ebook img

Spectral transfer morphisms for unipotent affine Hecke algebras PDF

66 Pages·2017·1.22 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Spectral transfer morphisms for unipotent affine Hecke algebras

UvA-DARE (Digital Academic Repository) Spectral transfer morphisms for unipotent affine Hecke algebras Opdam, E. DOI 10.1007/s00029-016-0273-7 Publication date 2016 Document Version Final published version Published in Selecta Mathematica-New Series License CC BY Link to publication Citation for published version (APA): Opdam, E. (2016). Spectral transfer morphisms for unipotent affine Hecke algebras. Selecta Mathematica-New Series, 22(4), 2143–2207. https://doi.org/10.1007/s00029-016-0273-7 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:02 Mar 2023 Sel.Math.NewSer.(2016)22:2143–2207 SelectaMathematica DOI10.1007/s00029-016-0273-7 NewSeries Spectral transfer morphisms for unipotent affine Hecke algebras EricOpdam1 DedicatedtoJosephBernsteinontheoccasionofhis70thbirthday,withadmiration Publishedonline:5October2016 ©TheAuthor(s)2016.ThisarticleispublishedwithopenaccessatSpringerlink.com Abstract We classify the spectral transfer morphisms (cf. Opdam in Adv Math 286:912–957,2016)betweenaffineHeckealgebrasassociatedtotheunipotenttypes of the various inner forms of an unramified absolutely simple algebraic group G definedoveranon-archimedeanlocalfieldk.ThisturnsouttocharacterizeLusztig’s classification (Lusztig in Int Math Res Not 11:517–589, 1995; in Represent Theory 6:243–289,2002)ofunipotentcharactersofGintermsofthePlancherelmeasure,up todiagramautomorphisms.Asanapplicationoftheseresults,thespectralcorrespon- dencesassociatedwithsuchmorphisms(Opdam2016),andsomeresultsofCiubotaru, KatoandKato[CKK](alsoseeCiubotaruandOpdaminAuniformclassificationof the discrete series representations of affine Hecke algebras. arXiv:1510.07274) we prove a conjecture of Hiraga, Ichino and Ikeda [HII] on formal degrees and adjoint gammafactorsinthespecialcaseofunipotentdiscreteseriescharactersofinnerforms ofunramifiedsimplegroupsofadjointtypedefinedoverk. Keywords Heckealgebra·Formaldegree·Spectraltransfermorphism·L-packet MathematicsSubjectClassification Primary20C08;Secondary22D25,43A30 ThisresearchwassupportedbyERC-advancedGrantNo.268105. B EricOpdam [email protected] 1 KortewegdeVriesInstituteforMathematics,UniversityofAmsterdam,SciencePark107, 1018TVAmsterdam,TheNetherlands 2144 E.Opdam Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2144 2 Unipotentrepresentationsofquasisimplep-adicgroups . . . . . . . . . . . . . . . . . . . . . 2146 2.1 Unramifiedreductivep-adicgroups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2146 2.2 Unipotentrepresentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2150 2.3 UnramifiedlocalLanglandsparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 2153 2.4 UnipotentaffineHeckealgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2155 3 ThespectraltransfercategoryofunipotentHeckealgebras . . . . . . . . . . . . . . . . . . . . 2159 3.1 Spectraltransfermorphisms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2159 3.2 Maintheorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2165 4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2180 4.1 Classificationofunipotentspectraltransfermorphisms . . . . . . . . . . . . . . . . . . . 2180 4.2 PartitioningofunramifiedsquareintegrableL-packetsaccordingtoBernsteincomponents. 2181 4.3 Parameterizationforclassicaltypes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2183 4.4 Parameterizationforsplitexceptionalgroups. . . . . . . . . . . . . . . . . . . . . . . . . 2186 4.5 Parameterizationfornon-splitquasisplitexceptionalgroups . . . . . . . . . . . . . . . . . 2188 4.6 Formaldegreeofunipotentdiscreteseriesrepresentations . . . . . . . . . . . . . . . . . . 2189 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2205 1 Introduction Recallfrom[54]thatanormalizedaffineHeckealgebraHisessentiallydeterminedby acomplextorusT andameromorphicfunctionμonT.Aspectraltransfermorphism (see[54])φ :H (cid:2)H betweennormalizedaffineHeckealgebrasexpressesthefact 1 2 thatμ isequaltoaresidueofμ alongacertaincosetofasubtorusofT .Thisturns 1 2 2 outtobeaconvenienttooltocompareformaldegreesofdiscreteseriesrepresentations ofdifferentaffineHeckealgebras. Thenotionisbasedonthespecialpropertiesoftheμ-functionofanaffineHecke algebra [52,53] which are intimitely related to its basic role in the derivation of the Plancherel formula for affine Hecke algebras via residues [21,52,55,56]. This approachtothecomputationofformaldegreeshasitsorigininthetheoryofspherical functionsfor p-adicreductivegroups[47],andwasfurtherinspiredbyearlyobserva- tionsofLusztig[35,38]andReeder[59,60]onthebehaviourofformaldegreeswithin unipotent L-packets. In the present paper we classify the spectral transfer morphisms (STMs in the sequel)betweentheunipotentaffineHeckealgebrasofthevariousinnerformsofa given absolutely simple algebraic group G of adjoint type, defined and unramified over a non-archimedean local field k. In particular we will show, for any unipotent type τ = (P,σ) of an inner form of G, existence and uniqueness (up to diagram automorphisms)ofsuchSTMoftheHeckealgebraofτ totheIwahori–Heckealgebra HIM(G)ofG.TheSTMsofthiskindturnouttocorrespondexactlytothearithmetic- geometriccorrespondencesofLusztig[40,43]. Asanapplicationofthisclassification,usingthebasicpropertiesofSTMsdiscussed in [54], we prove the conjecture [26, Conjecture 1.4] of Hiraga, Ichino and Ikeda expressingtheformaldegreeofadiscreteseriesrepresentationintermsoftheadjoint gammafactorofits(conjectural)localLanglandsparametersandanexplicitrational constant factor, for all unipotent discrete series representations of inner forms of G (whereweacceptLusztig’sparametersfortheunipotentdiscreteseriesrepresentations Spectraltransfermorphisms 2145 asconjecturalLanglandsparameters).Itshouldbementionedthatitwasalreadyknown fromReeder’swork[59,60](seealso[26])thatthisconjectureholdsfortheunipotent discreteseriescharactersofsplitexceptionalgroupsofadjointtype,andforsomesmall rankclassicalgroups.ItshouldbementionedthatthestabilityofLusztig’spacketsof unipotentrepresentationswasshownbyMoeglinandWaldspurgerforoddorthogonal groups[49]andbyMoeglinforunitarygroups[48]. ThroughoutthispaperweusethenormalizationofHaarmeasuresasin[17].Let q = v2 denote the cardinality of the residue field of k. The formal degree of a unipotentdiscreteseriesrepresentationthenfactorizesuniquelyasaproductofaq- rationalnumber(whichwedefineasafractionofproductsofq-numbersoftheform [n] := (vn−v−n) withn ≥2)andapositiverationalnumber.Ourproofofconjecture q v−v−1 [26, Conjecture 1.4] involves the verification of the q-rational factors, which rests on the existence of the Plancherel measure preserving correspondences for STMs as discussed in [54], and the verification of the rational constants. The latter uses theknowledge oftheserationalconstants from[60]forthecaseofequalparameter exceptionalHeckealgebras,andcontinuityprinciplesdueto[11]and[56](also[13]) whichimplyroughlythatwecancomputetheserationalconstantfactorsintheformal degrees of discrete series of non-simply laced affine Hecke algebras at any point in theparameterspaceoftheaffineHeckealgebraonceweknowtheserationalconstants in one regular point (in the sense of [56]) of the parameter space. In particular, for (1) classicalaffineHeckealgebrasoftypeC ;itwasshownin[11]thatatagenericpoint n intheparameterspace,therationalconstantsforallgenericfamiliesofdiscreteseries charactersareequal.Theconstantsatspecialparametersfollowthenbyacontinuity principleintheformaldegreedueto[56]. Analternativeapproachtotheconjecture[26,Conjecture1.4],restrictedtothecase offormaldegreesofunipotentdiscreteseriesrepresentations,wasformulatedin[12]. A conjectural formula for the formal degrees of unipotent discrete series characters is proposed in [12], which involves Lusztig’s non-abelian Fourier transform matrix forfamiliesofunipotentrepresentations[36,44,45]andanotionofthe“ellipticfake degree” of a unipotent discrete series character in the unramified minimal principal seriesofG.Inthisapproachtheformulafortherationalconstantfactorsoftheformal degrees appears in a very natural way from the basic properties of the non-abelian Fouriertransform. The notion of spectral transfer morphism is based on a certain heuristic idea on the behavior of L-packets under ordinary parabolic induction (see 3.1.3 for a more detailed discussion of this heuristic idea). The fact that this principle turns out to hold for all unipotent representations is striking. Also striking is the fact that the isomorphismclassoftheIwahori–HeckealgebraHIM(G)of G istheleastelement in the poset of isomorphism classes of normalized affine Hecke algebras in the full subcategoryofC (G)whoseobjectsaretheHeckealgebrasofunipotenttypes(P,σ) es oftheinnerformsofG,inthesenseof[54,Paragraph7.1.5].Moreover,ifHissuch a unipotent affine Hecke algebra of an inner form of G, then the STM φ : H (cid:2) HIM(G) (which exists by the above) is essentially unique, and such STMs exactly matchLusztig’sarithmetic/geometriccorrespondences.Theproofofthesestatements reduces,asexplanedinthispaper,tothesupercuspidalcase[19]incombinationwith 2146 E.Opdam theaboveprinciplethatonecanparabolicallyinduceunipotentsupercuspidalSTMs fromLevisubalgebrastoyieldnewSTMs. It is quite clear that the definition of the notion of STM could be generalized to Bernstein components [2,23–25] in greater generality than only for the unipotent Bernstein components. It would be interesting to investigate the above mentioned inductionprincipleingeneral.Inviewofourresults,thiscouldprovideacluehowL- packetsarepartitionedbytheBernsteincenterbeyondLusztig’sunipotentL-packets forsimplegroupsofadjointtype. Inthefirstsectionofthispaperwewillreviewthetheoryofunipotentrepresenta- tionsofG withanemphasisonitsharmonicanalyticaspects.Theresultshereareall dueto[40,43,50,51]and[17].Thissectionservesanimportantpurposeofreviewing therelevantfactsonunipotentrepresentationsforthispaperintheappropriatecontext of harmonic analysis, and fixing notations. We kept the setup in this section more generalthannecessaryfortheremainderofthepaper,sincethisdoesnotcomplicate matterstoomuchandthismaybeusefulforlaterapplications.Inthesecondsection wewilldescribethestructureoftheSTMsbetweenthenormalizedunipotentHecke algebrasoftheinnerformsofG,anddiscusstheapplicationsofthisresult.1 2 Unipotentrepresentationsofquasisimplep-adicgroups Thecategoryofunipotentrepresentationsofinnerformsofanunramifiedabsolutely quasisimplep-adicgroupGisMoritaequivalenttothecategoryofrepresentationsofa finitedirectsumoffinitelymanynormalizedaffineHeckealgebras(called“unipotent Hecke algebras”) in such a way that the Morita equivalence respects the tempered spectraandthenaturalPlancherelmeasuresonbothsides. Therefore it is an interesting problem to classify all the STMs as defined in [54, Definition5.1]betweentheseunipotentnormalizedaffineHeckealgebras.Itwillturn outthatthistasktoclassifytheseSTMsessentiallyreducestothetaskoffindingall STMs from the rank 0 unipotent affine Hecke algebras to the Iwahori–Matsumoto Hecke algebra HIM(G(cid:3)) of the quasisplit G(cid:3) such that G is an inner form of G(cid:3). In turnthisreducestosolvingequation[54,equation(55)]whered0denotestheformal degree of a unipotent supercuspidal representation. The latter part of this task, the classificationoftherank0unipotentSTMs,willbediscussedinasecondpaper(joint withYongqiFeng[19]).Itshouldberemarkedthattheresultsofthepresentpaper,in whichtheexistenceofcertainspectraltransfermorphismsisestablished,playsarole intheproofoftheclassificationresultin[19]. 2.1 Unramifiedreductivep-adicgroups Letkbenon-archimedeanlocalfield.Fixaseparablealgebraicclosurekofk,andlet K ⊂ k bethemaximalunramifiedextensionofk ink.LetK = O/P betheresidue fieldof K,andlet pdenoteitscharacteristic.Let(cid:5) = Gal(k/k)denotetheabsolute 1 ItisapleasuretothankJosephBernstein,DanCiubotaru,MaartenSolleveld,DavidKazhdanandMark Reederforusefuldiscussionsandcomments. Spectraltransfermorphisms 2147 Galoisgroupofk,andletI =Gal(k/K)⊂(cid:5)betheinertiasubgroup.LetFrobbethe geometricFrobeniuselementofGal(K/k)=(cid:5)/I (cid:5)Zˆ,i.e.,thetopologicalgenerator whichinducestheinverseoftheautomorphismx → xq ofK.Hereq = pn denotes thecardinalityoftheresiduefieldk:=KFrobofk.Wedenotebyvthepositivesquare rootofq. LetGbeaconnectedreductivealgebraicgroupdefinedoverk,andsplitover K. We denote by G∨ be the neutral component of a Langlands dual group LG for G (see[3]).TheconstructionofLG presupposesthechoiceofamaximaltorusSanda BorelsubgroupBofGwhoseLevi-subgroupisS,andthechoiceofanépinglagefor (G,B,S), inorder todefine asplittingofAut(G).Let X∗(Z(G∨))bethecharacter groupofthecenter Z(G∨)ofG∨.Thenatural(cid:5)-actiononthisspacefactorsthrough thequotientGal(K/k)sinceweareassumingthatGisK-split.Observethattheaction ofFrobon X∗(Z(G∨))isindependentofthechoiceofasplittingofAut(G). We will always denote the group G(K) of K-rational points of G by the corre- spondingnon-boldfaceletter,i.e.,G =G(K).Kottwitz[31,Section7]hasdefineda (cid:5)-equivariantfunctorialexactsequence 1→G →G −w→G X∗(Z(G∨))→1. (1) 1 In our situation there is a continuous equivariant action of the group (cid:5)/I on this sequence.WedenotebyFtheactionofFrobonG andG,andbyθ theautomorphism 1 F of X∗(Z(G∨))definedby F.Thissequencehasthepropertythattheassociatedlong exactsequenceincontinuousnonabeliancohomologyyieldsanexactsequence 1→G F →G(k)→ X∗(Z(G∨))(cid:9)θF(cid:10) →1 (2) 1 andanisomorphism H1(F,G)−∼→ X∗(Z(G∨))(cid:9)θ (cid:10). (3) F Nowassumethat G issemisimple.Inthissituationtheabovesequencessimplifyas follows.LetSbeamaximalK-splittorusofG,andletX := X∗(S)beitscocharacter lattice. Let Q := Xsc = X∗(Ssc) be the cocharacter lattice of the inverse image of SinthesimplyconnectedcoverG → GofG(hence Q ⊂ X isthecorootlattice sc of (G,S); we warn the reader that we call the roots of G∨ “roots” and the roots of (G,S) “coroots”. We apologize for this admittedly awkward convention). Let (cid:7) be the finite abelian group (cid:7) = X/Q. Then we may canonically identify X∗(Z(G∨)) with(cid:7).Hence(2)becomes 1→G F →G(k)→(cid:7)θF →1 (4) 1 (see[29,30])and(3)becomes ∼ H1(F,G)−→(cid:7)/(1−θ )(cid:7). (5) F WeremarkthatG ⊂G ⊂G,andthatitcanbeshownthatG =G ifandonly der 1 der 1 if pdoesnotdividetheorder|(cid:7)|of(cid:7).WewillfromnowonalwaysassumethatGis absolutelyquasisimpleand K-split,unlessotherwisestated. 2148 E.Opdam 2.1.1 Inner k-rational structures of G The k-rational structures of G which are inner forms of G are parameterized by H1(k,G ). By Steinberg’s Vanishing The- ad orem it follows that all inner k-forms of G are K-split and that H1(k,G ) = ad H1(Gal(K/k),G )(see[62,Section5.8]).Wewillfromnowonreservethenotation ad G forak-quasisplitrationalstructureinthisinnerclass.Welet F betheautomor- phismofG (orG)correspondingtotheactionofFrob,andθ =θ .Wethendenote ad F thenonabeliancohomology H1(Gal(K/k),G )by H1(F,G ). ad ad ForGsemisimpleandnotnecessarilyofadjointtype,Voganconjecturedarefined Langlandsparameterizationoftheirreducibletemperedunipotentrepresentationsof pureinnerformsofG [68]. PureinnerformofG correspondbydefinitiontococyclesz ∈ Z1(F,G)[17,68]. Suchacocycleisdeterminedbytheimageu :=z(Frob)∈G.Thecorrespondinginner k-formofGisdefinedbythefunctorialimagezad ∈ Z1(F,G )ofz.This“pure”inner ad formisdefinedbythetwistedFrobeniusaction F onG givenby F = Ad(u)◦ F, u u andisdenotedby Gu.Thecocycle z determinesaclassin[z] ∈ H1(F,G).Wesay thattwopureinnerformsz andz ofGareequivalentiff[z ]=[z ].Thek-rational 1 2 1 2 isomorphismclassoftheinnerform Gu isdeterminedbytheimage[zad]of[z]via thenaturalmap H1(F,G)→ H1(F,G ).Thereaderbewarnedhowever,thatview ad of (5) this map is neither surjective in general (this is obvious, G = SL provides 2 an example) nor injective (however, if G is k-split and semisimple, then the map is injective).Inotherwords,notallk-rationalequivalenceclassesofinnerformsof G canberepresentedbyapureinnerform,andifG isnotk-splitandsemisimple,then aninnerformofG mayberepresentedbyseveralinequivalentpureinnerforms. Itisinprinciplepossibletocomputewithourmethodstheformaldegreesofthe elements of L-packets according to this refined form of the Langlands parameteri- zation,oreventocheckexamplesoftheconjecture[26,Conjecture1.4]beyondthe caseofpureinnerforms.Forlaterreferencewewillformulatemattersinthismore generalsetupwherepossible,eventhoughwewillinpresentpaperlimitourselvesin theapplicationstothecasewhereG isofadjointtype. 2.1.2 TheaffineWeylgroup Thereexistsamaximal K-splittorusSdefined overk and maximally k-split [5, 5.1.10]. We fix such a maximal torus S of G, and denote byS itsinverseimageforthecoveringG →G.RecallthatG isk-quasisplit,and sc sc that F defines an automorphism on the lattices X and X = Q denoted by θ. The sc extendedaffineWeylgroupW of(G,S)isdefinedby W = NG(S)/SO. (6) ThegroupW actsfaithfullyontheapartmentAasanextendedaffineCoxetergroup. WedenotebySO =O×⊗XthemaximalboundedsubgroupofS.ThenX = S/SO, andwedefinetheassociated F-stableapartmentA = A(G,S)ofthebuildingofG by A(G,S) = R ⊗ X. As explained in [17, Corollary 2.4.3], [6, Section 3] the isomorphism(5)canbemadeexplicitbyacanonicalbijection ∼ (cid:7)/(1−θ)(cid:7)−→ H1(F,G) (7) Spectraltransfermorphisms 2149 sending [ω] ∈ (cid:7)/(1−θ)(cid:7) to the cohomology class of the cocycle z which maps u Frobto Fu,whereuSO = x ∈ X andx isarepresentativeofω∈ X/Q. Let C be an F-stable alcove in A (such alcoves exist, see [67]). Let 1 → N → G →G→1bethesimplyconnectedcoverofG,andletS betheinverseimage sc sc ofS. Proposition2.1 TheimageofG →GisequaltothederivedgroupG ofG,and sc der wehaveG/G −∼→ H1(K,N)= K×⊗(cid:7). der Proof Indeed, it is clear that the image is contained in G because G is its own der sc derivedgroup[65].Theotherinclusionfollowsbyapplyingthelongexactsequence in nonabelian cohomology to the central isogeny G → G and again appealing to sc Steinberg’sVanishingTheorem.ItfollowsthatthequotientofG bytheimageofG sc is the abelian group H1(K,N), whence the result. On the other hand, we have the obviousexactsequence 1→Hom((cid:7)∗,K×)→ S → S → K×⊗(cid:7)→1 (8) sc which we can compare to the long exact sequence in cohomology (with respect to I) associated to the canonical exact sequence of diagonalizable groups 1 → N → S →S→1. (cid:15)(cid:16) sc WedenotebyWa the F-stablenormalsubgroupofW generatedbythereflectionsin C thewallsofC.Thisnormalsubgroup isindependent ofthechoice ofC andcanbe ∼ canonicallyidentifiedwithNGder(S)/SO∩Gder −→ Wa ⊂ W,theaffineWeylgroup of(G ,S ). sc sc Returning to Kottwitz’s homomorphism we obtain the following result (compare with[5,5.2.11]). Corollary2.2 WehaveG1 =(cid:9)SO,Gder(cid:10). Proof Let B be the Iwahori subgroup of G associated with C [5, 5.2.6]. By [57, Appendix,Proposition3]wehaveB=Fix(C)∩G1.InparticularwehaveSO ⊂G1, sothatwehaveGder ⊂G(cid:3)1 :=(cid:9)SO,Gder(cid:10)⊂G1Henceby(4),theequalityG(cid:3)1 =G1 isequivalenttoshowingthat G/G(cid:3) = G/G = (cid:7).Bythepreviouspropositionwe 1 1 have G/Gder = K×⊗(cid:7).Since SO/SO ∩Gder = O×⊗(cid:7)theresultfollowsfrom K×/O× (cid:5)Z. (cid:15)(cid:16) Let(cid:7) bethesubgroupofWwhichstabilizesC.Thissubgroupmaybeidentifiedwith C asubgroupofthegroupofspecialautomorphisms(inthesenseof[40,paragraph1.11]) oftheaffinediagramassociatedwiththechoiceofC.Wehaveasemidirectproduct ∼ decompositionW = Wa(cid:2)(cid:7) ,andthusacanonicalisomorphism(cid:7) −→(cid:7)forany C C choiceofC. ∼ ∼ Corollary2.3 Wehave NG1(S)/SO −→ Wa, NG1(B)=Band NG(B)/B−→(cid:7). Proof ByCorollary2.2itfollowsthat NG1(S)= NGder(S).SO.Thisimpliesthefirst assertion,sinceWaistheaffineWeylgroupof(G ,S )andG isthehomomorphic sc sc der 2150 E.Opdam imageofG .SinceanIwahori-subgroupofG isself-normalizing,wehavesimilarly sc sc NG1(B) = NGder(B).SO = (B∩Gder).SO = B, proving the second assertion. For thethirdassertion,observethat(cid:7)C = (NG(B)∩ NG(S))/SO.Itiswellknownthat B∩NG(S)= SO,hence(cid:7)C mapsinjectivelyintoNG(B)/B.Bythesecondassertion thisgroupmapsinjectivelyintoG/G =(cid:7).Since(cid:7)(cid:5)(cid:7) arefinitethetwoinjective 1 C homomorphismsareinfactisomorphisms. Since G is unramified there exist hyperspecial points in the apartment A [67]. A choiceofahyperspecialpointa ∈ A,inducesasemidirectproductdecomposition 0 W = W (cid:3) X,whereW denotestheisotropysubgroupofa inW.Thek-structure 0 0 0 of G definedby F isquasisplit,whichimpliesthatthereexistsahyperspecialpoint a ∈ A(G,S) which is F-fixed. In this case we denote by θ the automorphism of 0 W (and of A) induced by F. We fix a , an F-fixed hyperspecial point, and an F- 0 stablealcoveChavinga initsclosure.Observethatthesubgroup(cid:7) dependsonthe 0 C choiceofC,notofthehyperspecialpointa .Recallwehaveacanonicalisomorphism 0 ∼ (cid:7) −→ (cid:7) = X/Q,whichwewilloftenusetoidentifythesetwogroups.Observe C thatθ stabilizesthesubgroupsWa,(cid:7) , X andW ofW. C 0 2.2 Unipotentrepresentations 2.2.1 Parahoric subgroups Recall the explicit representation of pure inner forms Gu as discussed in (7). Fix a representative u = ω˙ ∈ N (S) with ω ∈ (cid:7) ⊂ W. G C Then F acts on the apartment A(G,S) by means of the finite order automorphism u ωθ.Since F stabilizesC theIwahorisubgroupBis F stable.Recallthatthegroup u u (cid:7) can be canonically identified with the group N (B)/B. Since (cid:7) is abelian it C G is clear that the subgroup (cid:7)Fu = (cid:7)ωθ of F -invariant elements is independent of C C u ω∈(cid:7) . C Following [57, Appendix] we may define a “standard parahoric subgroup of G” as a subgroup of the form Fix(F ) ∩ G where F ⊂ C denotes a facet of C. P 1 P By [57, Appendix, Proposition 3] this definition coincides with the definition in [5]. In particular, a standard parahoric subgroup of G is a connected pro-algebraic group. A parahoric subgroup of G is a subgroup conjugate to a standard parahoric subgroup. Itiswellknown(by“Lang’stheoremforconnectedproalgebraicgroups”,see[40, 1.3]) that any Fu-stable parahoric subgroup of G is GFu-conjugate to a “standard” F -stableparahoricsubgroup,i.e.,an F -stableparahoricsubgroupcontainingB.It u u followsthattheGFu-conjugacyclassesof Fu-stableparahoricsubgroupsareinone- to-onecorrespondencewiththesetof(cid:7)θ-orbitsofωθ-stablefacetsintheclosureof C. Similarly, a parahoric subgroup P or a double coset of a parahoric subgroup is Fu-stableiffitcontainspointsof GFu.LetPbean Fu-stableparahoricsubgroupof G.WecallPFu aparahoricsubgroupofGFu. WerecordtwoimportantpropertiesofF -stableparahoricsubgroupswhichfollow u easilyfromCorollary2.3.Firstofall,parahoricsubgroupsareself-normalizinginG , 1 i.e., (N P)Fu ∩G =PFu. (9) G 1 Spectraltransfermorphisms 2151 Secondly,foranF -stablestandardparahoricsubgroupPcorrespondingtoaωθ-stable u facetC ofC,wehave P (N P)Fu/PFu =(cid:7)P,θ (10) G where(cid:7)P ⊂(cid:7) isthesubgroupstabilizingC ,and(cid:7)P,θ ⊂(cid:7)Pitsfixedpointgroup C P fortheactionofθ (or F =ωθ,whichamountstothesamesince(cid:7) isabelian).We u C defineanexactsequence 1→(cid:7)P,θ →(cid:7)P,θ →(cid:7)P,θ →1 (11) 1 2 where(cid:7)P,θ isthesubgroupofelementswhichfixthesetof F -orbitsofverticesof 1 u C notinC pointwise. P 2.2.2 NormalizationofHaarmeasures LetG, F,and F beasinthepreviouspara- u graph.ThenGFu isalocallycompactgroup.Forany Fu-stableparahoricsubgroupP ofG wedenotebyPFu thereductivequotientofPFu.Thisisthegroupofk-pointsof aconnectedreductivegroupoverk.Inparticularthisisafinitegroup. Following[17,Section5.1]wenormalizetheHaarmeasureofGFu uniquely,such thatforall F -stableparahoricsubgroupsPofG onehas u Vol(PFu)=v−a|PFu| (12) wherea ∈ZisequaltothedimensionofPoverK.Itiswellknownthattheright-hand sideisaproductofpowersofvandcyclotomicpolynomialsinv. 2.2.3 Theanisotropiccase ItisusefultodiscussthecasewhereGFu isanisotropic explicitly. It is well known that an anisotropic absolutely simple group GFu is iso- morphictoPGL (D) := D×/k×,whereDisanunramifiedcentraldivisionalgebra 1 over k of degree m + 1, rank (m + 1)2 (see for instance [16]). We choose a uni- formizer π of k. D contains an unramified extensionl of degree m +1 over k, and wemaychooseauniformizer(cid:10)ofDwhichnormalizesl,suchthatconjugation by (cid:10) restricted to l yields a generator for Gal(l : k), and such that (cid:10)m+1 = π. The group P := G is the only F -stable parahoric subgoup in this situation, and obvi- 1 u ouslyG = NP.By(4)wehave(cid:7) := GFu/GFu ≈ (cid:9)(cid:10)(cid:10) ≈ Gal(l : k),acyclicgroup 1 (cid:9)π(cid:10) oforderm+1.GFu containsamaximalprounipotentsubgroupG+ (denotedby V1 in [16]) and we have GFu = C.G+, where C is generated by the anisotropic torus TFu :=l×/k×and(cid:10).WeseethatthereductivequotientP/(P∩G+)isananisotropic torus T of rank m over k, and that TFu can be identified with the group of roots of unityoforderprimeto pinlmodulothesubgroupofthoserootsofunityink.Hence Vol(GFu)=v−m|(cid:7)||TFu|=(m+1)[m+1]q (with[m+1]q theq-integerassociated tom+1∈N[seeDefinition2.6)]. 2.2.4 UnipotentrepresentationsandaffineHeckealgebras Let G beaquasisimple linearalgebraicgroup,definedandquasisplitoverkandK-splitasabove.Recallthat theautomorphisminducedbytheFrobenius F onthebuildingofG wasdenotedby

Description:
-orbits of) unramified discrete Langlands data for Gu is defined .. algebras Huni := ⊕u,OHu,O, where the direct sum is taken over the a complete set
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.