DraftversionJanuary14,2015 PreprinttypesetusingLATEXstyleemulateapjv.05/12/14 SPECTROSCOPICANALYSISOFMETAL-POORSTARSFROMLAMOST:EARLYRESULTS Hai-NingLi1,GangZhao1,NorbertChristlieb2,LiangWang1,WeiWang1,YongZhang3,YonghuiHou3,andHailongYuan1 (Received;Accepted) DraftversionJanuary14,2015 ABSTRACT Wereportonearlyresultsfromapilotprogramsearchingformetal-poorstarswithLAMOSTandfollow-up 5 high-resolutionobservationacquiredwith theMIKE spectrographattachedtothe MagellanIItelescope. We 1 performeddetailed abundanceanalysisfor eightobjects with iron abundances[Fe/H] < −2.0, includingfive 0 extremelymetal-poor(EMP;[Fe/H]<−3.0)starswithtwohaving[Fe/H]<−3.5. Amongtheseobjects,three 2 arenewlydiscoveredEMPstars,oneofwhichisconfirmedforthefirsttimewithhigh-resolutionspectralob- n servations.Threeprogramstarsareregardedascarbon-enhancedmetal-poor(CEMP)stars,includingtwostars a withnoenhancementintheirneutron-captureelements,whichthuspossiblybelongtotheclassofCEMP-no J stars;oneoftheseobjectsalsoexhibitssignificantenhancementinnitrogen,andisthusapotentialcarbonand 3 nitrogen-enhancedmetal-poorstar. The[X/Fe]ratiosofthesamplestarsgenerallyagreewiththosereported 1 intheliteratureforothermetal-poorstarsinthesame[Fe/H]range.Wealsocomparedtheabundancepatterns ofindividualprogramstarswiththeaverageabundancepatternofmetal-poorstars, andfindonlyonechemi- ] callypeculiarobjectwithabundancesofatleasttwoelements(otherthanCandN)showingdeviationslarger R than0.5dex.Thedistributionof[Sr/Ba]versus[Ba/H]agreesthatanadditionalnucleosynthesismechanismis S neededasidefromasingler-process.TwoprogramstarswithextremelylowabundancesofSrandBasupport . theprospectthatbothmainandweakr-processmayhaveoperatedduringtheearlyphaseofGalacticchemical h evolution.Thedistributionof[C/N]showsthattherearetwogroupsofcarbon-normalgiantswithdifferentde- p - greesofmixing.However,itisdifficulttoexplaintheobservedbehaviorofthe[C/N]ofthenitrogen-enhanced o unevolvedstarsbasedoncurrentdata. r Subjectheadings:Galaxy:halo—stars: abundances—stars: PopulationII t s a [ 1. INTRODUCTION spectroscopy have been performed to identify various 1 Very metal-poor ([Fe/H]4. < −2.0) and extremely metal- abundance patterns in metal-deficient stars (e.g., Ryanetal. 1996;Laietal.2008;Cohenetal.2008;Norrisetal.2013b). v poor(EMP;[Fe/H] < −3.0)stars arebelievedtopreservein These explorations also resulted in the discovery of a va- 2 theiratmospheresdetailedinformationconcerningthechem- 6 ical compositionsof the interstellar medium at the time and riety of unusual peculiarities in elemental abundances in 0 place thattheywere born. These objectsare expectedto of- metal-poor stars, such as large enhancements in carbon and 3 ferusadirectviewintotheearliestphasesoftheevolutionof nitrogen relative to iron and the abundance ratios seen in 0 theGalaxy,theformationofthefirstgenerationofstars,and the Sun; enhancement of α elements; and neutron-capture . elements (Aokietal. 2007; Polsetal. 2012; Aokietal. 1 the earliest nucleosynthesis events (McWilliametal. 1995; 2013; Placcoetal. 2013). The ever-increasing sample size 0 Norrisetal. 1996; Beers&Christlieb 2005; Frebel&Norris of metal-poor halo stars and the enrichment history of 5 2013). Precise analysis of the chemical composition of the Galactic halo have gradually been revealed through 1 metal-poor stars enables us to indirectly probe the range statistical investigations in the low-metallicity region of the : of supernova nucleosynthesis yields in the early Galaxy v metallicity distribution function (MDF; Carolloetal. 2007; (Heger&Woosley 2010; Nomotoetal. 2013, and reference i Scho¨rcketal.2009;Lietal.2010;Yongetal.2013b). X therein), and to ultimately constrain the primordial nucle- Recent studies using an increasing number of metal-poor osynthesis of cosmological models as well (for details, see r stars have made it clear that there exists a large fraction a Bromm&Yoshida2011). in such stars with significant enhancements of carbon, i.e., Ever since the discovery of metal-poor stars by carbon-enhancedmetal-poor(CEMP)stars. Thefrequencyof Chamberlain&Aller (1951), numerous efforts have been CEMP stars is suggested to increase with decreasing metal- devoted to related fields and remarkable progress has been licity (Cohenetal. 2005; Lucatelloetal. 2006; Carolloetal. achieved. To explore the nature of the first generation of 2012;Spiteetal.2013;Yongetal.2013b). Largersamplesof stars, detailed abundance analyses based on high-resolution CEMPstarsalsoindicatedifferenttypesofchemicalpatterns, mainlyincludingfoursub-classesdefinedbasedontheabun- [email protected],[email protected] 1Key Lab of Optical Astronomy, National Astronomical Observato- dances of the neutron-capture elements (Beers&Christlieb ries,ChineseAcademyofSciences,A20DatunRoad,Chaoyang,Beijing 2005): CEMP-s (enhanced in s-process elements), CEMP- 100012,China r (enhanced in r-process elements), CEMP-rs (enhanced in 2Zentrum fu¨r Astronomie der Universita¨t Heidelberg, Landesstern- both s-andr-processelements),andCEMP-no(noenhance- warte,Ko¨nigstuhl12,D-69117Heidelberg,Germany 3NanjingInstituteofAstronomicalOptics&Technology,NationalAs- ment in neutron-capture elements). This diversity in chem- tronomicalObservatories,ChineseAcademyofSciences,Nanjing210042, istrysuggestsdifferentsitesofcarbonproductionintheearly China Galaxy,anddetailedanalysesoftheelementalabundancesof 4Thenotationof[A/B]=log(NA/NB)⋆−log(NA/NB)⊙isusedhere,where CEMPstarsallosustounderstandthenatureoftheirprogen- NAandNBarethenumberdensitiesofelementsAandBrespectively,and⋆ itorstars. and⊙refertothestarandtheSunrespectively 2 Lietal. As a key to all these investigations, the number of metal- thesurveyefficiency. Therefore,weareusingthisfacilityto poor stars has been tremendously increased by recent wide- furtherincreasethenumberofmetal-poorstars. angle sky surveys, including the HK survey (Beersetal. Thispaperis organizedasfollows. Observationsand data 1992) and the Hamburg/ESO survey (HES; Christliebetal. reduction are addressed in Section 2. The determination of 2008), and more recently using data from the Sloan Dig- stellar parameters and abundance analysis are described in ital Sky Survey (Yorketal. 2000) and the Sloan Exten- Section3. Theinterpretationsanddiscussionsofthederived sion for Galactic Understanding and Exploration (SEGUE; elemental abundances including comparisons with literature Yannyetal. 2009; Rockosietal. 2009), as well as the valuesarepresentedinSection4. Theconclusionsaregiven SkyMapper Telescope (Kelleretal. 2007) using the novel inSection5. photometricfiltersystem. Subsequently, high-resolution spectroscopic research has 2. TARGETSELECTIONANDOBSERVATION been performed for the metal-poor stars found in these Sample stars were selected from the low-resolution surveys (e.g., McWilliametal. 1995; Norrisetal. 2001; database (R = 1800)spectra acquiredwith LAMOST. After Cohenetal.2004;Barklemetal.2005).Studiesoflargesam- robust estimation of stellar parameters and selection of can- pleshavebeenconducted,includingthe“FirstStars”project didates using LAMOST data, high-resolution(R ∼ 35,000) (Cayreletal. 2004; Bonifacioetal. 2009), the “0Z project” spectroscopy was obtained for eight interesting objects with (Cohenetal. 2011), “The Most Metal-Poor Stars” project Magellan/MIKE to carry out detailed abundance analysis of (Norrisetal. 2013a; Yongetal. 2013a), and the “Extremely thesestars. Metal-Poor Stars from SDSS/SEGUE” (Aokietal. 2013) project. Theseeffortshaveresultedindetailedinvestigations 2.1. Low-resolutionSpectroscopicObservationwith of the abundances of more than 200 EMP stars, including LAMOST twohypermetal-poor(HMP)starsHE1327−2326([Fe/H]= Our study is based on the first data release of the LAM- −5.4,Frebeletal.2005)andHE0107−5240([Fe/H]=−5.3, OSTsurveywhichwasinternallyreleasedafterthefirstyear Christliebetal. 2002), and J0313−6708, a star at [Fe/H] < of LAMOST survey operations. The wavelength coverage −7.1whichissuspectedtohavebeenpre-enrichedbyasingle (3700–9100Å)andresolvingpower(R=1800)oftheLAM- supernova(Kelleretal.2014). OST spectraallow a robustestimationof the stellar parame- These surveys and follow-ups have not only identified ters, includingmetallicities. Threeindependentmethodsare chemicallypeculiarlow-metallicityobjectsandmadeitpos- usedtodeterminethemetallicityofanobject. sible to explorethe evolutionof the Galactic haloin a much Thefirstmethodisanapplicationofanupdatedversionof more detailed and systematic manner, but have also led to the methods described by Beersetal. (1999), which obtain a number of debates. Recent discoveries of more EMP stars with [Fe/H] < −3.5 (Yongetal. 2013a; Placcoetal. [Fe/H] by makinguse of the Ca II K line indexKP measur- ingthestrengthofthislineandtheHP2indexmeasuringthe 2014)haveenabledustodeterminemoreaccuratelythelow- strengthoftheH line.Thismethodhasalsobeenadoptedby metallicitytailoftheMDFoftheGalactichalo. Itwasfound δ previousinvestigationssuchasScho¨rcketal.(2009)towhich that the sharp cutoff at [Fe/H] ∼ −3.6 previously observed wereferthereaderfordetails. in HES data (Scho¨rcketal. 2009; Lietal. 2010) is proba- Theothertwomethodsmakeuseofagridofsyntheticspec- bly an artifact caused by small number statistics, and that tra.Thesespectrawerecomputedbyusingthesynthesiscode the MDF in fact smoothly decreases at least down to ap- SPECTRUM (Gray&Corbally 1994), starting from the AT- proximately [Fe/H] ∼ −4.1 (Yongetal. 2013b). With ex- LAS9gridofstellaratmosphericmodelsofCastelli&Kurucz tendedsamplesofEMPstars,Placcoetal.(2014)alsoraises (2003)withlinearinterpolationinthreedimensions,i.e.,T , doubts about the cutoff of the abundance ratio of [Sr/Ba] eff logg,and[Fe/H]. Amicroturbulencevelocityof2kms−1was at about [Fe/H] ∼ −3.6, which was previously pointed out adopted for all of the spectra. The line list and atomic data by Aokietal. (2013). All of these unsolved questions ur- gently require additional EMP stars, especially objects with were taken from SPECTRUM 6. The synthetic spectra have a [Fe/H]<−3.5,tobetterunderstandthetruthandtherealpic- resolution of 0.01Å, covering 4000K ≤ Teff ≤ 9000K in tureoftheearliestphasesofGalacticchemicalevolution. steps of 250K, 0.0 ≤ logg ≤ 5.0 in steps of 0.5dex, and TheLargeskyAreaMulti-ObjectfiberSpectroscopicTele- −4.0 ≤ [Fe/H] ≤ −0.5 in steps of 0.5dex. Considering the scope (LAMOST, also known as the Wang-Su Reflecting factthatwearesearchingforcandidatemetal-poorstars, the SchmidtTelescopeortheGuoshoujingTelescope)5 isanew [α/Fe]was set to +0.4dex, which is the typicalvalue in this type of wide-field telescope with a large aperture (Cuietal. [Fe/H]region(e.g.,McWilliam1997). 2012). LAMOST started its pilot survey in 2010 (Luoetal. Thesecondmethodusescomparisonsoflineindices.Based 2012), and has conducted a five year regular survey since onthemostup-to-datewavelengthdefinitionsofLickindices 2011. The combination of a large aperture (4m) and high 7,wehavecalculatedcorrespondingindicesforallofthesyn- multiplex factor (4000 fibers) with a 5◦ field of view makes theticspectra,resultinginalineindexgridcoveringthecor- it a uniquefacility. Its special designand highspectrum ac- responding space of stellar parameters. The same series of quiring rate allow LAMOST to efficiently carry out system- indices are then calculated for each observed spectrum, and atic spectroscopic surveys of the various stellar components compared with this synthetic grid to find the best match of oftheGalaxy(Zhaoetal.2006,2012),includingmetal-poor parameters. stars. Furthermore,withthelow-resolution(R = 1800)spec- Thethirdmethodthatweadoptisbasedonadirectcompar- troscopicdatafromLAMOST,itispossibletoreliablyiden- isonofthenormalizedobservedfluxwiththenormalizedsyn- tifymetal-poorstarsinsurveymode,thusevidentlyenhancing theticspectrainthewavelengthrange4500Å≤ λ ≤ 5500Å. 5 See http://www.lamost.org/public/ for more detailed informa- 6http://www.appstate.edu/grayro/spectrum/spectrum.html tion,andtheprogressoftheLAMOSTsurveys. 7http://astro.wsu.edu/worthey/html/index.table.html 3 TABLE1 LogoftheMagellan/MIKEobservations. ID R.A. Decl. r Date Exptime S/N vr (mag) (s) (pixel−1) (kms−1) LAMOSTJ0006+1057 000617.20 +105741.8 12.59 2013Dec 2700 86 −281.6 LAMOSTJ0102+0428 010212.66 +042824.2 10.87 2013Aug 360 72 −201.3 LAMOSTJ0126+0135 012658.58 +013515.4 12.30 2013Dec 1800 75 −197.3 LAMOSTJ0257−0022 025706.93 −002233.7 14.97 2013Aug 1890 48 2.7 LAMOSTJ0326+0202 032653.88 +020228.1 11.55 2013Dec 1200 106 121.2 LAMOSTJ0343−0227 034322.87 −022756.1 13.43 2013Dec 2400 62 −4.3 LAMOSTJ1626+1721 162614.78 +172112.1 14.29 2013Aug 1300 56 −177.1 LAMOSTJ1709+1616 170959.79 +161613.3 13.13 2013Aug 900 43 −324.2 Note.—TheS/Nratioperpixelwasmeasuredatλ∼4500Å. TABLE2 EquivalentwidthMeasurementsandLine-by-lineAbundances. J0006+1057 J0102+0428 J0126+0135 J0257−0022 Ion λ χ loggf W logǫ(X) σ W logǫ(X) σ W logǫ(X) σ W logǫ(X) σ (Å) (eV) (mÅ) (mÅ) (mÅ) (mÅ) NaI 5889.95 0.00 0.108 134.7 3.05 0.09 186.1 3.69 0.09 146.3 2.86 0.11 ... ... ... NaI 5895.92 0.00 −0.194 ... ... ... 155.8 3.50 −0.09 112.7 2.65 −0.11 ... ... ... MgI 3829.35 2.71 −0.208 ... ... ... 198.4 5.36 0.12 134.0 4.38 −0.07 119.7 5.30 −0.17 MgI 4167.27 4.35 −0.710 ... ... ... 52.8 5.15 −0.09 ... ... ... ... ... ... MgI 4702.99 4.33 −0.380 61.5 4.95 −0.05 69.8 5.03 −0.22 26.7 4.26 −0.19 45.1 5.49 0.02 MgI 5172.68 2.71 −0.450 ... ... ... 211.2 5.36 0.12 161.7 4.49 0.04 117.1 5.40 −0.07 MgI 5183.60 2.72 −0.239 187.8 5.10 0.09 230.4 5.37 0.13 178.9 4.56 0.11 syn 5.55 0.08 MgI 5528.40 4.34 −0.498 ... ... ... 80.4 5.25 0.01 ... ... ... 43.5 5.59 0.12 AlI 3943.99 0.00 −0.640 ... ... ... 154.4 3.56 −0.08 syn 2.27 0.08 60.6 3.43 −0.02 AlI 3961.52 0.01 −0.340 112.5 2.61 0.05 182.4 3.72 0.08 syn 2.12 −0.08 77.3 3.46 0.02 SiI 3905.52 1.91 −1.092 ... ... ... 203.1 5.22 0.09 ... ... ... 127.2 5.80 0.07 SiI 4102.94 1.91 −3.140 61.9 4.72 0.03 85.3 5.05 −0.09 61.9 4.47 0.03 ... ... ... Note. —Thethree columns foreach objects refertothemeasuredequivalent width, corresponding abundance inlogǫ(X), andtheuncertainty causedbythe equivalentwidthmeasurement.The“syn”indicatesthattheabundancehasbeenderivedusingspectralsynthesis. (Thistableisavailableinitsentiretyinamachine-readableform.) Theχ2 minimizationtechniqueofLeeetal.(2008)isusedto ForJ0326+0202,high-resolutionobservationandabundance findthebest-matchingsetofparameters. analysis have been performed as described in Holleketal. Taking into account the typical uncertainty of ∼ 0.1 – (2011), and we include this object for comparison purpose. 0.3dexfor metallicitiesderivedfromlow-resolutionspectra, For the latter object, J0126+0135, since there has been no an objectis regardedas an EMPcandidateif it is within the high-resolution observation to confirm this object, we have temperaturerange4000K<T <7000K,andifatleasttwo alsoincludeditintoourtargetlist. eff of the three methods described above yield [Fe/H] ≤ −2.7. The setup of the observationsincluded a 0.7 slit with 2× ¨ The constraint on T is adopted to exclude low-luminosity, 2 and 1 × 2 binning CCD readout modes (used for the two eff foregroundlate-typestarsbelongingtothediskpopulation(s), runsrespectively),yieldingresolvingpowersofR∼35,000in and to ensure that only stars redward of the main-sequence the blue spectral range (3300 — 4900Å) and R ∼28,000 in turnoffforstarswithagesof∼ 13Gyr(aspredictedbytheo- theredspectralrange(4900—9400Å).Thespectrahavean reticalisochrones)enterthesample.Thespectraoftheabove averagesignal-to-noiseratioperpixelofS/N ∼75at4500Å. automatically selected candidates were visually inspected to Moreinformationabouttheobservations,aswellasthetarget removefalse positives such as coolwhite dwarfs, or objects coordinatesandmagnitudes,arelistedinTable1. thatwereselectedbecausetheirspectraweredisturbedbyre- The raw data were reducedwith the standard IRAF 8 pro- ductionartifacts. cedurestoobtain1Dspectrathatareflat-fielded,wavelength- 2.2. High-resolutionSpectroscopywithMagellan/MIKE calibrated, co-added,and continuum-normalized. The radial velocities were obtained using the IRAF procedure fxcor, ForeightofcandidatesselectedasdescribedinSection2.1, employingasyntheticspectrumwithlow-metallicityasatem- high-resolution spectra were acquired during two runs in plate. 2013Augustand2013December,withtheMagellanInamori Equivalentwidthswere measuredby fitting Gaussian pro- KyoceraEchellespectrograph(MIKE;Bernsteinetal.2003) at the Magellan-Clay Telescope at Las Campanas Observa- 8 IRAF is distributed by the National Optical Astronomy Observatory, tory. Among these objects, J0126+0135 and J0326+0202 whichisoperatedbytheAssociationofUniversitiesforResearchinAstron- werepreviouslyselectedfromHES(Frebeletal.2006),also omy,Inc.,undercooperative agreementwiththeNationalScienceFounda- known as HE 0124−0119and HE 0324+0152, respectively. tion. 4 Lietal. TABLE3 AdoptedStellarParametersoftheProgramStars. MIKEMeasurements LAMOSTMeasurement ID Teff logg [Fe/H] ξ Teff logg [Fe/H] (K) (km−1) (K) LAMOSTJ0006+1057 4520 0.6 −3.26 2.2 4800 1.6 −3.03 LAMOSTJ0102+0428 4540 0.6 −2.75 2.5 4940 1.2 −2.78 LAMOSTJ0126+0135 4330 0.1 −3.57 2.8 4810 1.2 −3.15 LAMOSTJ0257−0022 6330 4.2 −2.24 1.5 6260 3.6 −2.65 LAMOSTJ0326+0202 4700 1.1 −3.36 1.8 4830 1.8 −3.15 LAMOSTJ0343−0227 4790 1.5 −2.42 2.0 4795 1.8 −2.57 LAMOSTJ1626+1721 5930 3.6 −3.20 1.6 5830 3.4 −3.00 LAMOSTJ1709+1616 5780 3.5 −3.71 1.9 6070 3.0 −3.33 filestoisolatedatomicabsorptionlinesbasedonthelinelist of Frebeletal. (2013), supplemented with K I, Mn I, and Y II linesfromPlaccoetal. (2014). Table1 showsthemea- surementsofthe adoptedatomiclinesforallofthe program stars. Figure 1 compares our measured equivalent widths 40 ) ofJ0326+0202with thosemeasuredbyHolleketal. (2011). ek Thereisameandifferenceof−0.6mÅwithσ = 3.4mÅbe- ll 20 o tweenourmeasurementsandthoseofHolleketal.(2011)for H linesincludedinouranalysis. - 0 s i 3. STELLARPARAMETERSANDABUNDANCE th -20 ( ANALYSIS W Forourabundanceanalysis,we use1Dplane-parallel,hy- E -40 drostatic model atmospheres of the ATLAS NEWODF grid 4000 5000 6000 of Castelli&Kurucz (2003), assuming a mixing-length pa- Wavelength (Angstrom) rameter of α = 1.25, no convective overshooting, and MLT local thermodynamic equilibrium. We use an updated ver- sion of the abundanceanalysis code MOOG (Sneden 1973), 200 whichtreatscontinuousscatteringasasourcefunctionwhich ) sums both absorptionand scattering rather than true absorp- 11 0 tion(Sobecketal.2011). 2 150 We adopt the photospheric Solar abundances of . l Asplundetal. (2009) when calculating the [X/H] and a [X/Fe]abundanceratios. et 100 k 3.1. AtmosphericParameters le l TheeffectivetemperaturesTeff ofthestarsweredetermined (Ho 50 by minimizing the trend of the relationship between the de- W rived abundancesand the excitation potentials of Fe I lines. E Previous investigations and experience have shown that this 0 procedure yields effective temperatures with systematic off- 0 50 100 150 200 setscomparedtothosedeterminedfrome.g.,broadbandopti- EW (this work) calandinfraredphotometry. Based onaliteraturesampleof metal-poorstars,Frebeletal.(2013)derivesalinearrelation betweenthespectroscopicandphotometriceffectivetempera- Fig.1.—ComparisonoftheequivalentwidthsofJ0326+0202,respectively, tures,andthisrelationcanbeusedtocorrectsuchsystematic measuredbythisworkandHolleketal.(2011).Top:residualsoftheequiv- alentwidths(thiswork-Hollek)vs.thewavelength.Bottom:directcompar- deviations. Therefore,wehaveadoptedthiscorrectiontoob- isonofthetwomeasurementsoftheequivalentwidths. Theone-to-oneline tainthefinaleffectivetemperaturesofoursample. isplottedforreference. Microturbulentvelocitiesξweredeterminedfromtheanal- ysisofFe I lines, byforcingtheironabundancesofindivid- uallinestoexhibitnodependenceonthereducedequivalent no Fe II lines could be detected in their spectra. Therefore, widths.ForobjectsthathaveasufficientnumberofFeIIlines we resorted to the theoretical isochrones of Demarqueetal. detected, the surface gravity logg was determined by min- (2004)toestimatethesurfacegravitiesfortheseobjectsgiven imizing the difference between the average abundances de- their temperaturesand metallicities. Isochroneswith an age rivedfromtheFeIandFeIIlines. of 13Gyr were adopted, and all three parameters (i.e., Teff, However,therearetwoobjectsatlowmetallicities,namely logg, ξ) were iterated until convergence was reached, i.e., J1626+1721 and J1709+1616, for which only spectra of with the derivedsurfacegravity, the “zero”slope canbe ob- lower-than-average S/N are available; therefore only one or tained for derived abundances versus excitation potentials, 5 and abundances versus EWs, for corresponding T and ξ. presented in the left panels of Figure 3. The molecular line eff Forthesetwoobjects, twosolutionsofsurfacegravitycould data for the spectrum synthesis were taken from the Kurucz be deduced from the theoretical isochrones for each set of database. 9 Thelinebroadeningwasdeterminedusingasin- temperature and metallicity, e.g., logg of 4.57 and 3.62 for gle Gaussian profile representing the combined effects from J1626+1721, and 4.63 and 3.52 for J1709+1616. However, the instrumental profile, atmospheric turbulence, and stellar onlythesub-giantloggvaluecouldresultinconvergencedur- rotation. The width of the Gaussian was determined by fit- ing the iterations, and therefore3.62 and 3.52 were adopted tinganumberofisolatedandclearFe IandTiIIlineswhose forJ1626+1721andJ1709+1616,respectively. abundanceshavebeenderivedfromEWmeasurements. The nitrogen abundance was measured from the CN-BX electronic transition at 3883Å, by comparing the observed spectrawithsyntheticspectrageneratedwithMOOG(seethe 0 [Fe/H]=-2.5 rightpanelsofFigure3forexamples). Wecouldonlydeter- [Fe/H]=-3.0 mine the nitrogen abundancesof seven of the program stars [Fe/H]=-3.5 whose CN-BX features are strong enough for reliable mea- 1 surements.WedidnotusetheNHbandat3360Å,becauseof anS/N(typicallylowerthanfive)ofourspectraatthatspec- 2 tralregionthatistoolowtoperformspectralsynthesis. g The carbon and nitrogen abundancesof the program stars g o arelistedinTable1. l 3 3.3. AbundancesDeterminedfromAtomicLines For 19 elements between Na and Ba, the abundances 4 werecomputedusingthemeasuredequivalentwidthsandthe atomicdatapresentedinTable1,andthestellarparametersin Table1. 5 Weperformedsanitychecksforcaseswheretheabundance 6500 6000 5500 5000 4500 Teff ofanelementwasderivedfroma singleline, orwhenabun- dancesdeviatedbymorethan3σfromtheaveragecomputed Fig.2.—Teff vs. loggofthesample. Filledcirclescorrespondtocarbon- foranatomicspeciesfrommultiplelines. Inthesecases,the enhancedobjects,andtheopencirclesrefertothecarbon-normalones,whose abundanceswereverifiedwithspectralsynthesisandmodified definitionisdescribedinSection3.2. Forreference, the13Gyrtheoretical isochrones with [α/Fe] = +0.4and [Fe/H] = −2.5, −3.0, and −3.5 from ifnecessary. Forclearlydetectedandisolatedlines,synthetic Demarqueetal.(2004)areplottedwithdash-dotted,solidanddashedlines spectrawithcorrespondingabundancesderivedfromthemea- respectively. suredequivalentwidthscouldwellmatchtheobservedspec- tra. However, for lines that suffer from blending or prob- Duringtheiterationsfordeterminingthestellarparameters, lems in setting the continuum level, the abundance derived any Fe line with an offset of more than 3σ from the mean fromequivalentwidthscouldnotproperlymatchtheobserved abundancewasrejected.Theadoptedstellarparametersofall spectralline, andhencetheabundancederivedfromspectral theprogramstarsarelistedinTable1. Thederivedstellarpa- synthesiswasadopted.Table1liststheusedatomiclinedata, rametersofJ0326+0202areveryclosetothevaluesgivenby themeasuredequivalentwidths,aswellasthederivedabun- Holleketal. (2011), with a differenceof−75K in Teff, −0.1 dances,wherelinesmarkedas“syn”refertoabundancesde- inlogg,and−0.1in[Fe/H],respectively.Theparametersde- terminedwithspectralsynthesis. rivedfromLAMOST low-resolutionspectra arealso shown, Foralloftheprogramstars,theabundancesofαelements usingtheaveragevaluesfortheparametersderivedfromthe (Mg,Si,Ca,andTi)havebeendetermined. Amongthelight threemethodsasdescribedinSection2.1. Arelativelylarge odd-Zelements(Na, Al, K, and Sc), abundancesof Sc have discrepancy is found in logg for the cool giants, which is been determined for all of the program stars, while for the partlydueto thelargesteps(0.5dex)inlogg oftheadopted warmerstarsnotallthelinesaredetectable,e.g.,thereddou- synthetic spectra template. The general agreement between blet K lines are too weak in J0257−0022, J1626+1721, and thetwosetsofparametersshowsthattheLAMOSTselection J1709+1616to derive an abundance. For Fe-peak elements pipeline is able to derive reliable parameters, especially Teff (Cr, Mn, Co, Ni, and Zn), the abundances of Cr and Mn and [Fe/H]. In addition, the [Fe/H] derived from LAMOST couldbe determinedforall oftheprogramstars; meanwhile spectra for J0126+0135(−3.15)is quite consistentwith that the abundances of Co, Ni, and Zn could not be derived for fromHESfollow-upobservations(−3.1,Frebeletal.2006). the most metal-deficient object, J1709+1616 due to its low The distribution of Teff versus logg of all of the program Fe abundance and possibly insufficient S/N. In the cases of starsisplottedinFigure2,withfilledandopencirclesrefer- theheavyelements(Sr,Y,Ba,andEu),theabundancesofSr ring to the carbon-enhanced and carbon-normal stars in the and Ba were determined for all of the program stars except sample (as will be described in Section 3.2); the theoretical J1709+1616(themostmetal-poor)andJ1626+1721,respec- isochrones from Demarqueetal. (2004) are also shown for tively;meanwhileabundancesofYcouldonlybedetermined reference. forfourofthesestars,andtheEulineshavebeendetectedand measuredinonlytwoobjects,J0102+0428,andJ0343−0227. 3.2. CarbonandNitrogen All of the elemental abundances of the programs stars are The carbonabundancesof the programstars were derived showninTable1. Wehavealsocomparedtheabundancesof bymatchingtheobservedCH-AXbandheadat4310Å (i.e., theGband)tothesyntheticspectra.Examplesofsuchfitsare 9http://kurucz.harvard.edu/molecules.html 6 Lietal. Fe 1.0 Co Ti CN 1.0 x u Fl 0.8 0.9 e v i t 0.8 a l 0.6 e R J0257-0022 J0257-0022 0.7 [C/Fe]=+0.56 [N/Fe]=+2.26 [C/Fe]=+0.76 [N/Fe]=+2.41 [C/Fe]=+0.96 [N/Fe]=+2.56 0.4 0.6 Fe 1.0 Co Ti CN 1.0 x 0.9 u 0.8 l F 0.8 e v ti 0.6 0.7 a l e R 0.6 J0006+1057 J0006+1057 0.4 [C/Fe]=-0.42 [N/Fe]=+1.33 [C/Fe]=-0.32 0.5 [N/Fe]=+1.48 [C/Fe]=-0.22 [N/Fe]=+1.63 0.2 4307 4308 4309 4310 4311 4312 3880 3881 3882 3883 Wavelength Wavelength Fig.3.—Left: examplesoffittingoftheCHbandusedtodeterminetheCabundance. Right: examplesoffittingoftheCNbandusedtodeterminetheN abundance.Thedottedlinefilledcirclerepresentstheobservedspectra;thesolidlinereferstothebestfit,andtheupperandlowerdash-dottedlinescorrespond tosyntheticspectrawithchangesof1σfittinguncertaintyin[C/Fe]and[N/Fe].TheupperandlowerpanelsrefertothefittingofthespectraofJ0257−0022and J0006+1057,respectively. J0326+0202with those from Holleketal. (2011), as shown inFigure4. Thedifferencebetweentheabundancefromthis 1.0 work and Hollek is −0.14 ± 0.18, indicating a rather good ) agreement. TheonlyspecieswithsignificantdifferenceisY. k e SinceourmeasurementshaveusedthreeY linesresultingin ll o 0.5 astandarddeviationof0.08inthederivedabundance,further H informationshouldberequiredtoexplainthedifference. - k r o 3.4. AbundanceErrorEstimation w 0.0 s Theerrorofthederivedabundancesmainlyarisesfromtwo hi t aspects, the uncertainties in the equivalent width measure- ( ments and those caused by the uncertaintiesfrom the stellar ) X parameters. A( -0.5 WhenN ≥2linesofindividualspeciesofanelementwere g o observed,thedispersioninthemeasurementsofmultiplelines l around the average abundances, i.e., σlogǫ(X), was used to -1.0 presenttheerrorcausedbyrandomuncertaintiesintheequiv- 0 10 20 30 40 50 60 alentwidths,asgiveninTable1. Iftheelementalabundance Atomic Number was determined from a single line, the statistic error of the Fig.4.—ComparisonoftheabundancesofJ0326+0202fromthisworkwith equivalent widths was estimated based on the classical for- theresultfromHolleketal.(2011),intheformoftheabundancedifference mulaofCayrel(1988): vs. theatomicnumbers. Thedashedlinesrefertothestandarddeviationof theabundancedifference (±0.18). Themostdeviated pointcorresponds to σ =h∆W2i1/2 ≃1.6(w∆x)1/2ǫ (1) theelementY,andisdescribedinthetext. EW 7 TABLE4 AbundancesofIndividualElementsfortheProgramStars. LAMOSTJ0006+1057 LAMOSTJ0102+0428 LAMOSTJ0126+0135 LAMOSTJ0257−0022 Sun logǫ(X) [X/Fe] σ N logǫ(X) [X/Fe] σ N logǫ(X) [X/Fe] σ N logǫ(X) [X/Fe] σ N logǫ(X) CH(C) 4.85 −0.32 0.10 1 4.75 −0.93 0.15 1 4.35 −0.51 0.15 1 6.95 0.76 0.20 1 8.43 CN(N) 6.05 1.48 0.15 1 6.45 1.37 0.15 1 5.70 1.44 0.20 1 8.00 2.41 0.15 1 7.83 NaI 3.05 0.07 0.09 1 3.59 0.10 0.13 2 2.75 0.08 0.15 2 ... ... ... ... 6.24 MgI 5.01 0.66 0.08 3 5.24 0.39 0.13 7 4.45 0.42 0.13 5 5.45 0.09 0.12 5 7.60 AlI 2.61 −0.58 0.05 1 3.64 −0.06 0.11 2 2.20 −0.68 0.11 2 3.44 −0.77 0.03 2 6.45 SiI 4.72 0.47 0.03 1 5.14 0.38 0.12 2 4.47 0.53 0.03 1 5.80 0.53 0.07 1 7.51 KI 2.51 0.74 0.01 2 2.86 0.58 0.08 1 2.01 0.55 0.17 1 ... ... ... ... 5.03 CaI 3.46 0.38 0.07 8 3.84 0.25 0.09 18 3.21 0.44 0.09 4 4.38 0.28 0.11 6 6.34 ScII −0.09 0.02 0.07 5 0.23 −0.17 0.11 7 −0.63 −0.22 0.12 5 1.04 0.13 0.05 2 3.15 TiI 1.84 0.15 0.11 6 2.19 −0.01 0.12 21 1.74 0.36 0.14 3 3.32 0.61 0.19 2 4.95 TiII 1.87 0.18 0.12 12 2.27 0.07 0.14 45 1.35 −0.03 0.18 16 3.18 0.47 0.10 15 4.95 VII 0.96 0.29 0.04 1 1.22 0.04 0.12 3 0.60 0.24 0.04 1 ... ... ... ... 3.93 CrI 1.91 −0.47 0.16 5 2.65 −0.24 0.14 15 1.43 −0.64 0.14 6 3.18 −0.22 0.08 3 5.64 CrII ... ... ... ... 3.09 0.20 0.07 1 ... ... ... ... ... ... ... ... 5.64 MnI 1.67 −0.50 0.11 4 2.12 −0.56 0.12 5 0.86 −1.00 0.06 3 2.65 −0.54 0.09 3 5.43 FeI 4.24 0.00 0.14 94 4.75 0.00 0.15 164 3.93 0.00 0.19 61 5.26 0.00 0.14 60 7.50 FeII 4.24 0.00 0.13 11 4.76 0.01 0.10 19 3.93 0.00 0.15 4 5.25 −0.01 0.14 3 7.50 CoI 1.87 0.14 0.04 1 2.13 −0.11 0.16 7 1.59 0.17 0.01 2 3.03 0.28 0.12 1 4.99 NiI 2.90 −0.06 0.06 3 3.25 −0.22 0.18 6 2.57 −0.08 0.07 1 4.07 0.09 0.12 2 6.22 ZnI 1.72 0.42 0.04 2 1.80 −0.01 0.10 1 1.43 0.44 0.07 2 2.71 0.39 0.14 1 4.56 SrII −2.46 −2.07 0.06 2 −1.06 −1.18 0.14 2 −2.31 −1.61 0.04 1 1.05 0.42 0.12 2 2.87 YII ... ... ... ... −1.62 −1.08 0.03 3 ... ... ... ... −0.08 −0.05 0.11 1 2.21 BaII −2.83 −1.75 0.03 1 −1.26 −0.69 0.13 5 −2.53 −1.14 0.16 3 −0.17 −0.11 0.00 2 2.18 EuII ... ... ... ... −2.13 0.10 0.08 1 ... ... ... ... ... ... ... ... 0.52 TABLE4 Continued. LAMOSTJ0326+0202 LAMOSTJ0343−0227 LAMOSTJ1626+1721 LAMOSTJ1709+1616 Sun logǫ(X) [X/Fe] σ N logǫ(X) [X/Fe] σ N logǫ(X) [X/Fe] σ N logǫ(X) [X/Fe] σ N logǫ(X) CH(C) 5.15 0.08 0.10 1 5.90 −0.11 0.15 1 6.30 1.07 0.20 1 6.30 1.58 0.20 1 8.43 CN(N) 5.70 1.23 0.15 1 6.35 0.94 0.15 1 ... ... ... ... ... ... ... ... 7.83 NaI 3.46 0.58 0.01 2 3.26 −0.02 0.14 2 3.02 −0.02 0.03 2 ... ... ... ... 6.24 MgI 4.99 0.75 0.17 8 5.58 0.40 0.03 4 4.90 0.50 0.16 3 4.17 0.28 0.12 3 7.60 AlI 2.36 −0.73 0.04 1 3.50 −0.53 0.06 1 2.92 −0.33 0.08 1 ... ... ... ... 6.45 SiI 4.93 0.78 0.07 2 5.52 0.43 0.04 1 4.77 0.46 0.09 1 3.98 0.18 0.10 1 7.51 KI 2.49 0.82 0.03 2 3.12 0.51 0.08 1 ... ... ... ... ... ... ... ... 5.03 CaI 3.40 0.42 0.08 12 4.23 0.31 0.11 14 3.41 0.27 0.08 2 3.05 0.42 0.11 1 6.34 ScII −0.23 −0.02 0.04 5 0.65 −0.08 0.07 5 0.02 0.07 0.11 1 −0.37 0.19 0.14 1 3.15 TiI 1.81 0.22 0.06 7 2.70 0.17 0.11 15 ... ... ... ... ... ... ... ... 4.95 TiII 1.75 0.16 0.10 32 2.79 0.26 0.11 27 1.92 0.17 0.11 11 1.90 0.66 0.13 10 4.95 VII 0.60 0.03 0.03 1 1.52 0.01 0.05 1 ... ... ... ... ... ... ... ... 3.93 CrI 1.92 −0.36 0.16 6 3.00 −0.22 0.08 9 2.19 −0.25 0.06 3 1.64 −0.29 0.15 1 5.64 CrII ... ... ... ... 3.31 0.09 0.06 1 ... ... ... ... ... ... ... ... 5.64 MnI 1.42 −0.65 0.09 3 2.80 −0.21 0.09 6 2.04 −0.19 0.10 1 1.65 −0.07 0.11 1 5.43 FeI 4.14 0.00 0.10 127 5.08 0.00 0.13 111 4.30 0.00 0.13 46 3.79 0.00 0.14 24 7.50 FeII 4.13 −0.01 0.11 7 5.08 0.00 0.15 14 ... ... ... ... ... ... ... ... 7.50 CoI 1.82 0.19 0.10 5 2.60 0.03 0.07 2 2.42 0.63 0.10 1 ... ... ... ... 4.99 NiI 2.89 0.03 0.09 5 3.90 0.10 0.09 7 3.19 0.17 0.14 2 ... ... ... ... 6.22 ZnI 1.42 0.22 0.04 2 2.35 0.21 0.06 1 ... ... ... ... ... ... ... ... 4.56 SrII −1.18 −0.69 0.01 2 0.29 −0.16 0.07 2 −0.84 −0.51 0.03 2 ... ... ... ... 2.87 YII −1.98 −0.83 0.08 3 −0.58 −0.37 0.09 4 ... ... ... ... ... ... ... ... 2.21 BaII −2.55 −1.37 0.03 2 −0.58 −0.34 0.18 4 ... ... ... ... −1.54 −0.01 0.18 1 2.18 EuII ... ... ... ... −1.99 −0.09 0.04 2 ... ... ... ... ... ... ... ... 0.52 Note.—Thecolumnof“N”referstothenumberoflinesadoptedfordeterminationoftheelementalabundances.ThephotosphericsolarabundancesfromAsplundetal. (2009)arealsoshownforreference. 8 Lietal. sumingatypicalmassofM =0.8M forhalostars. ⊙ TABLE5 Figure 5a shows that there are four objects in our sample Uncertaintiesoflogǫ(X)Propagatedfromthe that are above the limit, among which there is a red giant StellarParameters(asDescribedinSection3.4), ComputedforJ0326+0202asanExample. J0126+0135thatislocatedslightlyoffthelimitandhasvery low [C/Fe] = −0.51). Therefore, we have decided to clas- Ion ∆Teff ∆logg ∆ξ σtot sify onlythe threeobjectswith [C/Fe] > 0.7as CEMP stars +150K +0.3dex +0.3kms−1 (filled circles in Figure 5) and the rest as carbon-normalob- CH(C) 0.30 −0.15 −0.05 0.34 jects(opencircles). CN(N) 0.25 −0.05 0.00 0.25 It is known that in addition to [C/Fe], [N/Fe] is notably NaI 0.17 −0.03 −0.18 0.25 enhanced in many CEMP stars as well, and although this MgI 0.13 −0.06 −0.08 0.16 phenomenon appears to be rare, a population of nitrogen- AlI 0.15 −0.05 −0.18 0.24 SiI 0.16 −0.02 −0.03 0.16 enhanced metal-poor (NEMP) stars with [N/C] > 0.5 has KI 0.12 −0.02 −0.02 0.12 been discovered (Johnsonetal. 2007; Polsetal. 2012). We CaI 0.11 −0.03 −0.04 0.12 have adoptedthe criteria of Polsetal. (2012) for classifying ScII 0.10 0.08 −0.08 0.15 stars as NEMP, i.e., [N/Fe] ≥ 1.0 and [N/C] ≥ 0.5. In Fig- TiI 0.19 −0.03 −0.02 0.19 TiII 0.08 0.08 −0.08 0.14 ure5(b),itcanbeseenthatamongthesixprogramstarswith VII 0.08 0.09 −0.01 0.12 determinednitrogenabundances,therearefivethatareonthe CrII 0.18 −0.04 −0.09 0.21 rightsideofthedottedline,andhencearenitrogen-enhanced. MnI 0.21 −0.05 −0.14 0.26 However,ascanbeseeninFigure2andofFigure5(a),four FeI 0.17 −0.04 −0.10 0.20 FeII 0.02 0.09 −0.06 0.11 of them have [C/Fe] . 0.0 and [N/Fe] between 1.2 through CoI 0.21 −0.03 −0.07 0.22 1.5, and are on the upper part of the red giant branch, and NiI 0.20 −0.05 −0.20 0.29 thustheymaynotbegenuineNEMP,aswillbediscussedin ZnI 0.09 0.04 0.01 0.10 SrII 0.11 0.07 −0.27 0.30 Section4.5. YII 0.13 0.08 −0.01 0.15 If we use the separation of so-called “mixed” from “un- BaII 0.14 0.08 −0.03 0.16 mixed”starsdefinedasinSpiteetal.(2005)(i.e.,thedashed linein Figure5(b),correspondingto [N/Fe] = 0.5), the four objectsbelong to the group of “mixed” stars. In these stars, wherew istheFWHM oftheline, ∆x refersto thesampling nitrogenhasbeenproducedfromthe burningofcarbon,and stepoftheMIKEspectra,andǫ referstothereciprocalspec- hence they are usually carbon-poor and nitrogen-rich. The tral S/N in the case of normalized spectra. The uncertainty same holds true when the alternative criterion of Polsetal. inthederivedabundancecorrespondingto2σ wasadopted (2012) of [(C+N)/Fe] > 0.9 is considered (the dash-dotted EW asa conservativeestimateoftherandomerrorcausedbythe line in Figure5(b)). The CEMPturn-offstar J0257−0022is equivalentwidthmeasurement. Theerrorsrelevanttotheun- well located in the NEMP region, which makes it a poten- certaintiesofthe equivalentwidth measurementare listed in tial carbon and nitrogen-enhancedmetalpoor (CNEMP) star Table1 foreachindividuallinethathasbeenusedforabun- (Polsetal. 2012). We will further discuss this point in Sec- danceestimation. tion4.5. Theabundanceuncertaintiesassociatedwiththeuncertain- 4.2. AbundanceTrendsoftheLightElements tiesofthestellarparameterswereestimatedbyvaryingT by eff +150K, logg by +0.3dex, and ξ by +0.3kms−1 in the stel- The abundance ratios [X/Fe] of the program stars are lar atmosphericmodel. Table 1 summarizesthe correspond- plotted against [Fe/H] in the right panels of Figure 6 for ing abundanceuncertaintiesand the total uncertaintyfor the the elements from C through Zn. The observed chemi- three errors, which was computed as the quadratic sum, for cal abundances of metal-poor stars from the “First Stars” J0326+0202asanexample.Wenotedthattheabundanceun- program (Cayreletal. 2004), and from Yongetal. (2013a) certaintiescaused bythe equivalentwidthmeasurementsare and Placcoetal. (2014), are also plotted for comparison. generallysmallerthanthosepropagatingfromthestellarpa- Note that the “First Stars” sample has been re-analyzed by rameters,andtherefore,wehaveadoptedthelatteruncertain- Yongetal. (2013a), but since there are a few elements not tiesasreferenceerrorbarsforfurtherdiscussionsconcerning included in their analysis, we have adopted the abundances theabundancesofthesample. of the sample of “First Stars” from Cayreletal. (2004), Spiteetal.(2005),andFranc¸oisetal.(2007). 4. RESULTSANDINTERPRETATION In general, the abundance ratios seen in our sample agree wellwiththeabundanceratiotrendsdefinedbytheliterature 4.1. CEMPandNEMPObjects samples. However, for the most iron-deficientobject in our Despitethelimitedsamplesize,thereareseveralobjectsin sample(J1709+1616),andthecarbonandnitrogen-enhanced oursampleexhibitingrelativelyhigh[C/Fe]ratios,asshown objectJ0257−0022,afewelements(inparticular,Ti,Mn,and in Figure 5. To check the fraction of CEMP stars, we have Ba)showslightdeviationsfromthesetrends. adoptedtheclassificationofAokietal.(2007),whosuggesta Comparedwiththoseofotherelements,dispersionsinthe schemethattakesintoconsiderationthenucleosynthesisand distributionsofC,N,Na,andAlarenotablylarger.Unlikethe mixing effects in giants. This is important for our sample, behavior found by Yongetal. (2013a), the abundance ratios because five of our nine stars are giants (see Figure 2). We of the α elementsMg and Si (as wellas Ca) of the program therefore consider a star to be CEMP when [C/Fe] ≥ +0.7 starsdistributearoundthetypicalhalovalueof[α/Fe] = 0.4 in the case of stars with luminosities of log(L/L ) ≤ 2.3, (e.g., McWilliam1997,thedottedlinesinFigure6). ⊙ or when [C/Fe] ≥ +3.0−log(L/L ) in the case of stars with Among the iron-peak elements, a small scatter and clear ⊙ log(L/L ) > 2.3. The luminositiesof oursample stars were dependenceon Fe are found for Cr and Zn. The abundance ⊙ computedbasedontheprescriptionofAokietal.(2007),as- ratioof [Cr/Fe] exhibitsthe lowestobservedscatter together 9 3 (a) (b) 2 ] e F 1 / C [ J0257-0022 J0257-0022 0 -1 0 1 2 3 -1 0 1 2 3 log L/L [N/Fe] Sun Fig.5.— (a)[C/Fe]ratioasafunctionoftheluminosityestimatedfromTeff andloggofoursample. Thedottedlineindicates thedividinglinebetween carbon-enhancedandcarbon-normalstarsasdefinedinAokietal.(2007).Thedashedlinecorrespondsto[C/Fe]=1.0.(b)[C/Fe]vs.[N/Fe].Thetwocriteria forNEMPstarssuggestedbyPolsetal.(2012)arerespectivelyshownindashed([N/Fe]≥1.0and[N/C]≥0.5)anddash-dottedlines([(C+N)/Fe]>0.9).The filledandopencirclesrespectivelyrefertocarbon-enhancedandcarbon-normalstars.Metal-poorstarsfrom“FirstStars”(Spiteetal.2005),Yongetal.(2013a), andPlaccoetal.(2014)arealsoplottedforcomparison,infilledtriangles,crosses,andfilledpentacles,respectively. ThepotentialCNEMPobjectJ0257−0022 ismarked. with a positive slope, which agrees well with the results of tributionofobjectswith[Sr/Ba]largerthantheSolarvalueat Cayreletal. (2004). These authors interpreted this trend as evenlowermetallicities,butthiswouldrequirealargerbody anindicationthatCrandFeareproducedinthesamenucle- ofdataforEMPandUMPstarsforfurtherexploration. osynthesisprocess,sothatmixingintheinterstellarmedium Figure 8(b) shows that if we adopt Ba as a reference ele- would not result in any significant scatter around the abun- ment, a major trend of anti-correlation between [Sr/Ba] and dance trend. Furthermore, a clear anti-correlation between [Ba/H] can be found all the way down to [Ba/H] ∼ −4.5, [Zn/Fe]and[Fe/H]isseen.Thissuggeststhatneutron-capture whiletheabundanceratiorevertsbacktoanearlySolarvalue processesmaynothavecontributedmuchtotheproductionof when it approaches to lower [Ba/H]. This is quite agree- ZninprogenitorsoftheseEMPstars,sinceifthatisthecase, able with the results of Franc¸oisetal. (2007), and we sus- ananti-correlationversusmetallicitieswouldbeexpectedfor pectthattheanti-correlationmayextendto[Ba/H]higherthan theabundanceratio. −1.5, e.g., to around [Ba/H] ∼ 0.0. The observed distribu- tiontrendof[Sr/Ba]against[Ba/H]indicatesthatbesidesthe 4.3. Neutron-captureElements main rapid neutron-captureprocess, it is likely that an addi- tionalnucleosynthesismechanismsuchasasecondneutron- Theabundanceratiosoftheneutron-captureelementsSr,Y, captureprocesshascontributedtotheobservedamountsofSr Ba,andEuversus[Fe/H]areshowninFigure7.Inagreement (andotherneutron-captureelements)at[Ba/H] > −4.5(e.g., withpreviousinvestigations,verylargedispersionsareseen, Wanajoetal.2001;Travaglioetal.2004;Qian&Wasserburg especially at [Fe/H] < −2.8 (Ryanetal. 1996; Cayreletal. 2007). 2004). For all of the program stars with measurable Ba abundances, the [Ba/Fe] ratios are not higher than the So- 4.4. AbundancePatternsandChemicalPeculiarities larvalue,whichmeansthatthesetwocarbon-enhancedstars (J0257−0022andJ1709+1616)belongtotheclassofCEMP- Despite the observed diversity in chemistry among low- no stars. Eu abundances are only measured in the two gi- metallicitystars, basedonhomogeneouslyanalyzedsamples ants with relatively higher metallicities. Both giants show of metal-poor stars (Cayreletal. 2004; Yongetal. 2013a) it a near-Solarabundanceratio of [Eu/Fe], and combinedwith isbelievedthatthereexistsapopulationthatconformstothe the“FirstStars”samplesupporttheindicationthatmetal-poor averageabundancepattern,andthusisregardedasthechem- starswithhigh[Eu/Fe]arerare(Franc¸oisetal.2007). ically“normal”population. Consideringthefactthatmostof The abundanceratiosof neutron-captureelements such as thecarbon-normalobjectsin oursample aregiants, we have [Sr/Ba]canbeusedtoinvestigatethepossiblenucleosynthe- adopted the coefficients of the regression fit of Cayreletal. sis processes that have occurred in the progenitors of EMP (2004), which were determined by means of a sample of stars. Aokietal. (2013) has found several remarkable fea- metal-poor giants for which very high-quality spectra were tures in the distribution of [Sr/Ba] versus [Fe/H], including obtained. The results of our comparison of the abundance a cutoffatapproximately[Fe/H] ∼ −3.6, anda lower bound patternsare shown in Figure 9. For an element between Na at about [Sr/Ba] ∼ −0.5. Figure 8(a) shows the distribution and Zn, if the [X/Fe] ratio deviates more than 0.5dex from of[Sr/Ba]forourprogramstarsandthemetal-poorstarsam- the reference abundance pattern, it is regarded as abnormal plesfromtheliteratureasafunctionof[Fe/H]. Ascanbeen and marked by filled squares. For five out of the eight pro- seen, the number of observed objects is indeed very limited gram stars, there is at least one element showing such an around [Sr/Ba] ∼ −0.5 and below. However, from the cur- abnormal abundance. However, if only carbon-normal ob- rentlyavailabledatasetofmetal-poorstars,itdoesnotseem jectswithmorethanoneabnormalelementarecounted,only clear whether the cutoff at [Fe/H] < −3.6 actually exists. It J0326+0202 exhibits a moderate over-abundance in Na and ispossiblethattheremaybeacutofforsharpdropofthedis- Mg. 10 Lietal. C N Na Mg 2 ] 1 e F / X 0 [ -1 Al Si K Ca 2 ] 1 e F / X 0 [ -1 Sc II Ti Ti II Cr 2 ] 1 e F / X 0 [ -1 Mn Co Ni Zn 2 ] 1 e F / X 0 [ C-normal C-enhanced -1 Cayrel et al (2004) Yong et al. (2013) Placco et al (2014) -4 -3 -2 -4 -3 -2 -4 -3 -2 -4 -3 -2 [Fe/H] [Fe/H] [Fe/H] [Fe/H] Fig.6.—[X/Fe]vs. [Fe/H]of15elements(16species)lighterthanZn. Forallαelements(Mg,Si,Ca,andTi),thecanonicalvalueof[α/Fe]∼+0.4forthe halostars(McWilliam1997)isplottedforreference.ThemeaningsofthedifferentsymbolsarethesameasinFigure5. Regardingneutron-captureelements, noneof ourstars are great interest, in the sense that they raise the prospect that strongly enhanced in Sr, Y, Ba, or Eu relative to the Solar at the early phase of Galactic chemical evolution there is abundance ratios. However, we note that two of our stars, at least one kind of neutron-capture processes operating as J0006+1057andJ0126+0135,havequitelowSrandBaabun- frequently as the nucleosynthesis mechanisms that produce dances, respectively with [Sr/H] of −5.33 and −5.18, and lighter elements such as α and iron-peak elements. Inter- [Ba/H] of −5.01 and −4.71. Using the stellar abundance estingly,J0006-1057andJ0126+0135have[Sr/Ba]ratiosof data of over 1,000 stars from the Galactic field and dwarf −0.3 and −0.5, respectively (see Table 1 and the right panel galaxies, Roederer (2013) has noted that strontium and bar- of Figure 8). These values very much resemble those seen iumhavebeendetectedinallenvironments.Whencomparing in strongly r-process-enhanced stars, such as CS22892-052 J0006+1057andJ0126+0135withRoederer(2013)’sFigure ([Sr/Ba] = −0.4; Snedenetal. 2003), rather than the values 1 which presents the distribution of [Ba/H] versus [Sr/H] in typicalforstarsshowingtheabundancesignatureoftheweak field stars and dwarf galaxies, both of our programstars are r-process, e.g., HD122563 ([Sr/Ba] = +0.8; Hondaetal. located in the lower left corner of the plot, and close to the 2006). This suggests that not only the weak r-process, but detection thresholds. As pointed out by Roederer (2013), alsothemainr-processcontributedsignificantlytotheinven- such objects with unusually low [Sr/H] and [Ba/H] are of toryofneutron-captureelementsduringtheearliestphasesof