ebook img

Spectrum and mass anomalous dimension of SU(2) gauge theories with fermions in the adjoint representation: from $N_f=1/2$ to $N_f=2$ PDF

0.31 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Spectrum and mass anomalous dimension of SU(2) gauge theories with fermions in the adjoint representation: from $N_f=1/2$ to $N_f=2$

Spectrum and mass anomalous dimension of SU(2) gauge theories with fermions in the adjoint representation: from N = 1/2 to N = 2 f f Georg Bergner ∗ 7 Friedrich-Schiller-UniversityJena,InstituteofTheoreticalPhysics, 1 0 Max-Wien-Platz1,D-07743Jena,Germany 2 E-mail: [email protected] n a Pietro Giudice, Gernot Münster J UniversitätMünster,InstitutfürTheoretischePhysik, 1 Wilhelm-Klemm-Str. 9,D-48149Münster,Germany 3 E-mail: [email protected], [email protected] ] t Istvan Montvay a l DeutschesElektronen-SynchrotronDESY, - p Notkestr. 85,D-22603Hamburg,Germany e E-mail: [email protected] h [ Stefano Piemonte 1 UniversitätRegensburg,InstituteforTheoreticalPhysics, v D-93040Regensburg,Germany 2 9 E-mail: [email protected] 9 8 We summarize our results concerning the spectrum and mass anomalous dimension of SU(2) 0 . gaugetheorieswithvariousnumbersoffermionsintheadjointrepresentation,whereeachMajo- 1 0 ranafermioncorrespondseffectivelytohalfaDiracflavourN . Themostrelevantexamplesfor f 7 extensionsofthestandardmodelaresupersymmetricYang-Millstheory(N =1/2)andMinimal 1 f : WalkingTechnicolour(N =2). Inadditiontothesetheorieswewillalsoconsiderthecasesof v f i N =1 and N =3/2. The results comprise the particle spectrum of glueballs, triplet and sin- X f f gletmesons,andpossiblefractionallychargedspinhalfparticles. Inadditionwewilldiscussour r a recentresultsforthemassanomalousdimension. The34rdInternationalSymposiumonLatticeFieldTheory 24-30July2016 UniversityofSouthampton,UK Speaker. ∗ (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommonsAttribution-NonCommercial-ShareAlikeLicence. http://pos.sissa.it/ LatticesimulationsofadjointQCD GeorgBergner 1. TechnicolourandadjointQCD Gauge theories with fermions in higher representations of the gauge group offer interesting alternativesforextensionsofthestandardmodelofparticlephysicsandforamoregeneralviewon theoreticalproblemsliketheunderstandingoftheconfinementmechanism. Oneofthemostinter- estingexamplesinthiscontextistheadjointrepresentation,sinceitisrelatedtoseveralapproaches to extensions of the standard model, in particular supersymmetry and Technicolour models. They representtheoriesthatareinsomerespectsquitedifferentfromQCD-likeexampleswithfermions inthefundamentalrepresentation. Fromthatperspectivetheyareinterestingfromthemoregeneral theoreticalpointofview. InthisworkwepresentourinvestigationsrelatedtotheWalkingTechnicolourapproachtoex- tensionsofthestandardmodel,see[1,2]forareview. Inthisapproachamorenaturalelectroweak sector is obtained from a new strongly coupled dynamics. The Higgs particle appears as a bound state in this strongly coupled theory. There are severe constraints on Technicolour candidates, since they have to be consistent with the electroweak precision data and still potentially explain thefermionmassesbasedonanextendedTechnicolourtheory. Furthermorealargemasshierarchy between the Higgs particle and so far undiscovered additional bound states has to be explained. One possible explanation is a dynamics that is quite different from QCD due to a near conformal walkingbehaviour. Thismeansthatsuchkindoftheorieshavetobeclosetotheconformalwindow. Theconformalwindowisdefinedbytheappearanceofaninfraredfixedpointoftherunning gaugecoupling. Intheperturbativecalculationstherunningofthegaugecouplingoftheconfining gauge theory gets weaker with an increasing number of fermions N . Above a certain (N ) the f f c runningstopsataninfraredfixedpoint. Increasingthenumberoffermionsevenfurther,asymptotic freedom is lost. The conformal window is defined as the region between (N ) and the loss of f c asymptoticfreedom. Thedeterminationoftheconformalwindowisofgeneraltheoreticalinterestsinceitmarksthe parameter regions for a completely different behaviour of the theory in the infrared. Irrespective of the considered application, it is important to know this behaviour. While the upper end of the conformal window is in the perturbative regime, the lower end can only be determined by non- perturbativemethods. Therehavebeenseveralinvestigationsoftheconformalwindowforfermionsinthefundamen- talrepresentationinascanofseveraltheorieswithdifferentN ,see[3,4,5]forareviewoflattice f results. Inourinvestigationsweconsiderthesameapproachforadeterminationoftheconformal windowinthecaseoffermionsintheadjointrepresentation. Higherfermionrepresentationsallow toapproachthelowerendoftheconformalwindowwithasmallernumberoffermions(N ) . This f c allowstoconstructtheoriesthatmighthavelesstensionswiththeelectroweakprecisiondata. In our numerical investigations on the lattice, a finite mass term is included in the theory, which leads to mass deformed versions of the conformal candidates. In this case the mass is the onlyrelevantparameteratthefixedpoint, whichimpliesthatforsmallmallparticlemassesscale like M m1/(1+γm) with the mass anomalous dimension γm at the fixed point. It also implies that ∼ a signal for conformality are the constant ratios of different particle masses. The value of γ can m be obtained from the scaling of the mass ratios. A more precise measurement is provided by the modenumber,theintegratedeigenvaluedensityoftheDiracoperator[6,7]. Fromtheperspective 2 LatticesimulationsofadjointQCD GeorgBergner of the Walking Technicolour approach, a large anomalous dimension is desirable. It is therefore interestingtostudytheN dependenceofthisquantity. f N = 2 SU(2) adjoint QCD, also called Minimal Walking Technicolour (MWT), has been f studiedinseveralinvestigations[8,9,10,11,12,13]. Itshowsthesignaturesofaconformaltheory and a clear separation between the lightest scalar bound state and the rest of the spectrum. The case of N =1/2, corresponding to SU(2) N =1 supersymmetric Yang-Mills theory, has been f investigated by us in several studies. This theory clearly shows the signals of a theory below the conformalwindow. InmorerecentinvestigationstheN =1casehasbeenconsidered. Inthisshort f reportweaddourresultsforN =2andN =3/2andprovideasummaryofthepropertiesofthe f f differenttheorieswithfermionsintheadjointrepresentation. InourstudiesofsupersymmetricYang-Millstheorytheinvestigationofdifferentinversegauge couplings β turned out to be important. In a QCD-like theory this corresponds to a study of the approachtowardsthecontinuumlimit. Intheconformalcasethisparameterisirrelevantinthenear vicinity of the fixed point. Since we want to investigate all the theories on the same ground, we includeastudyoftheβ-dependenceinourinvestigations. 2. TheexpectedmassspectrumforadjointQCD AdjointQCDinthecontinuumisdefinedbythefollowingaction (cid:34) (cid:35) 1 Nf L =Tr F Fµν+∑ψ¯ (D/+m)ψ , (2.1) µν i i −4 i=1 withthecovariantderivativeforfermionsintheadjointrepresentation D ψ =∂ ψ+ig[A ,ψ]. (2.2) µ µ µ N counts the numberof Dirac fermions, which correspondsto 2N Majorana fermions, sincethe f f adjointrepresentationiscompatiblewiththeMajoranaconditionψ =Cψ¯T. The chiral symmetry breaking pattern, which is different from QCD, is implied by the repre- sentation in terms of Majorana flavours. In adjoint QCD there is a larger chiral symmetry group withthespontaneousbreakingpattern SU(2N ) SO(2N ) (2.3) f f → in the presence of a fermion condensate. The chiral symmetry breaking leads to the appearance of light pseudo-Nambu-Goldstone particle states. A signal for these states can be obtained by the pseudoscalartripletmeson,similartothepioninQCD.Inourcurrentworkthisadjointpionmass is represented by the pseudoscalar mass m . In our simulations we employ a discretisation of PS the theory with a Wilson-Dirac operator including stout-smeared link variables and a tree-level Symanzik-improvedgaugeaction. We study various particle states in the theory. One class are the flavour triplet mesons: the pseudoscalar m , scalarm , vectorm , and pseudovectorm mesons. We have also considered PS S V PV the flavour singlet scalar and pseudoscalar mesons. In addition we study the scalar 0++ glueball, 3 LatticesimulationsofadjointQCD GeorgBergner 1.6 1.4 √σ/mPS √σ/mPS 11..24 msmpinm0−F+V+π21////mmmmPPPPSSSS 1.21 msmpinm0−F+V+π21////mmmmPPPPSSSS mS/mPS mS/mPS 1 mPV/mPS mPV/mPS /mPS 0.8 346284333××666444 /mPS 0.8 M × M 0.6 0.6 0.4 0.4 0.2 0.2 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 amPCAC amPCAC (a) MassesinunitsofmPSatβ =1.5 (b) MassesinunitsofmPSatβ =1.7 Figure1: ThemassesofvariousboundstatesinMWTinunitsofthepseudoscalarmassm . Thetriplet PS mesonsinthescalar(m ),vector(m ),andpseudovector(m )channelareshowntogetherwiththescalar S V PV glueball(m )andthespin1/2particle(m ). Thefigurealsoshowsthepseudoscalardecayconstant 0++ spin1/2 F andthestringtensionσ. π State β =1.5 β =1.7 m 1.0825(58) 1.051(12) V m 1.285(24) 1.190(14) S m 0.620(35) 0.398(48) 0++ m 0.948(24) 0.86394(52) 1/2 Table 1: The mass ratios averaged over a range of PCAC masses for two different β values. The values correspondtothemassesofthetripletvector(m )andtripletscalar(m )mesons,theglueball(m ),and V S 0++ thespin-1/2particle(m )dividedbythetripletpseudoscalarmesonmass(m ). 1/2 PS providing a signal for a possible light Higgs-like state. As an example for more exotic fermion- gluonoperatorsthatarepossibleinadjointQCD,wemeasurethemassobtainedfromthecorrelator ofthespin-1/2operator ∑σ tr[Fµνψ]. (2.4) µν µ,ν 3. ResultsforMinimalWalkingTechnicolourincludingtheβ dependence Our investigation of Minimal Walking Technicolour has now been finalised. We have mea- sured the spectrum and determined the mass anomalous dimension from the mode number. The generalpictureofourresultsisconsistentwithearlierinvestigations[10,13]: theparticlespectrum contains a light scalar particle, namely the 0++ glueball state, while the triplet mesons, including the pseudoscalar meson, are heavier. Hence the spectrum in not consistent with chiral symmetry breaking, which predicts the appearance of light pseudo-Goldstone particles separated from the restofthespectrum. ThemassratiosareapproximatelyconstantasafunctionofthePCACmass, seeFigure1(a)and1(b). 4 LatticesimulationsofadjointQCD GeorgBergner N N β κ γ s t × ∗ 24 64 1.5 0.1325 0.39(3) × 32 64 1.5 0.1335 0.38(1) × 48 64 1.5 0.1344 0.380(10) × 32 64 1.5 0.1350 0.375(4) × average 1.5 0.376(3) 32 64 1.7 0.1285 0.270(15) × 32 64 1.7 0.1290 0.260(20) × 32 64 1.7 0.1300 0.285(15) × average 1.7 0.274(10) Table2: ThisTablecontainstheestimatesforthemassanomalousdimensionγ atthefixedpoint,thatwe haveobtainedfromafitofthemodenumber. Theresultsareobtainedattwodiff∗erentvaluesofβ. In our more detailed investigations we have also added some new states that have not been consideredinearlierinvestiations: thefermionicspin-1/2particle, andtheflavoursingletmesons. The fermion-gluon particle is lighter than the pseudoscalar meson, but considerable heavier than thescalarglueball. Thisobservationisrelevantfromaphenomenologicalpiontoffew,sincethese statesmightleadtofractionallychargedparticles. Weobtainedresultsattwodifferentβ-valuesthataresuperficiallyconsistentwitheachother, asshowninFigure1(a)and1(b). Thesameorderingofthestateswithconstantmassratiosisob- served. Amorecarefulinvestigationofthemassratiosshows,however,asignificantβ dependence of the results. We have averaged the mass ratios over a certain range of the PCAC mass for both valuesofβ. AsshowninTable1,theresultsforbothβ valuesarenotconsistentwitheachother. In particularthescalarglueballatthelargervalueofβ islighterincomparisontom thanatβ =1.5. PS Thisindicatesaremnantβ-dependenceandscalingcorrectionsfortheconformaltheory. We have estimated the mass anomalous dimension γ at the fixed point from our measure- ∗ mentofthemodenumber. Themodenumbercorrespondstotheintegratedspectraldensityofthe Wilson-Dirac operator. Our results at β =1.5 are consistent with [13] (γ =0.371(20)), but for ∗ β =1.7 a considerable smaller γ is obtained, see Table 2. The remnant scaling corrections that ∗ are indicated by these results might also explain the discrepancies between different results in the literature, for example the small γ =0.20(3) obtained with a clover improved Dirac operator in ∗ [12]. 4. NewresultsforN =3/2 f In our most recent simulations we have started an investigation of the theory with three Ma- jorana flavours, corresponding to N =3/2 Dirac flavours. When integrating out an odd number f of Majorana fermions, one obtains, in addition to the usual fermion determinant to the power of N , also the sign of the Pfaffian of the Dirac operator. For our investigations of supersymmetric f Yang-Mills theory we have developed methods to calculate the sign of the Pfaffian, but for our currentparametersthiscontributioncanbeneglected. Wehaveinvestigatedthemassspectrumofthistheoryandfoundthatitisquitesimilartothe N =2case. Thescalarglueballisagainthelighteststateinthetheory,andalsothemasshierarchy f 5 LatticesimulationsofadjointQCD GeorgBergner 1.8 a√σ M 111...2461 a1m6a3saampma×amianm0m−FP+3PVV+π221SS mPS 2.235 mspinmm1−F6VSπ123////×mmmmPPPP32SSSS a 0.8 M/ 1.5 0.6 1 0.4 0.2 0.5 0 0.000000 0.050000 0.100000 0.150000 0.200000 0.250000 0 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 amPCAC amPCAC (a) Massesinlatticeunits (b) Massesinunitsofm PS Figure 2: Mass spectrum of adjoint QCD with N =3/2 Dirac flavours at β =1.5 with the same lattice f actionasfortheN =2investigations,seeFigure1. f Theory scalarparticle γ smallβ γ largerβ ∗ ∗ N =1/2adjQCD(SYM) partofmultiplet – – f N =1adjQCD light 0.92(1) 0.75(4) f ∗ N =3/2adjQCD light 0.40(5) 0.32(5) f ∗ ∗ N =2adjQCD(MWT) light 0.376(3) 0.274(10) f Table 3: The comparison of adjoint QCD with a different number of Dirac fermions N . The table states f the relation of the scalar glueball to the rest of the bound state spectrum and shows the mass anomalous dimension. Theresultsindicatedbya symbolarestillinapreliminarystate. ∗ isthesameinbothcases,seeFigure2(a)and2(b). Themainexceptionthatwehavediscoveredso faristhespin-1/2state: itchangesfromm <m intheN =2casetom <m forN =3/2. 1/2 PS f PS 1/2 f We have done a first preliminary investigation of the mass anomalous dimension from the mode number. For the two different coupling constants that we have currently considered, we obtainavalueofγ =0.40(5)atβ =1.5,andγ =0.32(5)atβ =1.7. Thevaluesarehencelarger ∗ ∗ thanintheN =2case,andapparentlythereareagainsomescalingcorrectionsthatwouldhaveto f beincludedinordertoobtainthefinaluniversalresult. 5. Conclusions: comparisonofN =1/2toN =2 f f Our results can be combined with other findings in order to obtain a more complete general picture for adjoint QCD with various numbers of fermions, see Table 3. The smallest possible numberoffermions,N =1/2correspondstosupersymmetricYang-Millstheory. Thistheoryhas f been considered in our earlier investigations [14]. It is a confining theory with supersymmetric multiplets of bound states. The lightest scalar is necessarily a component of the lightest multiplet andcanhencenotbeseparatedfromtherestofthespectrum. One-flavouradjointQCDhasbeenconsideredin[15]. Evenwiththisrathersmallnumberof fermions, the theory seems to be in the conformal window. The lightest scalar particle is a scalar boundstateandthereisnoclearsignatureofchiralsymmetrybreaking. Ourresultsshowhowthe 6 LatticesimulationsofadjointQCD GeorgBergner mass anomalous dimension consistently decreases with the number of fermions. In addition also thegapbetweenthelightestscalarboundstateandtherestofthespectrumincreases. Thesebounds of the conformal behaviour can also be generalised to different SU(N ) and other representations, c asdetailedin[16]. Acknowledgments ThisprojectissupportedbytheJohnvonNeumannInstituteforComputing(NIC)withgrants ofcomputingtime. WealsogratefullyacknowledgetheGaussCentreforSupercomputinge.V.for fundingthisprojectbyprovidingcomputingtimeontheGCSSupercomputerSuperMUCatLeib- niz Supercomputing Centre. Further computing time has been provided by the computer cluster PALMAoftheUniversityofMünster. References [1] C.T.HillandE.H.Simmons,Phys.Rept.381(2003)235,[Erratum: Phys.Rept.390(2004)553], doi:10.1016/S0370-1573(03)00140-6[hep-ph/0203079]. [2] M.Piai,Adv.HighEnergyPhys.2010(2010)464302,doi:10.1155/2010/464302[arXiv:1004.0176 [hep-ph]]. [3] T.Appelquistetal.,Phys.Rev.D93(2016)114514,doi:10.1103/PhysRevD.93.114514 [arXiv:1601.04027[hep-lat]]. [4] T.DeGrand,Rev.Mod.Phys.88(2016)015001,doi:10.1103/RevModPhys.88.015001 [arXiv:1510.05018[hep-ph]]. [5] D.NogradiandA.Patella,Int.J.Mod.Phys.A31(2016)1643003, doi:10.1142/S0217751X1643003X[arXiv:1607.07638[hep-lat]]. [6] L.Giusti,C.Hoelbling,M.LuscherandH.Wittig,Comput.Phys.Commun.153(2003)31, doi:10.1016/S0010-4655(02)00874-3[hep-lat/0212012]. [7] A.Patella,Phys.Rev.D86(2012)025006,doi:10.1103/PhysRevD.86.025006[arXiv:1204.4432 [hep-lat]]. [8] S.CatterallandF.Sannino,Phys.Rev.D76(2007)034504,doi:10.1103/PhysRevD.76.034504 [arXiv:0705.1664[hep-lat]]. [9] A.Hietanen,J.Rantaharju,K.RummukainenandK.Tuominen,Nucl.Phys.A820(2009)191C, doi:10.1016/j.nuclphysa.2009.01.047 [10] L.DelDebbio,B.Lucini,A.Patella,C.PicaandA.Rago,Phys.Rev.D82(2010)014510, doi:10.1103/PhysRevD.82.014510[arXiv:1004.3206[hep-lat]]. [11] T.DeGrand,Y.ShamirandB.Svetitsky,Phys.Rev.D83(2011)074507, doi:10.1103/PhysRevD.83.074507[arXiv:1102.2843[hep-lat]]. [12] J.Rantaharju,T.Rantalaiho,K.RummukainenandK.Tuominen,Phys.Rev.D93(2016)094509, doi:10.1103/PhysRevD.93.094509[arXiv:1510.03335[hep-lat]]. [13] L.DelDebbio,B.Lucini,A.Patella,C.PicaandA.Rago,Phys.Rev.D93(2016)054505, doi:10.1103/PhysRevD.93.054505[arXiv:1512.08242[hep-lat]]. [14] G.Bergner,P.Giudice,G.Münster,I.MontvayandS.Piemonte,JHEP1603(2016)080, doi:10.1007/JHEP03(2016)080[arXiv:1512.07014[hep-lat]]. [15] A.Athenodorou,E.Bennett,G.BergnerandB.Lucini,Phys.Rev.D91(2015)114508, doi:10.1103/PhysRevD.91.114508[arXiv:1412.5994[hep-lat]]. [16] G.Bergner,T.A.RyttovandF.Sannino,JHEP1512(2015)054,doi:10.1007/JHEP12(2015)054 [arXiv:1510.01763[hep-th]]. 7

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.