UvA-DARE (Digital Academic Repository) Spectral transfer morphisms for unipotent affine Hecke algebras Opdam, E. DOI 10.1007/s00029-016-0273-7 Publication date 2016 Document Version Final published version Published in Selecta Mathematica-New Series License CC BY Link to publication Citation for published version (APA): Opdam, E. (2016). Spectral transfer morphisms for unipotent affine Hecke algebras. Selecta Mathematica-New Series, 22(4), 2143–2207. https://doi.org/10.1007/s00029-016-0273-7 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:02 Mar 2023 Sel.Math.NewSer.(2016)22:2143–2207 SelectaMathematica DOI10.1007/s00029-016-0273-7 NewSeries Spectral transfer morphisms for unipotent affine Hecke algebras EricOpdam1 DedicatedtoJosephBernsteinontheoccasionofhis70thbirthday,withadmiration Publishedonline:5October2016 ©TheAuthor(s)2016.ThisarticleispublishedwithopenaccessatSpringerlink.com Abstract We classify the spectral transfer morphisms (cf. Opdam in Adv Math 286:912–957,2016)betweenaffineHeckealgebrasassociatedtotheunipotenttypes of the various inner forms of an unramified absolutely simple algebraic group G definedoveranon-archimedeanlocalfieldk.ThisturnsouttocharacterizeLusztig’s classification (Lusztig in Int Math Res Not 11:517–589, 1995; in Represent Theory 6:243–289,2002)ofunipotentcharactersofGintermsofthePlancherelmeasure,up todiagramautomorphisms.Asanapplicationoftheseresults,thespectralcorrespon- dencesassociatedwithsuchmorphisms(Opdam2016),andsomeresultsofCiubotaru, KatoandKato[CKK](alsoseeCiubotaruandOpdaminAuniformclassificationof the discrete series representations of affine Hecke algebras. arXiv:1510.07274) we prove a conjecture of Hiraga, Ichino and Ikeda [HII] on formal degrees and adjoint gammafactorsinthespecialcaseofunipotentdiscreteseriescharactersofinnerforms ofunramifiedsimplegroupsofadjointtypedefinedoverk. Keywords Heckealgebra·Formaldegree·Spectraltransfermorphism·L-packet MathematicsSubjectClassification Primary20C08;Secondary22D25,43A30 ThisresearchwassupportedbyERC-advancedGrantNo.268105. B EricOpdam [email protected] 1 KortewegdeVriesInstituteforMathematics,UniversityofAmsterdam,SciencePark107, 1018TVAmsterdam,TheNetherlands 2144 E.Opdam Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2144 2 Unipotentrepresentationsofquasisimplep-adicgroups . . . . . . . . . . . . . . . . . . . . . 2146 2.1 Unramifiedreductivep-adicgroups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2146 2.2 Unipotentrepresentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2150 2.3 UnramifiedlocalLanglandsparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 2153 2.4 UnipotentaffineHeckealgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2155 3 ThespectraltransfercategoryofunipotentHeckealgebras . . . . . . . . . . . . . . . . . . . . 2159 3.1 Spectraltransfermorphisms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2159 3.2 Maintheorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2165 4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2180 4.1 Classificationofunipotentspectraltransfermorphisms . . . . . . . . . . . . . . . . . . . 2180 4.2 PartitioningofunramifiedsquareintegrableL-packetsaccordingtoBernsteincomponents. 2181 4.3 Parameterizationforclassicaltypes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2183 4.4 Parameterizationforsplitexceptionalgroups. . . . . . . . . . . . . . . . . . . . . . . . . 2186 4.5 Parameterizationfornon-splitquasisplitexceptionalgroups . . . . . . . . . . . . . . . . . 2188 4.6 Formaldegreeofunipotentdiscreteseriesrepresentations . . . . . . . . . . . . . . . . . . 2189 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2205 1 Introduction Recallfrom[54]thatanormalizedaffineHeckealgebraHisessentiallydeterminedby acomplextorusT andameromorphicfunctionμonT.Aspectraltransfermorphism (see[54])φ :H (cid:2)H betweennormalizedaffineHeckealgebrasexpressesthefact 1 2 thatμ isequaltoaresidueofμ alongacertaincosetofasubtorusofT .Thisturns 1 2 2 outtobeaconvenienttooltocompareformaldegreesofdiscreteseriesrepresentations ofdifferentaffineHeckealgebras. Thenotionisbasedonthespecialpropertiesoftheμ-functionofanaffineHecke algebra [52,53] which are intimitely related to its basic role in the derivation of the Plancherel formula for affine Hecke algebras via residues [21,52,55,56]. This approachtothecomputationofformaldegreeshasitsorigininthetheoryofspherical functionsfor p-adicreductivegroups[47],andwasfurtherinspiredbyearlyobserva- tionsofLusztig[35,38]andReeder[59,60]onthebehaviourofformaldegreeswithin unipotent L-packets. In the present paper we classify the spectral transfer morphisms (STMs in the sequel)betweentheunipotentaffineHeckealgebrasofthevariousinnerformsofa given absolutely simple algebraic group G of adjoint type, defined and unramified over a non-archimedean local field k. In particular we will show, for any unipotent type τ = (P,σ) of an inner form of G, existence and uniqueness (up to diagram automorphisms)ofsuchSTMoftheHeckealgebraofτ totheIwahori–Heckealgebra HIM(G)ofG.TheSTMsofthiskindturnouttocorrespondexactlytothearithmetic- geometriccorrespondencesofLusztig[40,43]. Asanapplicationofthisclassification,usingthebasicpropertiesofSTMsdiscussed in [54], we prove the conjecture [26, Conjecture 1.4] of Hiraga, Ichino and Ikeda expressingtheformaldegreeofadiscreteseriesrepresentationintermsoftheadjoint gammafactorofits(conjectural)localLanglandsparametersandanexplicitrational constant factor, for all unipotent discrete series representations of inner forms of G (whereweacceptLusztig’sparametersfortheunipotentdiscreteseriesrepresentations Spectraltransfermorphisms 2145 asconjecturalLanglandsparameters).Itshouldbementionedthatitwasalreadyknown fromReeder’swork[59,60](seealso[26])thatthisconjectureholdsfortheunipotent discreteseriescharactersofsplitexceptionalgroupsofadjointtype,andforsomesmall rankclassicalgroups.ItshouldbementionedthatthestabilityofLusztig’spacketsof unipotentrepresentationswasshownbyMoeglinandWaldspurgerforoddorthogonal groups[49]andbyMoeglinforunitarygroups[48]. ThroughoutthispaperweusethenormalizationofHaarmeasuresasin[17].Let q = v2 denote the cardinality of the residue field of k. The formal degree of a unipotentdiscreteseriesrepresentationthenfactorizesuniquelyasaproductofaq- rationalnumber(whichwedefineasafractionofproductsofq-numbersoftheform [n] := (vn−v−n) withn ≥2)andapositiverationalnumber.Ourproofofconjecture q v−v−1 [26, Conjecture 1.4] involves the verification of the q-rational factors, which rests on the existence of the Plancherel measure preserving correspondences for STMs as discussed in [54], and the verification of the rational constants. The latter uses theknowledge oftheserationalconstants from[60]forthecaseofequalparameter exceptionalHeckealgebras,andcontinuityprinciplesdueto[11]and[56](also[13]) whichimplyroughlythatwecancomputetheserationalconstantfactorsintheformal degrees of discrete series of non-simply laced affine Hecke algebras at any point in theparameterspaceoftheaffineHeckealgebraonceweknowtheserationalconstants in one regular point (in the sense of [56]) of the parameter space. In particular, for (1) classicalaffineHeckealgebrasoftypeC ;itwasshownin[11]thatatagenericpoint n intheparameterspace,therationalconstantsforallgenericfamiliesofdiscreteseries charactersareequal.Theconstantsatspecialparametersfollowthenbyacontinuity principleintheformaldegreedueto[56]. Analternativeapproachtotheconjecture[26,Conjecture1.4],restrictedtothecase offormaldegreesofunipotentdiscreteseriesrepresentations,wasformulatedin[12]. A conjectural formula for the formal degrees of unipotent discrete series characters is proposed in [12], which involves Lusztig’s non-abelian Fourier transform matrix forfamiliesofunipotentrepresentations[36,44,45]andanotionofthe“ellipticfake degree” of a unipotent discrete series character in the unramified minimal principal seriesofG.Inthisapproachtheformulafortherationalconstantfactorsoftheformal degrees appears in a very natural way from the basic properties of the non-abelian Fouriertransform. The notion of spectral transfer morphism is based on a certain heuristic idea on the behavior of L-packets under ordinary parabolic induction (see 3.1.3 for a more detailed discussion of this heuristic idea). The fact that this principle turns out to hold for all unipotent representations is striking. Also striking is the fact that the isomorphismclassoftheIwahori–HeckealgebraHIM(G)of G istheleastelement in the poset of isomorphism classes of normalized affine Hecke algebras in the full subcategoryofC (G)whoseobjectsaretheHeckealgebrasofunipotenttypes(P,σ) es oftheinnerformsofG,inthesenseof[54,Paragraph7.1.5].Moreover,ifHissuch a unipotent affine Hecke algebra of an inner form of G, then the STM φ : H (cid:2) HIM(G) (which exists by the above) is essentially unique, and such STMs exactly matchLusztig’sarithmetic/geometriccorrespondences.Theproofofthesestatements reduces,asexplanedinthispaper,tothesupercuspidalcase[19]incombinationwith 2146 E.Opdam theaboveprinciplethatonecanparabolicallyinduceunipotentsupercuspidalSTMs fromLevisubalgebrastoyieldnewSTMs. It is quite clear that the definition of the notion of STM could be generalized to Bernstein components [2,23–25] in greater generality than only for the unipotent Bernstein components. It would be interesting to investigate the above mentioned inductionprincipleingeneral.Inviewofourresults,thiscouldprovideacluehowL- packetsarepartitionedbytheBernsteincenterbeyondLusztig’sunipotentL-packets forsimplegroupsofadjointtype. Inthefirstsectionofthispaperwewillreviewthetheoryofunipotentrepresenta- tionsofG withanemphasisonitsharmonicanalyticaspects.Theresultshereareall dueto[40,43,50,51]and[17].Thissectionservesanimportantpurposeofreviewing therelevantfactsonunipotentrepresentationsforthispaperintheappropriatecontext of harmonic analysis, and fixing notations. We kept the setup in this section more generalthannecessaryfortheremainderofthepaper,sincethisdoesnotcomplicate matterstoomuchandthismaybeusefulforlaterapplications.Inthesecondsection wewilldescribethestructureoftheSTMsbetweenthenormalizedunipotentHecke algebrasoftheinnerformsofG,anddiscusstheapplicationsofthisresult.1 2 Unipotentrepresentationsofquasisimplep-adicgroups Thecategoryofunipotentrepresentationsofinnerformsofanunramifiedabsolutely quasisimplep-adicgroupGisMoritaequivalenttothecategoryofrepresentationsofa finitedirectsumoffinitelymanynormalizedaffineHeckealgebras(called“unipotent Hecke algebras”) in such a way that the Morita equivalence respects the tempered spectraandthenaturalPlancherelmeasuresonbothsides. Therefore it is an interesting problem to classify all the STMs as defined in [54, Definition5.1]betweentheseunipotentnormalizedaffineHeckealgebras.Itwillturn outthatthistasktoclassifytheseSTMsessentiallyreducestothetaskoffindingall STMs from the rank 0 unipotent affine Hecke algebras to the Iwahori–Matsumoto Hecke algebra HIM(G(cid:3)) of the quasisplit G(cid:3) such that G is an inner form of G(cid:3). In turnthisreducestosolvingequation[54,equation(55)]whered0denotestheformal degree of a unipotent supercuspidal representation. The latter part of this task, the classificationoftherank0unipotentSTMs,willbediscussedinasecondpaper(joint withYongqiFeng[19]).Itshouldberemarkedthattheresultsofthepresentpaper,in whichtheexistenceofcertainspectraltransfermorphismsisestablished,playsarole intheproofoftheclassificationresultin[19]. 2.1 Unramifiedreductivep-adicgroups Letkbenon-archimedeanlocalfield.Fixaseparablealgebraicclosurekofk,andlet K ⊂ k bethemaximalunramifiedextensionofk ink.LetK = O/P betheresidue fieldof K,andlet pdenoteitscharacteristic.Let(cid:5) = Gal(k/k)denotetheabsolute 1 ItisapleasuretothankJosephBernstein,DanCiubotaru,MaartenSolleveld,DavidKazhdanandMark Reederforusefuldiscussionsandcomments. Spectraltransfermorphisms 2147 Galoisgroupofk,andletI =Gal(k/K)⊂(cid:5)betheinertiasubgroup.LetFrobbethe geometricFrobeniuselementofGal(K/k)=(cid:5)/I (cid:5)Zˆ,i.e.,thetopologicalgenerator whichinducestheinverseoftheautomorphismx → xq ofK.Hereq = pn denotes thecardinalityoftheresiduefieldk:=KFrobofk.Wedenotebyvthepositivesquare rootofq. LetGbeaconnectedreductivealgebraicgroupdefinedoverk,andsplitover K. We denote by G∨ be the neutral component of a Langlands dual group LG for G (see[3]).TheconstructionofLG presupposesthechoiceofamaximaltorusSanda BorelsubgroupBofGwhoseLevi-subgroupisS,andthechoiceofanépinglagefor (G,B,S), inorder todefine asplittingofAut(G).Let X∗(Z(G∨))bethecharacter groupofthecenter Z(G∨)ofG∨.Thenatural(cid:5)-actiononthisspacefactorsthrough thequotientGal(K/k)sinceweareassumingthatGisK-split.Observethattheaction ofFrobon X∗(Z(G∨))isindependentofthechoiceofasplittingofAut(G). We will always denote the group G(K) of K-rational points of G by the corre- spondingnon-boldfaceletter,i.e.,G =G(K).Kottwitz[31,Section7]hasdefineda (cid:5)-equivariantfunctorialexactsequence 1→G →G −w→G X∗(Z(G∨))→1. (1) 1 In our situation there is a continuous equivariant action of the group (cid:5)/I on this sequence.WedenotebyFtheactionofFrobonG andG,andbyθ theautomorphism 1 F of X∗(Z(G∨))definedby F.Thissequencehasthepropertythattheassociatedlong exactsequenceincontinuousnonabeliancohomologyyieldsanexactsequence 1→G F →G(k)→ X∗(Z(G∨))(cid:9)θF(cid:10) →1 (2) 1 andanisomorphism H1(F,G)−∼→ X∗(Z(G∨))(cid:9)θ (cid:10). (3) F Nowassumethat G issemisimple.Inthissituationtheabovesequencessimplifyas follows.LetSbeamaximalK-splittorusofG,andletX := X∗(S)beitscocharacter lattice. Let Q := Xsc = X∗(Ssc) be the cocharacter lattice of the inverse image of SinthesimplyconnectedcoverG → GofG(hence Q ⊂ X isthecorootlattice sc of (G,S); we warn the reader that we call the roots of G∨ “roots” and the roots of (G,S) “coroots”. We apologize for this admittedly awkward convention). Let (cid:7) be the finite abelian group (cid:7) = X/Q. Then we may canonically identify X∗(Z(G∨)) with(cid:7).Hence(2)becomes 1→G F →G(k)→(cid:7)θF →1 (4) 1 (see[29,30])and(3)becomes ∼ H1(F,G)−→(cid:7)/(1−θ )(cid:7). (5) F WeremarkthatG ⊂G ⊂G,andthatitcanbeshownthatG =G ifandonly der 1 der 1 if pdoesnotdividetheorder|(cid:7)|of(cid:7).WewillfromnowonalwaysassumethatGis absolutelyquasisimpleand K-split,unlessotherwisestated. 2148 E.Opdam 2.1.1 Inner k-rational structures of G The k-rational structures of G which are inner forms of G are parameterized by H1(k,G ). By Steinberg’s Vanishing The- ad orem it follows that all inner k-forms of G are K-split and that H1(k,G ) = ad H1(Gal(K/k),G )(see[62,Section5.8]).Wewillfromnowonreservethenotation ad G forak-quasisplitrationalstructureinthisinnerclass.Welet F betheautomor- phismofG (orG)correspondingtotheactionofFrob,andθ =θ .Wethendenote ad F thenonabeliancohomology H1(Gal(K/k),G )by H1(F,G ). ad ad ForGsemisimpleandnotnecessarilyofadjointtype,Voganconjecturedarefined Langlandsparameterizationoftheirreducibletemperedunipotentrepresentationsof pureinnerformsofG [68]. PureinnerformofG correspondbydefinitiontococyclesz ∈ Z1(F,G)[17,68]. Suchacocycleisdeterminedbytheimageu :=z(Frob)∈G.Thecorrespondinginner k-formofGisdefinedbythefunctorialimagezad ∈ Z1(F,G )ofz.This“pure”inner ad formisdefinedbythetwistedFrobeniusaction F onG givenby F = Ad(u)◦ F, u u andisdenotedby Gu.Thecocycle z determinesaclassin[z] ∈ H1(F,G).Wesay thattwopureinnerformsz andz ofGareequivalentiff[z ]=[z ].Thek-rational 1 2 1 2 isomorphismclassoftheinnerform Gu isdeterminedbytheimage[zad]of[z]via thenaturalmap H1(F,G)→ H1(F,G ).Thereaderbewarnedhowever,thatview ad of (5) this map is neither surjective in general (this is obvious, G = SL provides 2 an example) nor injective (however, if G is k-split and semisimple, then the map is injective).Inotherwords,notallk-rationalequivalenceclassesofinnerformsof G canberepresentedbyapureinnerform,andifG isnotk-splitandsemisimple,then aninnerformofG mayberepresentedbyseveralinequivalentpureinnerforms. Itisinprinciplepossibletocomputewithourmethodstheformaldegreesofthe elements of L-packets according to this refined form of the Langlands parameteri- zation,oreventocheckexamplesoftheconjecture[26,Conjecture1.4]beyondthe caseofpureinnerforms.Forlaterreferencewewillformulatemattersinthismore generalsetupwherepossible,eventhoughwewillinpresentpaperlimitourselvesin theapplicationstothecasewhereG isofadjointtype. 2.1.2 TheaffineWeylgroup Thereexistsamaximal K-splittorusSdefined overk and maximally k-split [5, 5.1.10]. We fix such a maximal torus S of G, and denote byS itsinverseimageforthecoveringG →G.RecallthatG isk-quasisplit,and sc sc that F defines an automorphism on the lattices X and X = Q denoted by θ. The sc extendedaffineWeylgroupW of(G,S)isdefinedby W = NG(S)/SO. (6) ThegroupW actsfaithfullyontheapartmentAasanextendedaffineCoxetergroup. WedenotebySO =O×⊗XthemaximalboundedsubgroupofS.ThenX = S/SO, andwedefinetheassociated F-stableapartmentA = A(G,S)ofthebuildingofG by A(G,S) = R ⊗ X. As explained in [17, Corollary 2.4.3], [6, Section 3] the isomorphism(5)canbemadeexplicitbyacanonicalbijection ∼ (cid:7)/(1−θ)(cid:7)−→ H1(F,G) (7) Spectraltransfermorphisms 2149 sending [ω] ∈ (cid:7)/(1−θ)(cid:7) to the cohomology class of the cocycle z which maps u Frobto Fu,whereuSO = x ∈ X andx isarepresentativeofω∈ X/Q. Let C be an F-stable alcove in A (such alcoves exist, see [67]). Let 1 → N → G →G→1bethesimplyconnectedcoverofG,andletS betheinverseimage sc sc ofS. Proposition2.1 TheimageofG →GisequaltothederivedgroupG ofG,and sc der wehaveG/G −∼→ H1(K,N)= K×⊗(cid:7). der Proof Indeed, it is clear that the image is contained in G because G is its own der sc derivedgroup[65].Theotherinclusionfollowsbyapplyingthelongexactsequence in nonabelian cohomology to the central isogeny G → G and again appealing to sc Steinberg’sVanishingTheorem.ItfollowsthatthequotientofG bytheimageofG sc is the abelian group H1(K,N), whence the result. On the other hand, we have the obviousexactsequence 1→Hom((cid:7)∗,K×)→ S → S → K×⊗(cid:7)→1 (8) sc which we can compare to the long exact sequence in cohomology (with respect to I) associated to the canonical exact sequence of diagonalizable groups 1 → N → S →S→1. (cid:15)(cid:16) sc WedenotebyWa the F-stablenormalsubgroupofW generatedbythereflectionsin C thewallsofC.Thisnormalsubgroup isindependent ofthechoice ofC andcanbe ∼ canonicallyidentifiedwithNGder(S)/SO∩Gder −→ Wa ⊂ W,theaffineWeylgroup of(G ,S ). sc sc Returning to Kottwitz’s homomorphism we obtain the following result (compare with[5,5.2.11]). Corollary2.2 WehaveG1 =(cid:9)SO,Gder(cid:10). Proof Let B be the Iwahori subgroup of G associated with C [5, 5.2.6]. By [57, Appendix,Proposition3]wehaveB=Fix(C)∩G1.InparticularwehaveSO ⊂G1, sothatwehaveGder ⊂G(cid:3)1 :=(cid:9)SO,Gder(cid:10)⊂G1Henceby(4),theequalityG(cid:3)1 =G1 isequivalenttoshowingthat G/G(cid:3) = G/G = (cid:7).Bythepreviouspropositionwe 1 1 have G/Gder = K×⊗(cid:7).Since SO/SO ∩Gder = O×⊗(cid:7)theresultfollowsfrom K×/O× (cid:5)Z. (cid:15)(cid:16) Let(cid:7) bethesubgroupofWwhichstabilizesC.Thissubgroupmaybeidentifiedwith C asubgroupofthegroupofspecialautomorphisms(inthesenseof[40,paragraph1.11]) oftheaffinediagramassociatedwiththechoiceofC.Wehaveasemidirectproduct ∼ decompositionW = Wa(cid:2)(cid:7) ,andthusacanonicalisomorphism(cid:7) −→(cid:7)forany C C choiceofC. ∼ ∼ Corollary2.3 Wehave NG1(S)/SO −→ Wa, NG1(B)=Band NG(B)/B−→(cid:7). Proof ByCorollary2.2itfollowsthat NG1(S)= NGder(S).SO.Thisimpliesthefirst assertion,sinceWaistheaffineWeylgroupof(G ,S )andG isthehomomorphic sc sc der 2150 E.Opdam imageofG .SinceanIwahori-subgroupofG isself-normalizing,wehavesimilarly sc sc NG1(B) = NGder(B).SO = (B∩Gder).SO = B, proving the second assertion. For thethirdassertion,observethat(cid:7)C = (NG(B)∩ NG(S))/SO.Itiswellknownthat B∩NG(S)= SO,hence(cid:7)C mapsinjectivelyintoNG(B)/B.Bythesecondassertion thisgroupmapsinjectivelyintoG/G =(cid:7).Since(cid:7)(cid:5)(cid:7) arefinitethetwoinjective 1 C homomorphismsareinfactisomorphisms. Since G is unramified there exist hyperspecial points in the apartment A [67]. A choiceofahyperspecialpointa ∈ A,inducesasemidirectproductdecomposition 0 W = W (cid:3) X,whereW denotestheisotropysubgroupofa inW.Thek-structure 0 0 0 of G definedby F isquasisplit,whichimpliesthatthereexistsahyperspecialpoint a ∈ A(G,S) which is F-fixed. In this case we denote by θ the automorphism of 0 W (and of A) induced by F. We fix a , an F-fixed hyperspecial point, and an F- 0 stablealcoveChavinga initsclosure.Observethatthesubgroup(cid:7) dependsonthe 0 C choiceofC,notofthehyperspecialpointa .Recallwehaveacanonicalisomorphism 0 ∼ (cid:7) −→ (cid:7) = X/Q,whichwewilloftenusetoidentifythesetwogroups.Observe C thatθ stabilizesthesubgroupsWa,(cid:7) , X andW ofW. C 0 2.2 Unipotentrepresentations 2.2.1 Parahoric subgroups Recall the explicit representation of pure inner forms Gu as discussed in (7). Fix a representative u = ω˙ ∈ N (S) with ω ∈ (cid:7) ⊂ W. G C Then F acts on the apartment A(G,S) by means of the finite order automorphism u ωθ.Since F stabilizesC theIwahorisubgroupBis F stable.Recallthatthegroup u u (cid:7) can be canonically identified with the group N (B)/B. Since (cid:7) is abelian it C G is clear that the subgroup (cid:7)Fu = (cid:7)ωθ of F -invariant elements is independent of C C u ω∈(cid:7) . C Following [57, Appendix] we may define a “standard parahoric subgroup of G” as a subgroup of the form Fix(F ) ∩ G where F ⊂ C denotes a facet of C. P 1 P By [57, Appendix, Proposition 3] this definition coincides with the definition in [5]. In particular, a standard parahoric subgroup of G is a connected pro-algebraic group. A parahoric subgroup of G is a subgroup conjugate to a standard parahoric subgroup. Itiswellknown(by“Lang’stheoremforconnectedproalgebraicgroups”,see[40, 1.3]) that any Fu-stable parahoric subgroup of G is GFu-conjugate to a “standard” F -stableparahoricsubgroup,i.e.,an F -stableparahoricsubgroupcontainingB.It u u followsthattheGFu-conjugacyclassesof Fu-stableparahoricsubgroupsareinone- to-onecorrespondencewiththesetof(cid:7)θ-orbitsofωθ-stablefacetsintheclosureof C. Similarly, a parahoric subgroup P or a double coset of a parahoric subgroup is Fu-stableiffitcontainspointsof GFu.LetPbean Fu-stableparahoricsubgroupof G.WecallPFu aparahoricsubgroupofGFu. WerecordtwoimportantpropertiesofF -stableparahoricsubgroupswhichfollow u easilyfromCorollary2.3.Firstofall,parahoricsubgroupsareself-normalizinginG , 1 i.e., (N P)Fu ∩G =PFu. (9) G 1 Spectraltransfermorphisms 2151 Secondly,foranF -stablestandardparahoricsubgroupPcorrespondingtoaωθ-stable u facetC ofC,wehave P (N P)Fu/PFu =(cid:7)P,θ (10) G where(cid:7)P ⊂(cid:7) isthesubgroupstabilizingC ,and(cid:7)P,θ ⊂(cid:7)Pitsfixedpointgroup C P fortheactionofθ (or F =ωθ,whichamountstothesamesince(cid:7) isabelian).We u C defineanexactsequence 1→(cid:7)P,θ →(cid:7)P,θ →(cid:7)P,θ →1 (11) 1 2 where(cid:7)P,θ isthesubgroupofelementswhichfixthesetof F -orbitsofverticesof 1 u C notinC pointwise. P 2.2.2 NormalizationofHaarmeasures LetG, F,and F beasinthepreviouspara- u graph.ThenGFu isalocallycompactgroup.Forany Fu-stableparahoricsubgroupP ofG wedenotebyPFu thereductivequotientofPFu.Thisisthegroupofk-pointsof aconnectedreductivegroupoverk.Inparticularthisisafinitegroup. Following[17,Section5.1]wenormalizetheHaarmeasureofGFu uniquely,such thatforall F -stableparahoricsubgroupsPofG onehas u Vol(PFu)=v−a|PFu| (12) wherea ∈ZisequaltothedimensionofPoverK.Itiswellknownthattheright-hand sideisaproductofpowersofvandcyclotomicpolynomialsinv. 2.2.3 Theanisotropiccase ItisusefultodiscussthecasewhereGFu isanisotropic explicitly. It is well known that an anisotropic absolutely simple group GFu is iso- morphictoPGL (D) := D×/k×,whereDisanunramifiedcentraldivisionalgebra 1 over k of degree m + 1, rank (m + 1)2 (see for instance [16]). We choose a uni- formizer π of k. D contains an unramified extensionl of degree m +1 over k, and wemaychooseauniformizer(cid:10)ofDwhichnormalizesl,suchthatconjugation by (cid:10) restricted to l yields a generator for Gal(l : k), and such that (cid:10)m+1 = π. The group P := G is the only F -stable parahoric subgoup in this situation, and obvi- 1 u ouslyG = NP.By(4)wehave(cid:7) := GFu/GFu ≈ (cid:9)(cid:10)(cid:10) ≈ Gal(l : k),acyclicgroup 1 (cid:9)π(cid:10) oforderm+1.GFu containsamaximalprounipotentsubgroupG+ (denotedby V1 in [16]) and we have GFu = C.G+, where C is generated by the anisotropic torus TFu :=l×/k×and(cid:10).WeseethatthereductivequotientP/(P∩G+)isananisotropic torus T of rank m over k, and that TFu can be identified with the group of roots of unityoforderprimeto pinlmodulothesubgroupofthoserootsofunityink.Hence Vol(GFu)=v−m|(cid:7)||TFu|=(m+1)[m+1]q (with[m+1]q theq-integerassociated tom+1∈N[seeDefinition2.6)]. 2.2.4 UnipotentrepresentationsandaffineHeckealgebras Let G beaquasisimple linearalgebraicgroup,definedandquasisplitoverkandK-splitasabove.Recallthat theautomorphisminducedbytheFrobenius F onthebuildingofG wasdenotedby
Description: