1843 Lecture Notes in Mathematics Editors: J.--M.Morel,Cachan F.Takens,Groningen B.Teissier,Paris 3 Berlin Heidelberg NewYork HongKong London Milan Paris Tokyo Brian Jefferies Spectral Properties of Noncommuting Operators 1 3 Author BrianJefferies SchoolofMathematics UniversityofNewSouthWales Sydney,NSW,2052 Australia e-mail:[email protected] http://www.maths.unsw.edu.au/˜brianj LibraryofCongressControlNumber:2004104471 MathematicsSubjectClassification(2000): 47A13,47A60,30G35,42B20 ISSN0075-8434 ISBN3-540-21923-4Springer-VerlagBerlinHeidelbergNewYork Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9, 1965, initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer-Verlag.Violationsare liableforprosecutionundertheGermanCopyrightLaw. Springer-VerlagisapartofSpringerScience+BusinessMedia http://www.springeronline.com (cid:1)c Springer-VerlagBerlinHeidelberg2004 PrintedinGermany Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnotimply, evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelaws andregulationsandthereforefreeforgeneraluse. Typesetting:Camera-readyTEXoutputbytheauthors SPIN:11001249 41/3142/du-543210-Printedonacid-freepaper Preface The work described in these notes has had a long gestation. It grew out of my sojourn at Macquarie University, Sydney, 1986-87 and 1989-90, during which time Alan McIntosh was applying Clifford analysis techniques to the study of singular integral operators and irregular boundary value problems. Hisresearchgroupprovidedastimulatingandconvivialenvironmentoverthe years.Iwouldliketothankmycollaboratorsinthisenterprise:JerryJohnson, Alan McIntosh,Susumu Okada,JamesPicton-Warlow,Werner Ricker,Frank SommenandBerndStraub.Theworkwassupportedbytwolargegrantsfrom the Australian Research Council. Sydney, March 2004 Brian Jefferies Contents 1 Introduction............................................... 1 2 Weyl Calculus ............................................. 13 2.1 Background............................................. 13 2.2 Operators of Paley-Wiener Type s......................... 16 2.3 The Joint Spectrum ..................................... 21 3 Clifford Analysis........................................... 27 3.1 Clifford Algebras ........................................ 27 3.2 Banach Modules......................................... 29 3.3 Cauchy Formula......................................... 30 3.4 Vector Valued Functions.................................. 32 3.5 Monogenic Expansions ................................... 33 3.6 Monogenic Representation of Distributions ................. 35 3.7 Plane Wave Decomposition ............................... 35 3.8 Approximation.......................................... 36 4 Functional Calculus for Noncommuting Operators ......... 39 4.1 The Weyl Calculus and the Cauchy Kernel ................. 39 4.2 The Joint Spectrum and the Cauchy Kernel ................ 44 4.3 The Monogenic Functional Calculus ....................... 52 4.4 Spectral Decomposition .................................. 60 5 The Joint Spectrum of Matrices ........................... 67 5.1 Nelson’s Formula for Hermitian Matrices ................... 67 5.2 Exponential Bounds for Matrices .......................... 73 5.2.1 Perturbation...................................... 74 5.2.2 The Exponential Bound............................ 77 5.3 The Joint Spectrum of Pairs of Hermitian Matrices .......... 80 5.3.1 The Numerical Range of Matrices ................... 81 5.3.2 Examples ........................................ 88 5.3.3 The Joint Spectrum of Two Hermitian Matrices....... 88 VIII Contents 5.4 Simultaneously Triangularisable Matrices...................104 5.4.1 Disintegration of Measures .........................106 5.4.2 The Image of Simplicial Measure ....................107 5.4.3 Joint Spectrum of Triangularisable Matrices ..........110 5.5 Systems of Matrices .....................................111 6 The Monogenic Calculus for Sectorial Operators...........123 6.1 The H∞-Functional Calculus for a Single Operator ..........124 6.2 The Cauchy Kernel for n Sectorial Operators ...............126 6.3 Monogenic and Holomorphic Functions in Sectors ...........130 6.3.1 Joint Spectral Theory in the Algebra C(n) ............130 6.3.2 Plane Wave Decompositions ........................135 6.3.3 Bounded Monogenic Functions in a Sector............137 6.4 Bounded Holomorphic Functions in Sectors .................140 6.4.1 Sectors in Cn .....................................140 6.4.2 Fourier Analysis in Sectors .........................142 6.5 The Monogenic Calculus for n Sectorial Operators...........153 7 Feynman’s Operational Calculus...........................157 7.1 Operants for the Weyl Calculus ...........................157 7.2 Feynman’s µ-Operational Calculus for n Operators ..........160 7.3 The µ-Monogenic Calculus for n Operators .................165 References.....................................................173 Index of Notation .............................................181 Index..........................................................183 1 Introduction The subject of these notes is the spectral theory of systems of operators. Because ‘spectral theory’ means different things to different workers in func- tional analysis, it is worthwhile to first set down how the term is used in the presentcontextandthe relationshipitbearsto the spectraltheoryofa single selfadjoint operator. Thespectrumσ(A)ofasinglematrixAisthefinitesetofalleigenvalues of A, that is, complex numbers λ for whichthe equationAv =λv has a nonzero vector v as a solution. In order to treat linear operators A acting on some function space, it is preferable to take σ(A) to mean the set of all λ ∈ C for whichλI−Aisnotinvertible.Themostcompletespectralanalysisisavailable forselfadjointoperatorsAactinginHilbertspace,forthenthelinearoperator A has a spectral decomposition (cid:1) A= λdP (λ) (1.1) A σ(A) with respect to a spectral measure P associated with A. In the case that A A is anhermitianmatrix,the integralrepresentation(1.1)becomesa finite sum (cid:2) A= λP ({λ}) (1.2) A λ∈σ(A) in which P ({λ}) is the orthogonal projection onto the eigenspace of the A eigenvalueλ.Thespectraltheoryofselfadjointoperatorsliesatthefoundation of quantum physics. Thesolutionoflinearoperatorequations,suchasthosethatariseinquan- tum mechanics, often requires the formation of functions of operators. For example, in order to solve the linear equation du(t) +Au(t)=0, u(0)=u0, dt B.Jefferies:LNM1843,pp.1–11,2004. (cid:1)c Springer-VerlagBerlinHeidelberg2004 2 1 Introduction we needtoformthe exponentiale−tA,t≥0,ofA.Becauseofthe importance oflinearevolutionequations,thetheoryofexponentiatinganoperatoriswell- understood, but in general, the spectral properties of A determine the types of functions f(A) of A that can be formed in a reasonable manner. In the case of a selfadjoint operator A, we can take (cid:1) f(A)= f(λ)dP (λ) (1.3) A σ(A) foranyP -essentiallyboundedBorelmeasurablefunctionf :σ(A)→C.The A pleasant spectral properties of a selfadjoint operator A are reflected in the rich class of functions f(A) of A that can be formed. A basic task of quantum mechanics is to find a quantum representa- tion f(P,Q) of a classical observable (p,q) (cid:4)−→ f(p,q) on phase space. Here (cid:1) d P = is the momentum operator and Q is the position operator of ‘mul- i dx tiplication by x’. They satisfy the commutation relation QP −PQ = i(cid:1)I. For example, if H(p,q) = p2 +V(q) is the classical hamiltonian of the sys- 2m tem, then H(P,Q) = P2 +V(Q) is the corresponding quantum observable, 2m provided that the sum of the two unbounded operators is interpreted appro- priately. Although it is known that the structure of classical observables is not preserved in the quantum setting for an extensive class of observables f, we are left with the problem of forming a function f(P,Q) of a pair (P,Q) of operators which do not commute with each other. In another context, symmetric hyperbolic systems (cid:2)n ∂u ∂u + A =0 (1.4) j ∂t ∂x j=1 j of partial differential equations arise in the linearised equations of magneto- hydrodynamics [15]. In the case that the matrices A1,...,An are hermitian, the fundamental solution is the matrix-valued distribution (cid:3) (cid:5) 1 eit(cid:4)nj=1Ajξj ˆ. (2π)n HeretheFouriertransformˆistakeninthesenseofdistributionswithrespect to the variable ξ ∈Rn. Then the fundamental solutionf (cid:4)−→f(A1,...,An) of(1.4) at time t=1 may be viewed as a mapping that forms functions f(A1,...,An) of the n matricesA1,...,An.Thesnapshotofthesupportofthefundamentalsolution at time t = 1 determines the propagation cone of solutions of the initial value problem for the symmetric hyperbolic system (1.4). A mapping such as f (cid:4)−→ f(A1,...,An) will be termed a functional calculus in this work. Although the expressionis used somewhatloosely,the idea is common to the areas in functional analysis just mentioned. Inthe traditionalsettingofasingleoperatorA,adecentfunctionalcalcu- lus f (cid:4)−→f(A) is a homomorphism of Banach algebras: (fg)(A)=f(A)g(A)