetypesinen- range-sizedistribution(Gaston,1994).Totesttheoccurrence demic spider species composition we used hierarchical, ag- ofmainlyrarespeciesor/andalsoalargeproportionofcom- glomerative cluster analysis. From among the various avail- monspeciesweappliedtheTokeshi(1992)statisticaltestfor ablemethodswechosetheWardsmethod(with1–So¨rensen bimodalitythatpermitsthecalculationoftheprobabilityun- similarity), also known as minimum variance or error sums der the null hypothesis of the presence of larger numbers of ofsquaresclustering,inwhich,ineachiteration,allpossible species in the two extreme classes (rare and common) (see pairsofgroupsarecomparedandthetwogroupschosenfor Tokeshi,1992andBarretoetal.,2003formoredetails). fusion are those which will produce a group with the low- In addition to the species distribution analysis we also estvariance(SoftwareCAP.-CommunityAnalysisPackagev. analysed two other important components of rarity, namely 3.0;PiscesConservationLtd;www.pisces-conservation.com) abundance and habitat affiliation. Taking into consideration (seeHenderson&Seaby,2004). thatthesamplingeffortwasnotthesameforallinvestigated Thereisaneedtoestimatebiodiversityinordertocon- habitats,weusedrelativeabundancewithineachhabitattoget serveasmuchaspossibleoftheremainingbiodiversity.How- anestimateoftheabundanceofeachspecies.Thus,forapar- ever, some of the available techniques to extrapolate species ticularhabitatwetotalledthenumberofspecimenscaptured numbershavemajorstatisticalproblems.Forinstance,oneof for a species and than divided it by the total number of spe- themethods,‘extrapolationfromratesofscientifictaxonomic cimenssampledofallspecies.Withthisprocedurewecould description’(seeDolphin&Quicke,2001;Cabrero-San˜udo& rankspeciesfromabundant(common)toscarce(rare)within Lobo,2003),couldnotbeappliedtoourdatasincesampling aparticularhabitat. effort was not constant through time in the Azores. Another Concerninghabitats,inadditiontohabitataffiliationwe optionistheuseofthe‘geographicaldistributionofspeciesin also investigated habitat frequency distribution of the spider betterknowntaxa’.Inthiscasetheratioofspeciesrichnessof assemblageandtestedthehypothesisthatthereisagradientof thetargettaxonomicgrouptothatofawell-knowntaxoniscal- endemicspeciesrichnesswithregardtohabitatdisturbance.In culatedinawell-knownarea,andlaterisappliedtotheglobal ordertoinvestigatethesethreepatterns,weorganisedhabitats numberofspeciesofthewellstudiedtaxonintheareaofin- inagradientofland-useconsideringeightdifferentland-uses terest(seeDolphin&Quicke,2001).Oneproblemassociated (habitats)withdataonindividualislandspooled: with this method is related to the potential differential rates ofspeciationofindicatortaxaindifferentgeographicalareas. (1) Canopy–Laurel–canopyofnativeorendemicforesttrees In our study we examine beetles (Insecta, Coleoptera), but- andshrubs(dataavailableforallislandsexceptCorvoand terfliesandmoths(Lepidoptera)aswell-knownrepresentative Graciosa)(seedetailsonplantssampledinRibeiroetal., taxa,andtheCanariesasthebiogeographicalareaforcompar- 2005). ison.WeselectedtheCanaryIslands,becausetheybelongto (2) Soil–Laurel – epigean soil communities of native forest the same biogeographical area as the Azores (Macaronesia), sampledwithpitfalls(dataavailableforallislandsexcept andacomprehensivelistoftheirarthropodfaunaisavailable CorvoandGraciosa). (Izquierdoetal.,2004).Theendemicnumberofspeciesforthe (3) NaturalGrassland–epigeansoilcommunitiesofnative ColeopteraandLepidopteraoftheAzoreswasobtainedfrom high altitude grassland sampled with pitfalls (data avail- therecentlistofAzoreanfaunaandflora(Borgesetal.,2005b, ableforallislandsexceptCorvo,Faial,SantaMariaand c;Karsholt&Vieira,2005).Theratioestimatesforendemic Graciosa). AraneaewithColeopteraandLepidopteraintheCanariesis, (4) Caves–lavatubesandvolcanicpitscommunitiesbothat respectively,0.24and1.17. entrances and deep inside (data available for all islands TohaveanindependentestimateforthepotentialAzorean exceptCorvoandFlores). endemicspiderspeciesrichness,wealsoapplyanincidence- (5) ExoticForest–epigeansoilcommunitiesofexoticforests based non-parametric estimator, Jackknife1 (see Colwell & sampledwithpitfalls(dataavailableonlyforoneisland, Coddington,1994):S =S +a(n−1/n),whereS isthe max obs obs Terceira). numberofknownspecies,nisthenumberofsamples(n=9 (6) SN Pasture – epigean soil and grass and herb dwell- islandsinourcase)andathenumberofspeciesonlyfoundin ing communities of semi-natural managed high altitude onesample(island)(theso-called‘uniques’). Islandspiderdiversity 253 TheJackknife1estimatorwaschosen,becauseitiscon- sidered the most robust with incidence (presence/absence data) at larger scales (see Hortal et al., 2006). The estim- ator was computed using the Software Species Diversity and Richness version 3.0 (Pisces Conservation) (see Hende- rson & Seaby, 2002). We also applied to the endemic spe- cies dataset (see Appendix S1 in supplementary material on Cambridge Journals Online: http://www.journals.cup.org/ abstract_S1477200008002648)anaccumulationcurvewithis- landorderrandomised100timestoobtainameanspeciesac- cumulation curve. The same number of 100 randomisations werealsocomputedtoobtaintheJackknife1estimategener- atingconfidenceintervalsfortheestimatedspeciesrichness. All regression analyses were performed with ordinary linearleast-squares(OLS)regression.Log10transformedgeo- graphical variables and numbers of species were used for Figure2 OrchestinafurcillataWunderlichsp.nov.,Male;(a) several reasons: (a) to overcome non-constant variance, and anteriorpartoftheprosomawitheyes;(b)labium,ventral non-linearity of the data; (b) because higher r2 values were aspect(hairsarenotdrawn);(c)r.pedipalpus,retrolateral aspect(onlyfewhairsaredrawn);(d)emboluswith consistently obtained when using the log-log model; (c) the conductorsofther.pedipalpus,proventralaspect; residualsappearedtoshownopronouncedpatternsinthelog- bar=0.05mminFig.d,0.1mmintheremainingFigs. logmodel;and(d)thebiologicalandecologicalinterpretations areavailablefromthefittedinterceptandslope. allcongenerics.Bristlesarecompletelyabsent.Allmetatarsi bearasingletrichobothrium,itspositiononI–IIin0.94,onIV Results in0.55.–Opisthosomaoval,mostpartsarecoveredwithshort hairsbutlonghairsarepresentaroundpedicelandspinnerets.– Descriptionofnewspeciesandremarkson Pedipalpus: See above. The tibia bears two trichobothria. A selectedtaxa tinythinandpointedstructureexistsventrallyontheembolar OONOPIDAE furca. Oonopidaearetinysix-eyedandfrequentlypalespiders;they are easily overlooked. Only a single species of this family Ecology hasbeenreportedfromtheAzores,OonopsdomesticusDal- Theonlyknownmalespecimenplusajuvenilespecimenwere mas,1916,(seeWunderlich,1992,p.16).TheMediterranean collected in pitfall traps (with Ethylene Glycol) in a native Orchestinapavesii(Simon,1873)isknownfromtheCanary forest dominated by the endemic tree Ilex perado Ait. ssp. Islands.Anewspeciesofthisgenusisdescribedbelow. azorica(Loes.)Tutin(Aquifoliaceae)withthesoilcoveredby theexoticandinvasiveplantHedychiumgardnerisheffardex OrchestinafurcillataWunderlichsp.nov.(Fig.2) Ker-Gawl.(Zingiberaceae). Material HOLOTYPE Male: Azores, Sa˜o Miguel, Atalhada (Transect Relationships 2), August 1999, pitfall sample ET22 (P.A.V. Borges et al., AccordingtothestructuresoftheembolusO.arabicaDalmas, leg.);depositedattheUniversityoftheAzores(‘ArrudaFur- 1916 from the Arabic Peninsula is most closely related; in tado’Collection). arabicathepedipalpaltibiaismoreslenderandtheembolus isshorter. Diagnosis(male;femaleunknown) Pedipalpus (Figs 2c, d): the tibia is the thickest article, the Distribution embolusislong,bentandfurcate. Azores:Sa˜oMiguel. Description(Male) TETRAGNATHIDAE Measurements (in mm): Body length 1.0, prosoma: Length Tetragnathidae is a spider family characterised by the long 0.47, width 0.35, leg I: Femur 0.42, patella 0.12, tibia 0.38, chelicerae,representedintheAzoreswithfourspecies,three metatarsus0.4,tarsus0.3,tibiaIV0.35,femurIV0.5,itswidth ofwhicharehumanintroductions.Theonlynativespeciesis 0.12. theendemicSancusacoreensis(Wunderlich,1992). Colourpaleyellowbrownwithblacksurroundingsofthe eyelenses. SancusTullgren,1910andLeucognathaacoreensis Wunderlich,1992 Prosoma:Thoraxhigherthanthecaput,thoracalfissureabsent, 6largeeyes(Fig.2a),medianeyeslargest.Cheliceraeslender, According to Kuntner (pers. comm.), Leucognatha Wun- labiumconcaveapically(Fig.2b).–Legs:sequenceoflength derlich, 1992 is a junior synonym of Sancus, and Leuco- IV/I/II/III,fairlyslenderbutfemurIVstronglythickenedasin gnathaacoreensisWunderlich,1992fromtheAzoresmustbe 254 PauloA.V.Borges&JoergWunderlich calledSancusacoreensis.Theonlyothercongenericspecies, S.bilineatusTullgren,1910,occursinEastAfrica,atMount Kenya.SancusacoreensisiswidelyspreadallovertheAzores, mainlyinnativehabitats,buthasnotbeenreportedbyDenis (1964)justlikemanyothercurrentlyknownendemicspecies. Whileonecannotexcludethepossibilityofahistoricalhuman introduction, this species may be considered as a genuinely Azoreanendemicspecies. Distribution Azores: Flores, Faial, Pico, Terceira, Sa˜o Miguel and Santa Maria(newtoSa˜oJorge). LINYPHIIDAE Linyphiidae are small spiders buiders of sheet webs. This is the spider family most richly represented in the Azores; 36 speciesarereported,3speciesarereportedfromthesubfamily Linyphiinae, 11 from Micronetinae and 22 from Erigoninae. Wegivetwokeystoselectedtaxaofthisfamily. Determination In the small to tiny Erigoninae the number of leg bristles is reduced:femora,tibialaterallyandmetatarsilackbristles,in contrast to the Linyphiinae and most Micronetinae (in Mi- croneta,andsomeAgynetaspeciesoftheMicronetinaealso, femoralandmetatarsalbristles–insomespeciesevenlateral Figure3 PorrhommaborgesiWunderlichsp.nov.,Male:(a)position tibialbristles–areabsentasintheErigoninae).Severalmale oftheeyes;(b)r.coxaI,retrolateralaspect.Notethefield Erigoninae possess outgrowths or lobes of the prosoma; an ofstridulatoryfiles;(c)paracymbiumofther.pedipalpus, epigynalscapusisabsentinthissubfamily. retrolateralaspect;(d)r.pedipalpus,prolateralaspect; Female:(e)epigyne;(f)dorsalaspectofthevulva. KeytotheAzoreangeneraofthesubfamiliesLinyphiinae bar=0.2mminFig.a,0.1mmintheremainingFigs. andMicronetinae: 1 Femoralbristlesabsent............................2 present, coxal files absent, paracymbium with at – Femoralbristlespresent...........................4 least one tooth, epigyne with a large scapus as in 2(1) Metatarsi with a dorsal bristle. Fig.8c...............................Lepthyphantes (T.cavernicola)..........................Turinyphia – Metatarsalbristlesabsent..........................3 LINYPHIIDAE:LINYPHIINAE 3(2) Male:Tibiaofthepedipalpusapicallywithatransverse PorrhommaSimon,1884 rowoflongandbristle-shapedhairs.Female:Epigynal scapusnarrowposteriorly.(M.viaria).......Microneta This holarctic genus is new to the Azores and the Macar- – Male: Pedipalpal tibia without such hairs. Female: onesian Islands. Numerous species of Porrhomma are cave Scapuswideposteriorly..................Agynetas.l. dwellers; frequently they are weakly pigmented and possess 4(1) Male:Embolusverylongandthin,stronglysclerotised reduced eyes. P. borgesi sp. nov. is weakly pigmented and (black).Female:Posteriorepigynalmarginwithanout- possesses reduced eyes but it is a forest dweller that occurs growth(parmula),anteriorepigynaloutgrowth(scapus) alsoinavolcanicpit(seeFig.3a).TheepigeanP.pygmaeum absent.(M.johnsoni)..................Microlinyphia (Blackwall,1834)isoneoftherarerspecieswhichhavelarge – Male: Embolus wide, weakly sclerotised (transpar- eyes.ThestridulatoryfilesofcoxaI(usuallyweakeronII)is ent). Female: Epigyne with a larger free opening anapomorphiccharacterofPorrhomma;suchfilesarestrongly (Porrhomma) or with a large scapus as in Fig. 8c reducedorevenabsentinP.pygmaeum.Theabsence(loss)of (Lepthyphantes)..................................5 stridulatorycheliceralfilesisanotherapomorphiccharacterof 5(4) Metatarsal bristles absent. Lateral cheliceral stridulat- thisgenus. ory files absent but stridulatory files of coxa I present (Fig. 3b). Male-pedipalpus (Fig. 3d): Paracymbium PorrhommaborgesiWunderlichsp.nov.(Fig.3) tooth-less.Female:Epigynewithadistinctfreeopening, scapusabsent.(P.borgesi,aforestspiderwithsmalleyes, Derivationominis Fig.3a).................................Porrhomma ThespeciesisnamedafterPauloBorgeswhodiscoveredthis – Metatarsal bristles present. Lateral cheliceral files andmanyothernewspeciesintheAzores. Islandspiderdiversity 255 Material (bothhaveapalaearcticdistributionandareepigeicspecies) HOLOTYPE Male: Azores, Terceira, Miste´rios Negros B arethemoststronglyrelatedspecies.IncontrasttoP.borgesi (Transect 8), September 1997, pitfall sample ET12 (Alvaro bothhavestronglyreducedstridulatoryfilesofthecocaI-II.P. Vitorino&P.A.V.Borges,leg.);samelocality,butJune1997, pygmaeumhaslargeeyesandiswellpigmented,itspedipalpal 1maleparatype(AlvaroVitorino&P.A.V.Borges,leg.);La- structures are identic, the vulva is different; in P. pallidus, goa do Pinheiro (Transect 10), August 1999, pitfall sample whichalsohasapalecolourandreducedeyes,theembolusis TU09, 1 female paratype (Catarina Melo & P.A.V. Borges, lessbentandthevulvaisverysimilar. leg.);CaldeiradaSerradeSantaBa´rbara(Transect60),July 2001,pitfallsampleTU19,1femaleparatype(P.A.V.Borges Distribution etal.,leg.);AlgardoCarva˜o,25thNovember1999,1subad. Azores:Terceira,PicoandSa˜oMiguel. male paratype (Fernando Pereira & P.A.V. Borges, leg.). All materialisdepositedattheUniversityoftheAzores(‘Arruda TurinyphiaVanHelsdingen,1982 Furtado’Collection). Reviseddiagnosis Diagnosis Leg bristles: Femoral and patellar ones absent, tibia I with Pale spiders, eyes distinctly reduced (Fig. 3a), position of lateralanddorsalbutwithoutventralones,usuallyallmetatarsi the trichobothrium on metatarsus I in 0.4, femoral bristles: withadorsalbristle(accordingtoSchenkel,1938itisabsent I-II bear a dorsal one, I an additional prolateral one. Male- inT.maderiana),thoracalfissurestronglyreducedtoabsent. pedipalpus (Figs. 3c–d) as in P. pygmaeum, embolus fairly Bulbussmall,lamellacharacteristicaabsent,embolussickle- bentandslender,velumindistinct,tipoftheembolusnearto shaped,epigynesimple,withanunfoldedscapus. thedorsalapophysis. Description Typespecies Measurements (in mm): Body length 1.7–1.8 (2.0 in the fe- LinyphiaclairiSimon,1884. male),prosoma:length0.9–0.95,width0.6–0.65,largestdia- meterofanposteriormedianeye0.02,legI:femur0.65,patella Relationships 0.22,tibia0.65,metatarsus0.55,tarsus0.42,tibiaIV0.7. AmemberoftheLinyphiinae.InPlesiophantesHeimer,1981, Colouryellowtolightbrown,withoutdarkenings.–Pro- which JW (see also Wunderlich, 1987) regarded as a senior soma:caputfairlyconvex,withfewhairs,thoracalfissurein- synonymofTurinyphia,abristleoffemurI,abasalhookof distinct,eyes(Fig.3a)smalltotiny,widelyspaced,posterior the chelicerae and a lamella characteristica are present, and medianslargest,lensesoftheanteriormedianeyesabsentor theembolusismoreslender(seeWunderlich,1995,p.413). almost absent. Chelicerae fairly large, stridulatory files ab- InFrontiphantesWunderlich,1987(Madeira)alongthoracal sent,anteriormarginwith3,posteriormarginwith5teeth.– fissureandaprolateralbristleoffemurIarepresent. Legs only fairly long, IV longest, stridulatory files of coxa I (Fig. 3b) well developed. Bristles long, all tibiae bear 2 Distribution dorsally,Ianadditionaldistal-lateralpair,IIasingledistally- Palaearctic: Southern Europe (T. clairi (Simon, 1884)), retrolaterally;femora:seeabove;metatarsibristle-less.Tricho- Madeira (T. maderiana (Schenkel, 1938)) and Azores (T. bothriumabsentonmetatarsusIV,itspositiononmetatarsusI cavernicola Wunderlich sp. nov.); Japan: T. yunohamensis in0.4.–Opisthosomaoval.–Malepedipalpus(Figs.3c–d)as (Bo¨senberg&Strand,1906).Turinyphiaspecies–likeFron- inP.pygmaeum(seeabove),patellawithathindorsalbristle. tiphantes and Plesiophantes – may well be relict taxa and Epigyne (Fig. 3e) with a well visible vulva structures, width palaeoendemics;mostspeciessurvivedinmountainareas,sev- of the opening almost 0.1 mm. Vulva (Fig. 3f) (very similar eralspeciessurvivedonislands. to P. pallens) with large introducing ducts which are touch- ing medially and widely separated primary and secondary TurinyphiacavernicolaWunderlichsp.nov.(Fig.4) receptacula. Material Ecology Mostspecimenswerecollectedbymeansofpitfalltraps,loc- HOLOTYPE, male and 3 juv. paratypes: Azores, Terceira, ateddeepinsideveryhumidlaurelforestsonTerceira,Picoand Algar do Carva˜o, 25th November 1999 (F. Pereira & P.A.V. Sa˜oMiguel.Onespecimenwascapturedinavolcanicpit(Al- Borgesleg.);samelocalitybut19–25November1999,5juv. gardoCarva˜oatTerceira).Inmostsitestheterrainisbasaltic, paratypes(F.Pereira&P.A.V.Borgesleg.);samelocalitybut withasystemofcracksanddeepholesandtheforestflooris 10–16August1999,1juv.paratype(F.Pereira&P.A.V.Borges coveredbyadensecarpetofmossesandfernswithlittlelight leg.);samelocalitybut29December1999to5January2000, reachingtheground.However,somespecimenswerealsocol- 5juv.paratypes(F.Pereira&P.A.V.Borgesleg.).Allmaterial lectedinhighaltitudenaturalgrasslandandinaCryptomeria isdepositedattheUniversityoftheAzores(‘ArrudaFurtado’ japonicaplantationinTerceira. Collection). Relationships Accordingtothechaetotaxyaswellastherelativelyshortlegs, Derivationominis P.pygmaeum(Blackwall,1834)andP.pallidusJackson,1913 Thespeciesisnamedafteritspreferredcavernicoloushabitat. 256 PauloA.V.Borges&JoergWunderlich Figure5 Turinyphiamaderiana(Schenkel,1938)fromMadeira, Male,embolusandconductor(distally)ofther. pedipalpus,ventralaspect;bar=0.05mm. Distribution Figure4 TurinyphiacavernicolaWunderlichsp.nov.,Male;(a) Azores:Terceira. patellaandtibiaofther.pedipalpus,dorsalaspect;(b–c) LINYPHIIDAE:MICRONETINAE paracymbiumofther.pedipalpus,retrodorsaland retrolateralaspect;(d)embolusofther.pedipalpus, AgynetaHull,1911 ventralaspect;bar=0.05mminFig.d,0.1mminthe WeregardAgynetainawidesense,includingMeionetaHull, remainingFigs. 1920. The intraspecific body colour is very variable in this genus. Four species of this genus were reported earlier from Diagnosis(male;femaleunknown) theAzores,afifthspeciesisdescribedbelow. Pale spiders with long legs and large eyes. Male pedipalpus KeytotheAzoreanspeciesofAgyneta: (Fig4):tibiawithasingletrichobothriumonly,paracymbium withatooth-shapeddistalhook,embolusbasallywide. 1 Position of the trichobothrium on metatarsus I near the end of the article, in c. 0.9. A widely spread Description(male) species...................................A.decora Measurements (in mm): Body length 2.0, prosoma: length – Position of the trichobothrium on metatarsus I in the 0.95,width0.85,legI:femur1.8,patella0.35,tibia1.7,meta- basalhalf........................................2 tarsus1.75,tarsus1.05,tibiaIV1.5. 2(1) GenitalorgansasinFig.6,cymbiumnotelevated....A. Colour of prosoma and legs pale, yellow, sternum and depigmentatasp.nov. opisthosoma(moredistinctdistally)mediumgrey;blackpig- – Genital organs different, cymbium elevated (e.g. ment around the eye lenses. – Thoracal fissure absent, eyes Fig.7)...........................................3 large,posteriorrowrecurved,posteriormedianeyesseparated 3(2) Male: lamella characteristica wide, dorsally strongly by 0.4 diameters. Chelicerae slender and slightly diverging, convex. Female: pedipalpus: femur and patella light in lateralfilesfairlydistinct,anteriormarginwith3largeteeth, contrast to the black tarsus and tibia. A widespread posterior margin smooth. – Legs long and slender; bristles species..................................A.rurestris thin,femora,patellaeandtarsibristle-less,tibiaewith2dorsal – Male: Lamella characteristica more slender. Female: bristles,Iwithanadditionaldistalpair,II–IVbeararetrolat- pedipalpusunicoloured............................4 eral one in the distal half. Trichobothrium on metatarsus IV 4(3) Male:basalcymbialoutgrowthundivided,lamellachar- absent, its position on metatarsus I in 0.15. – Opisthosoma acteristica fairly slender, apically claw-shaped. Fe- slender,coveredwithshorthairs.–Malepedipalpus(Fig.4; male: epigynal scapus wider than long. A widespread seeabove)patellashort,withalongerbristle,tibiafairlyshort, species...............................A.fuscipalpis withasingletrichobothrium. – Male:basalcymbialoutgrowthbilobed(Fig.7),lamella characteristica slender, apically not claw-shaped. Fe- Ecology male:epigynalscapusaswideaslong(seeWunderlich, Allspecimensareknownfromasinglevolcanicpit,Algardo 1992:Figs.376,378)......................A.rugosa Carva˜oinTerceira.Thespeciesbuildswebsacrosssmallholes Agyneta(Meioneta)depigmentataWunderlichsp.nov. involcanicbasalticrock. (Fig.6) Relationships Material InT.maderianaandT.clairithetibiaofthemalepedipalpus HOLOTYPE,maleand3juv.paratypes:Azores,Flores,Morro bear3trichobothria;inT.clairithepedipalpaltibiaislonger Alto Este (Transect 8) July 1999, pifall sample T29 (Clara than the cymbium, in T. maderiana metatarsal bristles are Gaspar&P.A.V.Borgesleg.);samelocalityanddatebutpifall absent,inbothspeciestheparacymbiumiselongatedbasally. sampleT27,1femaleparatype(ClaraGaspar&P.A.V.Borges EmbolusofT.maderiana:Fig.5. leg.);RibeiradaFazenda(Transect4)July1999,pitfallsample Islandspiderdiversity 257 Figure7 AgynetarugosaWunderlich1992,Male:(a)tibiaand cymbiumofther.pedipalpus,dorsalaspect;(b)cymbium ofther.pedipalpus,prolateralaspect;bar=0.1mm. Figure6 AgynetadepigmentataWunderlichsp.nov.,Male:(a)tibia Ecology ofther.pedipalpus,dorsalaspect;(b)cymbiumofther. pedipalpus,prolateralaspect;(c)lamellacharacteristicaof ThespidersliveinnativeJuniperusbrevifoliaforestwiththe ther.pedipalpus,retrolateral-ventralaspect;(d)female, soil covered with dense Sphagnum spp. mire, in the higher epigyne;bar=0.1mm. altitude central plateau of Flores island. It is also common in high altitude natural grassland dominated by native and TU03, 2 females paratypes (Clara Gaspar & P.A.V. Borges endemicvascularplantsandalsobryophytes. leg.);samelocalityanddate,butpitfallsampleET10,1male withoutopisthosomaparatypeand3juveniles(ClaraGaspar& Distribution P.A.V.Borgesleg.);samelocalityanddate,butpitfallsample Azores:Flores. TU11, 1 female paratype and 5 juveniles (Clara Gaspar & P.A.V.Borgesleg.).AllmaterialisdepositedattheUniversity AgynetarugosaWunderlich,1992(Fig.7) oftheAzores(‘ArrudaFurtado’Collection). Material Azores:Faial,Cabec¸odoFogo(Transect2),September1999, Derivationominis Pitfall sample TU03; 1 male (P.A.V. Borges et al. leg.). De- Thespeciesnameisbasedonitspale(depigmented)colour. positedattheUniversityoftheAzores(‘ArrudaFurtado’Col- Diagnosis lection). Pale(depigmented)spiders,positionofthetrichobothriumon metatarsusIinc.0.4.Male:pedipalpus(Figs.6a–c):nocym- Remarks bial outgrowth, bulbus small, lamella characteristica three- (1) In contrast to the type material, the colour of the speci- pointed. Female: epigyne small, as in Fig. 6d, only slightly men from Faial is pale light grey, and a light spot above the protruding. spinneretsisabsent.(2)Malepedipalpaltibiaandcymbium: seeFigs.7a–b.(3)Thespeciesmaybemorecloselyrelatedto Description EuropeanthantoNorthAmericanspecies. Measurements (in mm): body length: male 1.1, female 1.7; prosoma(male,female):Length0.65,width0.55,legI(male): Ecology femur0.65,patella0.2,tibia0.68,metatarsus0.53,tarsus0.42, CollectedinapitfalltrapwithTURQUINattractantinasec- tibiaIV0.7;female:tibiaI0.68,tibiaIV0.7. ondaryJuniperusbrevifolia–Ericaazoricanativeforest. Colourpale(depigmented),eyeregion,sternumandopis- thosoma ventrally dark grey, female pedipalpus yellow. Pro- Distribution soma with an indistinct thoracal fissure, eyes large, as in A. Azores:Sa˜oMiguelandFaial(newtoFaial). rugosa Wunderlich, 1992. Male chelicerae diverging but not excavatedmedially;anteriormarginwith4–6teeth,posterior Lepthyphantes(Palliduphantes)cf.schmitziKulczynski, marginwithfewsmallteeth.Femalepedipalpusslender.Legs 1899(Fig.8) slender,bristlesasinA.rugosaexcepttheretrodistaloneon Material metatarsusIVwhichisabsent.Trichobothriumonmetatarsus Ac¸ores:Flores,nearSantaCruz,2femaleJWleg.inVII,coll. IVabsent,itspositiononmetatarsusIin0.4–0.43.Malepedip- JW. alpus (Figs. 6a–c): cymbial outgrowth absent, paracymbium toothless,bulbussmall,lamellacharacteristicathree-pointed. Remark Epigyne as in Fig. 6d, scapus small, fairly wide and only slightlyprotruding. The determination of the Azorean specimens is unsure (see Wunderlich, 1992, p. 22). JW does not want to exclude the Relationships possibilitythatthesefemalesaremembersofanasyetundes- IntheEuropeanA.(Meioneta)mollis(O.Pickard-Cambridge) cribedendemicAzoreanspecies.Epigyneinthreeaspects:see thelamellaandtheepigynalscapusareslender/narrow. Figs8a–c. 258 PauloA.V.Borges&JoergWunderlich Figure9 Diplocentriabidentata(Emerton,1882)(Linyphiidae: Erigoninae)fromEurope,leftlungcover(L)with stridulatoryfilesandastridulatorytoothontheleftIVcoxa (Z)similartotheAzoreangenusAcorigoneWunderlich gen.nov.TakenfromWiehle(1960,fig.787). Relationships AccordingtothegenitalstructuresErigoneAudouin(cosmo- political)andEperigoneCrosby&Bishop(NearcticRegion) maybemostcloselyrelated.Inthesegenerastridulatoryfiles ofthelungcoversareabsent,theclypeusislong,denticlesof theprosomalmargin,thecheliceraeandthepedipalpalfemur areusuallypresentatleastinErigone,andthereisusuallya pedipalpalpatellaroutgrowthinErigone.InDiplocentriaHull Figure8 Lepthyphantes?schmitziKulczynski,1899,Female, –inwhichstridulatoryfilesarepresentonthelungcovers(Fig. epigyne,ventral(a)posterior(b)andlateralaspect(c); 9)asinAcorigone–theshapeoftheparacymbiumandthebul- bar=0.2mm. busstructuresarequitedifferenttoAcorigone;apparentlytheir coxal-opisthosomalstridulatoryorgansevolvedconvergently. Distribution Distribution Azores,allislandsexceptCorvo(newtoSa˜oJorgeandSanta Azores. Maria). AcorigonezebraneusWunderlichsp.nov.(Fig.10) LINYPHIIDAE:ERIGONINAE Material AcorigoneWunderlichgen.nov HOLOTYPE male: Azores, Sa˜o Jorge, Topo (Transect 12), Diagnosis August2000,pitfallsampleTU05(P.A.V.Borgesetal.,leg.); MalewithastridulatoryorganbetweencoxaeIVandlungcov- samelocalityanddate,butpitfallsampleTU25,1femalepara- ersasinDiplocentriaHull,1911(similartoFig.9).Prosoma type(P.A.V.Borgesetal.,leg.).DepositedattheUniversityof low(clypeusshort),cheliceraelarge,anteriormarginwithlong theAzores(‘ArrudaFurtado’Collection). teeth(Fig.10b).Sequenceofthetibialbristles2/2/2/1.Tricho- bothrium on metatarsus IV present (A. zebraneus sp. nov.) Derivationominis orabsent(A.acoreensis,newcombination).Malepedipalpus Thespeciesisnamedbasedonmarkingsoftheopisthosoma, (Figs 10c–f): tibia with a ventral apophysis, cymbium with displaying a distinct yellow dorsal pattern with dark grey distal bristles, embolus short. The epigyne (Figs 10g–j) is a stripes. wideplate. Diagnosis Typespecies Prosomal length 0.7–0.75 mm, trichobothrium present on Acorigone zebraneus gen. nov. et sp. nov. Further species: metatarsus IV, its position on metatarsus I in 0.9, male- Acorigoneacoreensis(Wunderlich,1992). pedipalpusasinFigs10c–f,epigyneasinFigs10g–j.

Description:
Pedipalpus (Figs 2c, d): the tibia is the thickest article, the embolus is eight species are described as new to science in this paper belong to this
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.