ebook img

Spectral optical monitoring of 3C 390.3 in 1995-2007: II. Variability of the spectral line parameters PDF

1.2 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Spectral optical monitoring of 3C 390.3 in 1995-2007: II. Variability of the spectral line parameters

Astronomy&Astrophysicsmanuscriptno.Paper˙2˙astro˙ph (cid:13)c ESO2011 January26,2011 Spectral optical monitoring of 3C 390.3 in 1995-2007: II. Variability of the spectral line parameters L.Cˇ.Popovic´1,2,A.I.Shapovalova3,D.Ilic´2,4,A.Kovacˇevic´2,4,W.Kollatschny5,A.N.Burenkov3,V.H.Chavushyan6, N.G.Bochkarev7,andJ.Leo´n-Tavares8 1 AstronomicalObservatory,Volgina7,11160Belgrade74,Serbia 2 IsaacNewtonInstituteofChile,YugoslaviaBranch 3 SpecialAstrophysicalObservatoryoftheRussianAS,NizhnijArkhyz,Karachaevo-Cherkesia369167,Russia 1 4 DepartmentofAstronomy,FacultyofMathematics,UniversityofBelgrade,Studentskitrg16,11000Belgrade,Serbia 1 5 Institutfu¨rAstrophysik,Friedrich-Hund-Platz1,Go¨ttingen,Germany 0 6 InstitutoNacionaldeAstrof´ısica,O´pticayElectro´nica,ApartadoPostal51,CP72000,Puebla,Pue.Me´xico 2 7 SternbergAstronomicalInstitute,Moscow,Russia 8 Metsa¨hoviRadioObservatory,HelsinkiUniversityofTechnologyTKK,Metsa¨hovintie114,FIN-02540Kylma¨la¨,Finland n a Received/Accepted J 5 ABSTRACT 2 Context.A study of the variability of the broad emission-line parameters of 3C390.3, an active galaxy with the double-peaked ] emission-lineprofiles,ispresented. Herewegive adetail analysisof variationinthebroad HαandHβ emission-lineprofiles,the O ratios,andtheBalmerdecrementofdifferentlinesegments. C Aims.Withinvestigationofthevariabilityofthebroadlineprofilesweexplorethediskstructure,thatisassumedtoemitthebroad . double-peakedHβandHαemissionlinesinthespectrumof3C390.3. h Methods.Wedividedtheobservedspectraintwoperiods(beforeandaftertheoutburstin2002)andanalyzedseparatelythevariation p inthesetwoperiods.Firstweanalyzedthespectralemission-lineprofilesoftheHαandHβlines,measuringthepeakpositions.Then, - wedividedlinesintoseveralsegments,andwemeasuredtheline-segmentfluxes.TheBalmerdecrementvariationfortotalHαand o Hβfluxes,aswellasforthelinesegmentshasbeeninvestigatedanddiscussed.Additionally,wemodeledthelineparametersvariation r t usinganaccretiondiskmodelandcompareourmodeledlineparametervariationswithobservedones. s Results.Wecomparedthevariabilityintheobservedlineparameterswiththediskmodelpredictionsandwefoundthatthevariation a inlineprofilesandinthelinesegmentscorrespondstotheemissionofadisk-likeBLR.But,alsothereisprobablyoneadditional [ emissioncomponent thatcontributestotheHαandHβlinecenter.Wefoundthatthevariationinthelineprofilesiscausedbythe 1 variation in the parameters of the disk-like BLR, first of all in the inner (outer) radius which can well explain the line parameter v variationsinthePeriodI.TheBalmerdecrementacrossthelineprofilehasabell-likeshape,anditisaffectednotonlybyphysical 7 processesinthedisk,butalsobydifferentemittingdiskdimensionoftheHαandHβline. 6 Conclusions.ThegeometryoftheBLRof3C390.3seemstobeverycomplex,andinflows/outflowsmightbepresent,butitisevident 8 thatthebroadlineregionwithdisk-likegeometryhasdominantemission. 4 Keywords.galaxies:active–galaxies:quasar:individual(3C390.3)–line:profiles . 1 0 1 1. Introduction accretion disk emission. On the other hand, the presence of an 1 accretion-disk emission in the BLR is expected, and double- : v The broad emission lines (BELs) are often observed in opti- peaked line profiles of some AGN indicate this (Perezetal., Xi calandultravioletspectraofacitvegalacticnuclei(AGN).The 1988;Eracleous&Halpern,1994,2004;Eracleousetal.,2009). studyoftheprofilesandintensitiesofBELscangiveusrelevant One of the well known AGN with broad double-peaked emis- r informationaboutthegeometryandphysicsofthebroadlinere- a sion lines in its spectrum is the radio-loud active galaxy 3C gion(BLR).ThephysicsandgeometryoftheBLRareuncertain 390.3. Although, the double-peaked line profiles can be ex- and investigation of BEL shape variability in a long period is plained by different hypothesis (see e.g. Veilleux&Zheng, veryusefulfordeterminationoftheBLRnature.Theprofilesof 1991),ase.g.super-massivebinaryblackholes(Gaskell,1996), theBELsinAGNcanindicatethegeometryofemittingplasma outflowing bi-conical gas streams (Zheng, 1996)), it seems in the BLR (see e.g. Sulenticetal., 2000; Popovic´etal., 2004; that in this case a disk emission is present in the BLR Gaskell,2009;Zamfiretal.,2010,etc.). (Shapovalovaetal., 2010, hereinafter Paper I). There is a pos- Particularly,veryinterestingobjectsareAGNswithunusual sibilitythata jetemissioncanaffecttheopticalemissionin 3C broad emission-line profiles, where broad Balmer lines show 390.3 (Arshakianetal., 2010), and some perturbations in disk double peaks or double ”shoulders”, so called double-peaked couldbepresent(Jovanovic´etal.,2010)andtheycanalsoaffect emitters. The doublepeaked line profilesmay be caused by an thedouble-peakedlineprofiles. Sendoffprintrequeststo:L.Cˇ.Popovic´, Long-term variability in the line/continuumflux as well as e-mail:[email protected] in the line profiles is observed in objects with broad double peaked lines (see e.g. Dietrichetal., 1988; Shapovalovaetal., 1 L.Cˇ.Popovic´etal.:Spectralmonitoringof3C390.3 2001; Sergeevetal., 2002, 2010; Shapovalovaetal., 2010; VanGroningen&Wanders (1992) (see also Shapovalovaetal., Lewisetal., 2010). Long-term variability of broad line pro- 2004)usingthespectraltemplatefornarrowcomponentsasref- files is intriguing because it is usually unrelated to more rapid erencespectrum.Moredetailsaboutobservationscanbefound changesinthecontinuumflux,butprobablyisrelatedtophysi- inPaperI. calchangesintheaccretiondisk,ase.g.brightnessofsomepart ofthedisk,orchangesinthedisksizeanddistancetothecentral blackhole.Thedouble-peakedbroadlineprofilevariabilitycan 3. Analysisofthebroadlineprofiles beexploitedtotestvariousmodelsfortheaccretiondisk(ase.g. circular or elliptical). Moreover, the double-peaked broad line In Paper I we explained the continuum and narrow line sub- studies can provide important information about the accretion traction in order to obtain only the broad Hα and Hβ line pro- disk,ase.g.inclination,dimensionandemissivityofthediskas files, and here that procedure will not be repeated. Using only well as probes of dynamical phenomenathat may occur in the broad line component we analyze the line parameters: month- disk (see in more details Eracleousetal., 2009, and reference andyear-averagedlineprofiles(seeFigs.1–3,Figs.2–3-avail- therein). ableelectronicallyonly),theposition(andseparation)ofpromi- nentpeaks,thefluxesofthelinesegmentsandtheHα/Hβratios In Paper I we have presented the results of the long-term (or Balmer decrement – BD). In this section we first give the (1995–2007) spectral monitoring of 3C 390.3. We have ana- analysisoftheobservedbroadlineparameters,andafterthatwe lyzed the light curves of the broad Hα and Hβ line fluxes and analyzethecorrespondingmodeledlineparameter,obtainedus- the continuum flux in the 13-year period. We also found that ing an accretiondisk model,in orderto learn aboutchangesin quasi-periodicaloscillations (QPO) may be presentin the con- thediskstructurewhichmaycausethelineparametervariability. tinuumandHβlightcurves.We studiedaveragedprofileofthe Hα and Hβ line in two periods (Period I from 1995 to 2002, AsreportedinPaperIthereisadifferencesintheHαandHβ and Period II from 2003 to 2007) and their characteristics (as lineprofilesbeforeandafterthebeginningoftheactivityphase e.g.peaksseparationandtheirintensityratio,orFWHM).From in2002.Therefore,weconsiderseparatelylineprofilesobtained thecross-correlations(ICCFandZCCF)betweenthecontinuum intheperiodbeforeMarch05,2002(PeriodI,JD2452339.01 fluxandHβandHαlineswefoundthelagof∼95daysforHβ according the minimum in Hβ) and after that date (Period II, and ∼120 days for Hα (see Paper I for details). We concluded seePaperI).Also,wefoundthatobservationsin2001and2002 thatthebroademissionregionhasdisk-likestructure,butthere have sometimes closer characteristics as the data in Period II, couldprobablyexistsanadditionalcomponent,non-diskoralso thereforeinsomeplotswemarkedseparatelytheseobservations disk-like, with different parameters that contributes to the line as2001–2002. emission.WefoundadifferencesintheHαandHβlineprofiles beforeandafterthebeginningoftheactivityphasein2002,con- 3.1.TheaveragedprofilesoftheHαandHβbroademission sequentlywedividedourspectraintotwoperiods(beforeMarch lines 05,2002–PeriodIandafterthat–PeriodII,seePaperI). In this paper we study in more details the Hα and Hβ line It was also reported in Paper I that the line profiles of Hα and profiles and ratios, taking into account the changes during the Hβ were changingduring the monitoringperiod. In Fig. 1, we monitoring period. The aim of this paper is to investigate the show the month- and in Figs. 2 and 3 (available electronically changesinthetheBLRstructureof3C390.3thatcausetheline only)year-averagedprofilesoftheHαandHβ.Asitcanbeseen profilevariations.Toperformthisinvestigationweanalyzedthe inFig.1thelineprofilesofHα(left)andHβ(right)vary,show- peakseparationvariations,variationsinlinesegmentsandvaria- ing clearly two, and sometimes three peaks. Similar variations tioninBalmerdecrement.Usingarelativelysimplediskmodel, can be seen from the year-averagedprofiles (see Fig. 2 for Hα wetrytoexplainqualitativelythechangesindiskstructurethat andFig.3forHβ).Noteherethatinbothperiodsthebluepeak cancausethelineparametervariations. is higher as it is expected in the case of a relativistic accretion The paper is organizedas follow: in §2 we describe of our disk.Themostinterestingisthecentralpeakatthezeroveloc- observations; in §3 we present the analysis of the Hα and Hβ ity (clearlyseen in 1995and 1996)thatmay indicateperturba- lineprofilesvariability,thepeak-velocityvariabilityandBalmer tionin thedisk oranadditionalemittingregion.We foundthat decrement;in§4westudytheline-segmentvariations;in§5the thiscentralpeak(sometimesweaker)existsalmostalwaysdur- Balmer decrement variation is analyzed; in §6 we discuss ob- ingbothperiods,thereforewemeasuredthepositionoftheblue, tainedresults,andfinallyin§7weoutlineourconclusions. central and red peak. Our measurements are given in Table 1. Sometimestheredpeakcouldnotbeproperlymeasured(since it was too weak oreven absent),thusin thatcase the measure- 2. Observations mentsarenotgiveninTable1.Themeasurementsshowthatthe position of the peaks are changing, and as can be seen in Fig. In1995-2007spectraof3C390.3weretakenwiththe6mand 4changesarehigherintheHβthaninHαline.Itisinteresting 1mtelescopesoftheSAO RASandwithINAOE’s2.1mtele- thatthepositionofthebluepeakvariesaroundseveralhundreds scopeofthe”GuillermoHaroObservatory”(GHO)atCananea, kms−1(e.g.inHαitis-3550±250kms−1,inHβ-3500±400km Sonora, Me´xico and with a long slit spectrographs, equipped s−1),whilethepositionoftheredpeakhashighervariation(for withCCDdetectorarrays.Thetypicalwavelengthintervalcov- Hα ∼+5000±1000kms−1,andforHβ ∼5250±1700kms−1). ered was from 4000Å to 7500Å, the spectral resolution var- Thismayindicatethattheemissioniscomingrelativelycloseto ied between (4.5-15) Å. Spectra were scaled using the [Oiii] thecentralblackhole. λλ4959+5007 (for blue spectra) and the [OI]6300A (for red There is a difference between the Hα and Hβ red and blue spectra) integrated line flux under the assumption that fluxes peakvelocities(seeFig.4),thatcanbeexpectedduetothestrat- of this lines did not change during the time interval covered ificationofthedisk,i.e.thedifferentdimensionsofthediskre- by our observations (1995–2007). The narrow components of gionthatemitsHα orHβ. Itis interestingthatthe centralpeak Hα andHβwere removedbyapplyingthe modifiedmethodof seems to stay at similar position in both lines, i.e. as it can be 2 L.Cˇ.Popovic´etal.:Spectralmonitoringof3C390.3 seeninFig.4(paneltop)thepointsfollowwellthelinearbijec- radius)andfromsomedistance,duetotheprobabilityoftransi- tion function (represented as dashed line). This could indicate tions,theremaybesignificantemissionintheHαlineandvery that the central peak is connected with some kind of perturba- weak(orabsent)Hβemission. tioninadiskoranadditionalregionthatinthesamewayaffects Also, we tested whatwill be the consequencewhenchang- theHβandHαlineprofiles.Noteherethattheso-calledcentral ing disk emissivity in the modelsand foundthat it has smaller peak was slightly shifted to the blue side (or close to the zero influenceonthedoublepeakedlineprofiles(seealsoBonetal., shift)in1996–1997(seeFig.1),butafterthatthispeakhasbeen 2009). redshifted(between1500and2500kms−1). Toprobedifferenttypeofvariability,firstweconsiderthatin In order to compare the variability of the blue peak posi- differenttime, differentpartof disk can contributeto the emis- tion during a longer period, in Fig. 5 we presented our mea- sion of the broad Hα and Hβ lines, i.e. we keep constant the surementsforthebluepeakpositionandmeasurementsobtained relativesize of the disk regionsresponsibleforthe emission of byVeilleux&Zheng(1991),Gaskell(1996)andEracleousetal. Hα and Hβ lines but we change the locations of these regions (1997).Noteherethattheestimatesofthebluepeakpositionin withrespecttothecentralblackhole.Thentheemittingregion theHαlineismoreuncertainthaninHβ,duetothesubstraction canbecloser,i.e.innerandouterradiusclosertotheblackhole. oftheatmosphereB-band(PaperI),whileHβismoreuncertain For obtaining such models, we have been shifting the emitting intheredpartduetosubtractionofthe[OIII]lines(see§4.1).As region closer to the black hole for a step of ∆R = 50 Rg. This itcanbeseeninFig.5themeasurementfollowwelltheprevious was performed by varying the inner and outer radius, keeping observations,andthere is an increaseof the bluepeak position allotherparametersasconstant(exceptoftherandomvelocity velocityfrom1970to1990(1995),whileafter1995,thetheblue thatwas changedaccordingly,butthis hasalso small influence peakpositionvelocityisslightlydecreasing. ontheline profiles).InFig. 6we presentedsimulatedlinepro- files. The range of the inner radius was R = 250− 600 R , inn g where the broadestline in Fig. 6 correspondsto the R =250 inn 3.2.Simulationofthelineparametersvariations R . Consequently, the outer radius was in the range of R = g out 1200−1550R forHαandR = 1000−1350R forHβ(see g out g Onecanfitthebroaddoublepeakedlineprofilestoextractsome Fig.6). disk parameters (see e.g. Eracleous&Halpern, 1994, 2004; Fromthemodelswehavemeasuredthevelocitiesoftheblue Flohic&Eracleous, 2008; Lewisetal., 2010; Jovanovic´etal., andredpeak(V andV ).Noteherethatwecouldnotobtain blue red 2010, etc.),buthere,since wehavea largesetofobservational the central peak since, as it was mentioned above, it probably data,wewilluseasimplemodeltosimulatevariationsindiffer- hasadifferentorigin,eitheritoriginatesoutsideofthedisk,orit entdiskparametersandgivesomequalitativeconclusions. isduetosomediskperturbations. Toqualitativelyexplainthechangesinthediskstructurethat Tocomparethemodeledvaluesandobservedones,weplot can cause the line parameter variations, we simulate the disk in Fig. 7 the differencebetweenthe blueand read peakveloci- emission, using a disc model given by Chenetal. (1989) and ties V −V as a functionof the blue peak velocity for Hα red blue Chen&Halpern(1989).Themodelassumesarelativistic,geo- (top) and Hβ line (bottom). The modeled values are presented metricallythinandcirculardisk(seeinmoredetailsChenetal., asfullsquares.Fig.7showsthatthemodeledvaluesareingen- 1989;Chen&Halpern,1989).Noteherethatinthismodelrela- eral agreementwith the observedones, which howevershow a tivisticeffectsareapproximativelyincludedandthelimitofthe considerablescatteringaroundthemodeledtrend.Itseemsthat inner radiusis Rinn > 100 Rg (Rg = GM/c2 – gravitationalra- theemissionofthedifferentpartsofthediskindifferentepochs dius),buttheestimatedinnerradiusinthecaseof3C390.3issig- can explain the peak position variations. In such scenario, the nificantly larger (see Flohic&Eracleous, 2008), consequently, line profile variability can be explainedas following:when we the model given by Chenetal. (1989) and Chen&Halpern have the inner radius closer to the central black hole, the sep- (1989) can be properly used, i.e. it is not necessary to include aration between peaks stays larger and the blue peak is more afullrelativisticcalculation(ase.g.inJovanovic´etal.,2010). blue-shifted,but when the inner radius is farther from the cen- To obtain the double-peakedline profiles we generated the tral black hole, the distance between peaks is smaller and the setofdifferentdisk-likelineprofiles.Forthestartingparameters blue peak is shifted to the center of the line. Note here that oftheHαlineweusedtheresultsofFlohic&Eracleous(2008). Shapovalovaetal.(2001)foundtheanticorrelationbetweenthe Theyobtainedthefollowingdiskparametersfromfittingtheob- continuumfluxandV −V intheperiod1995-1999. red blue servedHαlineof3C390.3:theinnerradiusR = 450R ,the inn g outerradiusR = 1400R ,thediskinclinationi = 27deg,the out g 4. TheHαandHβline-segmentsvariation random velocity in the disk σ = 1300 kms−1, with the emis- sivity r−q, where q = 3 is assumed. To model the parameters To see if there are any changes in the structure of the disk or for the Hβ line, we took into account the results from Paper I disk like-region,we investigatedthe light curvesfor the differ- thatthedimensionoftheHαemittingregionis∼120lightdays, entsegmentsof the Hα andHβ broademission lines. First, we and of Hβ is ∼ 95 light days, consequently we proportionally dividedthelineprofilesalongthevelocityscaleinto9segments. (95/120) rescaled the Hβ disk parameters for outer radius (i.e. The size of intervals are defined as 2000 kms−1 for segments R = 1200R ) keepingotherparametersas in the case of the from0to±3and3000kms−1forsegment±4(thesegmentsand out g Hα disk. Note here that we assumed that the inner radius for correspondingintervalsaregiveninTable2). both, Hα and Hβ is the same. It is an approximation, but one The observational uncertainties were determined for each mayexpectthattheplasmaconditions(temperatureanddensity) segmentoftheHαandHβlightcurves.Inevaluatingtheuncer- areprobablychangingfastintheinnerpartofdisk,thereforeat tainties,weaccountforerrorsduetotheeffectofthesubtraction some distance fromthe black hole,the plasma hassuch condi- of the template spectrum (or the narrow components and con- tionsthatcanemitBalmerlines(i.e.recombinationstayseffec- tinuum).We comparefluxesof pairs of spectra obtainedin the tive).Ontheotherside,atlargerdistancesfromtheblackhole, timeintervalfrom0to2days.InTable3(availableelectronically the conditionsin plasma are slowly changing(as a function of only),wepresenttheyear-averageduncertainties(inpercent)for 3 L.Cˇ.Popovic´etal.:Spectralmonitoringof3C390.3 Table1.Measurementsofthepeakpositionvelocities(blue,central,red)frommonth-averagedHαandHβprofiles. Hα Hβ Year Month blue central red V −V Month blue central red V −V red blue red blue km/s km/s km/s km/s km/s km/s km/s km/s 1996 Mar -3520±39 96±115 3840±35 7360±74 Feb-Mar -3269±136 -216±131 3773±16 7042±152 1996 Jul -3411±8 -457±100 4056±35 7467±43 Jun-Aug -3123±177 -595±7 3422±346 6546±523 1998 Feb -3390±100 2639±71 - - May-Jun -2977±112 2575±718 - - 1998 Jul-Sep -3378±7 3104±35 - - Jul -3226±74 3057±202 - - 1998 Dec -3433±22 2726±71 - - Oct-Dec -3591±177 2283±387 6359±162 9950±340 1999 Sep -3465±116 1914±56 5896±180 9361±296 Aug-Oct -3708±94 1830±201 6783±24 10491±118 2000 Jul -3747±23 2649±117 5063±133 8810±156 Jul-Nov -3854±30 1713±35 5599±87 9453±116 2001 Jan -3660±24 1665±21 4803±11 8463±35 Jan-Mar -3942±12 1874±56 5453±128 9395±140 2001 May-Jun -3714±53 2682±112 5182±88 8896±141 May-Jun -3693±8 2429±98 5673±107 9366±115 2001 Oct -3693±22 2390±66 4803±72 8496±94 Oct-Nov -3357±12 2116±151 - - 2002 Feb-Mar -3389±100 1881±41 4750±26 8139±126 Feb-Apr -2977±29 2298±36 - - 2002 Jun-Jul -3313±84 2098±21 4662±96 7975±181 Jun -3138±198 2137±67 - - 2002 Oct-Nov -3443±99 1892±36 4619±35 8062±134 Oct-Dec -3372±33 2020±15 5176±17 8548±50 2003 May -3649±23 1899±95 4695±19 8344±42 May-Jun -3810±8 2049±139 5001±100 8811±108 2003 Sep-Oct -3649±23 1773±71 4652±19 8301±42 Sep-Oct -3591±94 1727±97 4358±16 7948±111 2004 Mar-Aug -3584±8 2487±82 4500±11 8085±19 Mar-Jun -3489±50 2575±25 4357±99 7846±149 2004 Dec -3433±39 2833±70 4740±109 8173±147 Dec -3007±12 2678±5 4767±182 7773±194 2005 Apr -3563±22 2801±35 4533±35 8095±57 Apr-Jun -3170±12 2502±6 - - 2007 Jan -3682±7 1643±113 - - Jan-Feb -3591±12 1961±68 - - 2007 Feb -3703±24 1329±37 - - May-Jun -3708±12 1800±6 - - 2007 Aug-Nov -3800±8 1470±297 - - Aug-Nov -3781±32 1713±130 - - eachsegmentofHαandHβandthe correspondingmeanyear- red wing with significantcorrelation(r = 0.84, P =0.35E-15). 0 flux. We adopted the years for each line where frequency and Inothersegments,onecanseethatthechangeinthebluewing numberofobservationswereenoughtoestimateerror-bars.The inPeriodIwassmallerthanintheredone(Fig.9).Itisinterest- meanvaluesofuncertaintiesforallsegmentsarealsogiven.As ing that in the Period I, the flux of the far blue wing (-4)stays onecanseefromTable3,forthefarwings(segments±4)theer- nearlyconstant,whilethefluxoftheredpart(+4)isincreasing. rorbarsaregreater(∼30%-50%)inHβthaninHα(∼20%).But EvenifweconsiderthePeriodIwithouttheperiod2001-2002, when comparingthe errorbarsin the far red and blue wings of thecorrelationisweakandinsignificant(r=0.03,P =0.84)and 0 eachlines,wefindthattheerrorbarsaresimilar.Largererrorbars infavorofthepreviousstatement. canalsobeseeninthecentralpartoftheHαduetothenarrow To see whether there is a similar response of the line seg- linesubtraction. mentsto the continuumfluxwe constructplotsin Figs. 10 and Ourmeasurementsofline-segmentfluxesforHαandHβare 11 (Fig. 11 available electronicallyonly), where the flux of all given in Table 4 and 5 (available electronically only), respec- segmentsagainstthecontinuumfluxarepresented.Asitcanbe tively.ThelightcurvesforeachsegmentoftheHαandHβlines seeninFigs.10and11thereisarelativelygoodresponseofthe arepresentedinFig.8(availableelectronicallyonly),wherewe linesegmentstothecontinuumflux(seeplotsforthevaluesof showbluepart(crosses),redpart(pluses),core(fullcircles),and the Pearsoncorrelationcoefficientr and the nullhypothesisP 0 continuum(solidline)inarbitraryunitsforcomparison.Ascan forbothperiods).However,thelinesegments(±4)(especiallyin beseeninFig.8,thefluxesfrom0to±4segmentsofbothlines thecaseoftheHβline(Fig.10,top))inthePeriodIhaveaweak have similar behavior during the monitoring period. As a rule, response (or even absent response, in the case segment +4) to thebluesegmentsarebrighterorequaltotheredones.Onlyin thecontinuumflux.Forexample,thefluxinthefarredsegment ±4intheperiodof1997–1999theredsegmentsarebrighterthan (Hβ+4)increasesaround4-5timeswithouttheincreaseofthe theblueones.ItisinterestingthattheredandbluewingsofHβ continuumflux. in 1995–1997where with small difference in brightness, while NoteherethatintheHβsegment+4onecanexpecthigher in2006thebluepeakwasaround30%brighterthantheredone. errorsduetothesubtractionofthebright[OIII]lines.Asacon- ThevariationinlinesegmentsoftheHαandHβaresimilar, sistency check, we plot in Fig. 10 (bottom) Hα (±4) segments andtherearemoreobservationsofHβthanofHα,furtherinthe fluxesvs.continuumflux.Asitcanbeseen,thetrendissimilar analysiswe will consideronlythe segmentvariationof the Hβ as in Hβ, and also in Period I Hα segment (±4) fluxes do not line,exceptinthecaseofsegments±4,whereweconsiderboth respondtothecontinuumflux.Thismayindicatethatthereare HαandHβ. periodswhensomeprocessesinthediskthatarenotconnected withthecentralcontinuumsource. As mentioned above, there is a central peak that is proba- 4.1.Linesegmentvs.linesegmentandcontinuumvariations blycomingfromanadditionalemissionregionoriscreateddue We study the response of symmetrical line segments (-4 vs. 4, to some perturbation in the disk. Therefore we plot in Fig. 12 etc.), and as it shown in Fig. 9, there is only a weak response theline-segmentfluxesvs.thefluxofthecentralline-segment0 fromthefarbluetothefarredsegmentinPeriodI.Weplotthe (measuredbetween-1000and+1000kms−1).Asitcanbeseen bestlinearfitsforPeriodIandPeriodII,andfindthatthecorre- thereisagoodcorrelationbetweenthecentralline-segmentflux lationbetweenthefarwings(segment-4vs.segment+4)hasa andfluxesofothersegments,onlyonecanconcludethatthere- negativetendencywithlowsignificance(thePearsoncorrelation sponses was better in the Period II. Thus, it seems that in this coefficientr = −0.29,the nullhypothesisvalue P =0.13E-01), period both the disk-line and additional component effectively 0 butin the Period II there is a linear response of the blue to the respond to the continuum variation. Also, one can see that the 4 L.Cˇ.Popovic´etal.:Spectralmonitoringof3C390.3 3.5 II Ip peerrioiodd rI=-0.29 (P0=0.13E-01) 4.5 II Ip peerrioiodd 3 Fit I period rII=0.84 (P0=0.35E-15) 4 Fit I period Fit II period Fit II period 2001-2002 3.5 2.5 4 3 3 β - 2 β - H H 2.5 of of ux 1.5 ux 2 Fl Fl 1.5 1 1 0.5 0.5 rI=0.83 (P0=0.20E-18) rII=0.91 (P0=0.94E-21) 0 0 0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 Flux of Hβ 4 Flux of Hβ 3 8 8 I period I period II period II period 7 Fit I period 7 Fit I period Fit II period Fit II period 6 6 2 1 β - 5 β - 5 H H of of ux 4 ux 4 Fl Fl 3 3 2 rI=0.87 (P0=0.15E-22) 2 rI=0.90 (P0=0.84E-26) rII=0.97 (P0=0.88E-33) rII=0.97 (P0=0.11E-33) 1 1 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 1 2 3 4 5 6 Flux of Hβ 2 Flux of Hβ 1 Fig.9.Thelinesegmentvs.linesegmentresponse.TheobservationsinPeriodIaredenotedwithfullcirclesandinPeriodIIwith opensquares.Theline-segmentfluxisinunits10−14ergm−2s−1.ThePearsoncorrelationcoefficientrandthenullhypothesisvalue P aregivenoneachplotforbothperiods. 0 Table2.Thebeginningandendingradialvelocities,V andV ,fordifferentsegmentsinthelineprofilesofHαandHβ. beg end P P Psegment PP -4 -3 -2 -1 0(C) +1 +2 +3 +4 Vr P V -10000 -7000 -5000 -3000 -1000 1000 3000 5000 7000 beg V -7000 -5000 -3000 -1000 1000 3000 5000 7000 10000 end fluxoftheredpart(segment+4)inPeriodIhasaweakresponse present.ThemodeledF vs.F relationship,marked bluewing redwing to the central line-segment 0 (r = 0.58, P =0.76E-07), that is with full triangles, appears to follow the trend of the observed 0 similarasinthecaseofthesegmenttothecontinuumfluxcor- pointsin Period I but is shifted below the observedcorrelation relation(Fig.10).Thismayhavethesamephysicalreason,that pattern.Tofindthecausesforsuchdisagreement,wemeasured somekindofperturbationindiskwerepresentinPeriodI. the shift of the Hβ averaged profiles for two periods (given in Paper I) with respect to the averaged profile constructed from the modeledprofiles(fordifferentpositionsof the Hβ emitting 4.2.ModelingofthelinesegmentvariationoftheHβline disk).WemeasuredtheshiftatthecenterofthewidthoftheHβ line at half maximum and at 20% of the maximum. We found Weusedthesamemodelsasdescribedin§3.2,butnowwehave that the shift of the modeledaverage profile is +900 km s−1 at measuredtheline-segmentsfluxesforthemodeledlines,defined 20%ofthemaximumand+600kms−1athalfmaximum,while inthesamewayasfortheobservedlines.HereweplotinFig.13 themeasurementsforPeriodIare∼+700kms−1 at20%ofthe thesumof-4and-3segmentfluxesasafunctionofthesumof maximumand∼+110kms−1 athalfmaximum.InPeriodIIthe +4and+3segmentfluxesnormalizedonthecentral0segment, observedaveragedHβlinewasmoreblue-shiftedwithrespectto i.e. Fbluewing = [F(−4)+F(−3)]/F(0)vs. Fredwing = [F(+4)+ the modeledone.We found∼+310kms−1 at20%ofthe max- F(+3)]/F(0). imumand∼ -330kms−1 athalfmaximum.Thereforewe sim- ObservationsinPeriodIaredenotedwithfullcirclesandin ulated the segment variation (Fig. 13) taking into account that PeriodIIwith opensquares(see Fig.13). Also we see thatob- the whole disk line is blue-shiftedby 300km s−1 (opencircles servations in 2001 and 2002 are closer to the Period II, so we in Fig. 13), and 850 km s−1 (diamonds in Fig. 13). As can be denoted these with open triangles. It is interesting that in the seeninFig.13themodeledvalueswellfittheobservationsfrom firstperiodagoodcorrelationbetweenF andF is Period I (line blue-shifted for 300 km s−1) and Period II (line bluewing redwing 5 L.Cˇ.Popovic´etal.:Spectralmonitoringof3C390.3 I period I period 3 II period rI=0.19 (P0=0.11E+00) 3 II period rI=0.37 (P0=0.15E-02) -2-2m s] 2.5 2001-2002 rII=0.77 (P0=0.38E-11) -2-2m s] 2.5 2001-2002 rII=0.79 (P0=0.89E-12) -14βH -4 [10 erg c 1 .125 -14βH 4 [10 erg c 1 .125 Flux of 0.5 Flux of 0.5 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 F [10-15 erg cm-2 s-2 A-1] F [10-15 erg cm-2 s-2 A-1] cnt cnt 10 12 I period I period r=0.48 (P=0.12E-01) 9 II period II period I 0 -2-2m s] 78 2001-2002 -2-2m s] 10 2001-2002 rII=0.80 (P0=0.94E-05) -14αFlux of H -4 [10 erg c 23456 rI=-0.09 (P0=0.66E+00) -14αFlux of H 4 [10 erg c 2468 1 rII=0.76 (P0=0.43E-04) 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 F [10-15 erg cm-2 s-2 A-1] F [10-15 erg cm-2 s-2 A-1] cnt cnt Fig.10. The far blue (left) and far red (right) wings flux against the continuum-fluxvariation for Hβ (top) and Hα (down). The notationisthesameasinFig.9.ThePearsoncorrelationcoefficientr andthenullhypothesisvalue P aregivenoneachplotfor 0 bothperiods. 3 5 8 6.5 I period I period I period I period 2.5 II period 4.5 II period 7 II period 5. 56 II period 4 6 5 βFlux of H -4 1 .125 βFlux of H -3 23 ..2355 βFlux of H -2 45 βFlux of H -1 34.. 5534 3 2.5 1.5 0 .05 rrII=I=-00..7081 ((PP00==00..8985EE-+1020)) 0 .15 rrII=I=00..4794 ((PP00==00..1120EE--0049)) 12 rrII=I=00..8746 ((PP00==00..2160EE--1190)) 1. 512 rrII=I=00..9841 ((PP00==00..4362EE--3143)) 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 Flux of Hβ 0 Flux of Hβ 0 Flux of Hβ 0 Flux of Hβ 0 6.5 5.5 4 3 I period I period I period I period 5 .65 II period 5 II period 3.5 II period 2.5 II period 4.5 5 3 βFlux of H 1 34 ..3455 βFlux of H 2 23 ..3455 βFlux of H 3 2. 52 βFlux of H 4 1. 512 2.5 1.5 2 1 .25 rrII=I=00..9850 ((PP00==00..5878EE--3153)) 1.5 rrII=I=00..9835 ((PP00==00..4903EE--3126)) 1 rrII=I=00..7845 ((PP00==00..6265EE--1135)) 0.5 rrII=I=00..5880 ((PP00==00..7261EE--0172)) 1 1 0.5 0 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 Flux of Hβ 0 Flux of Hβ 0 Flux of Hβ 0 Flux of Hβ 0 Fig.12. The response of the line segments to the central segment 0 (from -1000 to 1000 km s−1). The observations in Period I are denotedwith fullcircles and in Period II with opensquares. The line-segmentflux is in units 10−14ergm−2s−1. The Pearson correlationcoefficientrandthenullhypothesisvalueP aregivenoneachplotforbothperiods. 0 blue-shifted for 800 km s−1). It is interesting that in Period I in thefirst period(excluding2001–2002)thevariabilitycanbe therearechangesinthelocationofdiskregionsresponsiblefor well explainedby variationof the disk positionwith respectto thelinesemission(fromR =250R toR =550R ),while theblackhole,whileinthePeriodIIand2001–2002(whenout- inn g inn g inPeriodII,theinnerdiskradiusappearstohavebeenchanged burstisstarting),probablythediskpositiondoesnotchangeso byasmalleramount(from350R to450R ).Thisindicatesthat g g 6 L.Cˇ.Popovic´etal.:Spectralmonitoringof3C390.3 much.Itseemsthatinthiscasewehavethatthepartofthedisk andredwings(around±9000kms−1)aswellastwomaximain emittingthebroadlineshasonlybecomebrighter. redandbluepart(around±6000kms−1).Thereisalsoacentral minimum(around0kms−1)thatin2001and2002ismovingto +2000kms−1, whilein 2005and2006ismovingto-2000km 4.3.2-DCCFoftheHβlineprofiles s−1.Itisinterestingthatfrom2007totheendofthemonitoring Wenowinvestigateindetailthecrosscorrelationfunction(CCF) periodonlyapeakinthebluepart(between-6000to-4000km of the line-profile variations of Hβ. We proceed in the same s−1) is dominant,while BD from-2000to +6000km s−1 tends way as it was studied the line-profile variations in Mrk 110 tobeconstanthavingvaluesbetween3.5and4.5. (Kollatschny&Bischoff,2002;Kollatschny,2003). Fig.14showsthemaximumresponseofthecorrelationfunc- 5.2.ModelingoftheBalmerdecrement tions of the Hβ line segment light curves with the continuum light curve and Fig. 15 shows the delays of the individual Hβ It is known that the BD depends on physical processes. But line segmentsin velocity space. Fig. 15 givesthe delaysof the BD asfunctionofthevelocitiesalongthe lineprofilemayalso individuallinesegmentsofHβseparatelyforthetwoobserving depend on the geometry of the Hα and Hβ emitting region, as periods: from 1995–2002(filled squares) and from 2003–2007 e.g. if the line emission regionof Hα and Hβ are notthe same (filledtriangles). onemayexpectthattheHαandHβfluxratiowillbeafunction The outer blue and red line wings show the shortest de- ofthegasvelocity.Therefore,wemodeledtheshapeoftheBD lay clearly indicatingthat the line emitting regionis connected vs.velocity. withanaccretiondisk(e.g.Welsh&Horne,1991;Horneetal., Inorderto test the influenceof the geometryto the BD vs. 2004). A carefulinspection of the delaysof the individualline velocityalongtheline,weusedmodeleddiskprofiles(see§3.2), segments in Fig. 15 indicates that a second trend is superim- butnowweconsidertwocases:a)thediskregionsemittingHα posed:Anearlierresponseoftheredlinewingcomparedtothe and Hβ have different sizes but the same inner radii that vary blue line wing is seen in Fig. 15 for the second half of the ob- accordingly(asdiscussedin§3.2);b)theinnerradiusoftheHα serving period. This behavior is consistent with the prediction emittingregiondifferfromthefixedradiusoftheHβregionby fromdisk-windmodels(Ko¨nigl&Kartje,1994). ±50R ,±100R . g g Itisintriguingthatthevery-broadlineAGN3C390.3shows OursimulationsoftheBDvs.velocityaregiveninFig.18, the same pattern in the velocity-delay maps as the narrow-line whereitcanbeseenthatthediskmodel(assumingdifferentdi- AGNMrk110(seeKollatschny&Bischoff,2002;Kollatschny, mensions of the emission disk that emits Hα and Hβ) can re- 2003).Theouterredandbluewingsrespondmuchfastertocon- produceverysimilarBDprofilesalongvelocityfield,especially tinuumvariationsthanthecentralregions. as they are observedin Period I. Thereis a differencein shape thatisprobablycausedbythephysicalconditionsinthediskas well as due to the centralcomponentemission. We foundbell- 5. BalmerDecrement(BD)variation like profiles of BD, and they also have two peaks (in red and bluepart),aswellasasmallminimuminthecenter.Theshape The ratio of Hα and Hβ depends on the physical processes in of the BD vs. velocity observed in Period II, where a peak in the BLR and variations in the Balmer decrement (BD) during thebluepartisprominent(seeFig.17),andinsomecaseshasa monitoringtime can indicate changes in physical propertiesof deeperredminimumthanblueone,cannotbeobtainedinmod- the BLR. Using the month-averaged profiles of the broad Hα eled BD vs. velocity. This may be due to the influence of the andHβlines,wedeterminedtheirintegratedfluxesintherange centralcomponent,butalso,duetotheoutburstinPeriodII,or between -10000 and +10000 kms−1 in radial velocity, i.e. the duetodifferentphysicalprocessesinthedisk. integratedfluxratioF(Hα)/F(Hβ)orintegratedBD.InFig.16 AsitcanbeseeninFig.18(bottompanel,opensquares),a we plot the time variation of the continuum flux, Hα and Hβ big difference between modeled BD vs. velocity and observed line fluxes and the BD. The BD reached its maximum in 2002 oneisinthecase wheretheHαemittingregionisclosertothe when the fluxes of lines and continuumwere in the minimum. blackholefor100R .Thisindicatesthatthediskpartemitting AsonecanseefromFig.16thereisnocorrelationbetweenBD g Hαcannottobesignificantlyclosertothecentralblackholethan andline/continuumvariation.Only,asitcanbeseeninthevery theonethatemitstheHβline. bottompanelinFig.16,whichshowsseparateBDsfortwoperi- ods(fullcirclesrepresentPeriodI,andopensquaresPeriodII), thereissometendencythattheBDishigherforweakercontin- 6. Discussion uumflux.WhenBDisplottedversusthecontinuumflux(Fig.16 bottom panel) a negativetrend seems to be present below 1.75 In this paper we performed detailed study of the line parame- ×10−15erg cm−2s−1Å−1. For higher values of the flux BD stays ter variations (peak separation, variation of the line segments, roughlyconstant.NotethatasimilarBDbehaviorwasobserved Balmer decrement)during a 13-year long period. As we noted bySergeevetal.(2010). above,thelineprofilesofthe3C390.3inthemonitoringperiod have a disk-like shape, i.e. there are mainly two peaks, where theblueoneismoreenhanced.Insomeperiods,thereisacentral 5.1.BDasfunctionofthevelocityalonglineprofile peak,thatprobablyiscomingfromanadditionalemissionregion Furthermore,weinvestigateBDsforeachlinesegment(asitwas or extra emission caused by some perturbationin the disk (see describedin§4),andplotsofBDagainstvelocityarepresentin e.g. Jovanovic´etal., 2010). In order to confirm the disk emis- Fig.17(noteherethatapartofthisFigureisavailableelectron- sionhypothesiswemodeledthepeakpositionvariationusinga icallyonly).Fig.17showssomecommonfeaturesinthetrends semi-relativisticmodel,andfoundthatpeakpositionvariations ofthedifferentlinesegmentsBDplottedvs.velocityoveranex- canbeexplainedwiththediskmodel. tendedperiodoftimerangingfrom1995to2007.Forexample, We also investigated line-segment flux variation and found for almost all observations there is a minimum in the far blue thattheratiosofthelinesegmentsarewellfittedbyadiskmodel. 7 L.Cˇ.Popovic´etal.:Spectralmonitoringof3C390.3 8 7 7 6 a/Hb) 56 Ha/Hb) 5 D(H 4 BD( 4 B 3 Year=1996.25 3 Year=1997.58 MJD=50143 MJD=50265 2 2 -10000-8000-6000-4000-2000 0 20004000 6000800010000 -10000-8000-6000-4000-2000 0 20004000 6000800010000 velocity(km/s) velocity(km/s) 6 5 5 4 b) b) H 4 H 3 a/ a/ H H D( 3 D( 2 B B 2 Year=1997.99 1 Year=1998.17 MJD=50783 MJD=50845 1 0 -10000-8000-6000-4000-2000 0 20004000 6000800010000 -10000-8000-6000-4000-2000 0 20004000 6000800010000 velocity (km/s) velocity(km/s) 8 7 7 6 b) 6 b) H H 5 Ha/ 5 Ha/ D( D( 4 B 4 B 3 Year=1998.58 3 Year=1998.71 MJD=50995 MJD=51056 2 2 -10000-8000-6000-4000-2000 0 20004000 6000800010000 -10000-8000-6000-4000-2000 0 20004000 6000800010000 velocity(km/s) velocity(km/s) 8 7 7 6 b) 6 b) H H 5 a/ 5 a/ H H D( 4 D( 4 B B 3 Year=2007.17 3 Year=2007.42 2 MJD=54132 MJD=54221 2 -10000-8000-6000-4000-2000 0 2000 4000 6000 800010000 -10000-8000-6000-4000-2000 0 2000 4000 6000 800010000 velocity(km/s) velocity(km/s) 6 6 5 b) 5 Hb) D(Ha/H 4 BD(Ha/ 34 B 3 Year=2007.67 2 Year=2007.75 MJD=54313 MJD=54344 2 1 -10000-8000-6000-4000-2000 0 2000 4000 6000 800010000 -10000-8000-6000-4000-2000 0 2000 4000 6000 800010000 velocity(km/s) velocity(km/s) 5 6 4 5 b) b) H H Ha/ 3 Ha/ 4 D( D( B B 2 3 Year=2007.83 Year=2007.92 MJD=54374 MJD=54405 1 2 -10000-8000-6000-4000-2000 0 2000 4000 6000 800010000 -10000-8000-6000-4000-2000 0 2000 4000 6000 800010000 velocity(km/s) velocity(km/s) Fig.17. Variations in the Balmer decrement(BD=Hα/Hβ) as a function of the radial velocity for month-averagedspectra of 3C 390.3.UpperpanelrepresentsBDfromtheperiodof1995–1998,andbottompanelfrom2007.Thesetwopanelsarechosensince theyrepresentthecharacteristicbehaviorofBDvs.velocity.Theabscissa(OX)indicatestheradialvelocitiesrelativetothenarrow components.Thepositionoftheblue,centralandredpeaksaremarkedwithblue,blackandpinkline,respectivelyforHα(solid line)andHβ(dashedline).Therestofthepanelsareavailableelectronicallyonly. 8 L.Cˇ.Popovic´etal.:Spectralmonitoringof3C390.3 Itisinterestingthattheresponseoftheline-segmentfluxtoline- ellipticaldisk(Flohic&Eracleous,2008)orperturbationsinthe segmentfluxisbetterinPeriodIIthaninPeriodI.Thesameisin disk(Jovanovic´etal.,2010). thecaseoftheresponseofthesegmentfluxestothecontinuum Takingintoaccountallmentionedabove,onecanspeculate flux. It seems that in Period I, the variability in the line profile aboutthe BLR structure and the nature of these variations.Let was not caused only by an outburstin the ionizing continuum, usconsiderthat,inprinciple,thereisanaccretingmaterialthat but also by some perturbations in the accretion disk (see e.g. is optically thick, and the lightfrom a centralsource is able to Jovanovic´etal., 2010). While in Period II, it could be that the photoionize only a small thin region above (below) the accret- disk structure is not changing much and that the variability in ingmaterial(orthickdisk,seeFig.19),letuscallthisregiona the line parameters is primarily caused by the outburst in the “disk-likebroadline region”(disk-likeBLR1). Emittinggasin continuum. thisregionhasdisk-likemotion,sinceitislocatedinthediskpe- TheBalmerdecrementasafunctionofthecontinuumhasa ripheryandfollowsthediskkinematics.Thebrightnessofbroad decreasingtrendinPeriodI(withtheincreaseofthecontinuum) lines which are coming from this region will be caused by the and is constant in Period II. Also, there is a different shape of centralionizingcontinuumsource,but the line parameterswill theBDvs.velocityindifferentperiods.Thecharacteristicshape dependon the dimensionsof the regionas well as the location of the BD vs. velocity has two peaks (blue and red) which do of the BLR1 with respect to the central black hole. Of course, notcorrespondto the line peaks(they are in the far wings, see other parameters as e.g. emissivity or local velocity dispersion Fig.17),thereareminimainthefarblueandredwing,aswell canslightlyaffectthelineprofiles,butitseemsthatthechange as a minimum in the center. The shape of the BD vs. velocity intheinner/outerradiusisthemostimportant. is similar to what we expectfrom an accretion disk, where the The shape of the broad lines confirm the disk-like geome- dimensions of the disk for Hα and Hβ are different. In the pe- try,andcorrelationbetweenthebroad-lineandcontinuumfluxes riod(PeriodII)ofthehighestbrightenersinthecontinuumand confirmstheinfluenceofthecentralsourcetothelineintensity inlines,theBDvs.velocityshapesshowabluepeakandmore- (seePaperI).TheopticalcontinuumandtheHβfluxvariations less flat red part, that is probably caused by some other emis- areprobablyrelatedtochangesintheX-rayemissionmodulated sion, additional to the disk one, and also by different physical byvariableaccretionrate,i.e.thechangeofthesurfacetempera- conditionsinthesetwosub-regions.Ourmodeledshapesofthe tureofthediskasaresultofthevariableX-rayirradiationUlrich BD vs. velocity show that the case of the disk emission where (2000). But question is, what can cause the changes in the di- the dimensions of the Hα and Hβ emitting disks are different, mension(aswellinposition)ofthebroadlineemittingregion? can explain bell-like shapes of the BD vs. velocity. Note here It is obvious that it is not the continuum flux, since the varia- thatwedidnotconsiderphysicalprocessesintheemittingdisk tioninthecontinuumdoesnotcorrelatewiththelineparameter whichcanaffecttheshapeoftheBDvs.velocity.Comparingthe variation. dimensionsofthedisk,wecametothesameconclusionasfrom The variation in the line parameters may be related to the the CCF (see Paper I), that the Hα emitting disk is larger than perturbationsin the accreting material that is feeding the disk- theHβone,butalsothattheinnerradiusofbothdisksseemsto like BLR with scattered gas. The density and optical depth of besimilar. suchgasfromtheaccretingmaterialmaycausethatindifferent epochsthedisk-likeBLRhasdifferentdimensionsandpositions 6.1.VariabilityandtheBLRstructureof3C390.3 withrespecttothecentralblackholes.As,e.g.ifscatteredmate- rial(gas)fromaccretingmaterialisabsentinsomeparts,itwill Beforewe discuss theBLR structure,letusrecallsome results affect the line parameters similar as change in the dimensions thatweobtainedinPaperIandinthispaper:i)theCCFanalysis (position)ofthedisk-likeBLR. shows that the dimension of the BLR that emits Hβ is smaller than one that emits Hα; ii) there is a possibility that there are On the other side, the observed broad double-peaked lines quasi-periodicoscillations,whichmaybeconnectedwiththein- haveablue-shiftwithrespecttothemodeledone.Thismayindi- stabilityinthediskordisk-likeemittingregion;iii)concerning catethatthereissomekindofwindinthedisk,probablycaused thelineprofilevariations,thevariabilityobservedin13-yearpe- by the radiation of the central source. Recently Tombesietal. riod can be divided into two periods, before and after the out- (2010) performed an uniform and systematic search for the burstin2002;iv)therearethreepeaks,twowhichareexpected blueshifted Fe Kα absorption lines in the X-ray spectra of 3C inthediskemission,andone-central,thatisprobablycoming 390.3observedwithSuzakuanddetectedabsorptionlinesaten- fromdiskperturbationsorfromanadditionalemittingregion;v) ergiesgreaterthan7 keV. Thatimpliesthe originof the Fe Kα the shapesof Hβand Hαobservedin the same periodare sim- is in the highly ionized gas outflowing with mildly relativistic ilar,especiallyinPeriodI(noteherethatinPeriodII,thereare velocities(inthe velocityrangefrom0.04to 0.15lightspeed). differences in the center and red wings); vi) our simulation of Taking into account that the optical line emission is probably the variability, taking into account only different disk position originatingfartherawaythanthe X-ray,onecan expectsignifi- with respectto the centralblack hole, can qualitativelyexplain cantlysmalleroutflowvelocitiesintheopticallines. theobservedbroadlineparametervariations;vii)comparingthe One can expect that perturbations in the thick disk (or ac- shiftsofthemodeledandobservedHβline,wefoundthatthere cretingmaterial)canaffecttheemittingdisk-likeregion.Itmay isablue-shiftintheobservedHβcomparingtothemodeledone, cause some perturbation or spiral shocks in the disk-like BLR thatisalsodifferentintwoperiods:around300kms−1inPeriod (see e.g. Chakrabarti&Wiita, 1994; Jovanovic´etal., 2010). Iandaround850kms−1 inPeriodII;viii)theinspectionofthe Chakrabarti&Wiita (1994) found that the observed variability delaysoftheindividuallinesegments(see§4.3)indicatespres- ofthedouble-peakedbroademissionlines(seeninsomeactive enceofadiskandalsoawind,i.e.thedisk-windmodelmaybe galacticnuclei)canbeduetotheexistenceoftwo-armedspiral presentintheBLRof3C390.3. shocksintheaccretiondisk.Usingthismodeltheysuccessfully Additionally, note here that the disk-like structure of the fittedtheobservationsof3C390.3madeatdifferentepochswith 3C 390.3 BLR is favored in several recent papers (see e.g. self-similar spiral shock models which incorporate relativistic Flohic&Eracleous, 2008; Jovanovic´etal., 2010) assuming an corrections. 9 L.Cˇ.Popovic´etal.:Spectralmonitoringof3C390.3 Alternatively,Jovanovic´etal.(2010)fitted theobservations tinuum influence on the line intensities (especially in the far of 3C 390.3 from different epochs with a model that includes wings),therewastheadditionaleffectthatinfluencethelinepro- moving perturbation across the disk. The perturbations/shocks files and intensities. Probably it was caused by some perturba- in the disk model can explain different line profiles, and also tionsorshocksinthedisk-likeBLR(Chakrabarti&Wiita,1994; the central peak (see e.g. Jovanovic´etal., 2010). But the cen- Jovanovic´etal.,2010)thatproducedchangesinthestructureof tral peak might be emitted from a broad line region that does thedisk-likeBLR. notfollowthediskgeometry,itmaybeverysimilartothetwo- component model, i.e. that we have composite emission from thedisk andanadditionalregion(seee.g.Popovic´etal., 2004; 7. Conclusions Ilic´etal.,2006;Bonetal.,2009).Also,Arshakianetal.(2010) considered that the BLR of 3C390.3 has a complex structure In this paper, we present line profile variations of 3C 390.3 in composedfromtwocomponents:1)BLR1–thetraditionalBLR a long period. Due to the change of line profiles, we divided (Accretion Disk), 2) BLR2 – a sub-region (outflow) that sur- theobservationsintotwoperiods(beforeandaftertheminimum rounds the compact radio jet. In this paper the existence of a in 2002: Period I and II, respectively) and found difference in jet-excited outflowing BLR is suggested, which may question thelinesegmentsandBalmerdecrementvariationsinthesetwo thegeneralassumptionofavirializedBLR. periods. From our investigation, the main conclusions are the Itisinterestingthatthecentralcomponentispresentduring following: the whole monitoringperiod,and that in 1995–1996it was lo- i) the line profiles during the monitoringperiod are chang- catedinthecenter,andafterthatshiftedtothetheredpartofline. ing, always showing the disk-like profile, with the higher blue Suchredshiftis notexpectedif thereis anoutflowin theBLR. peak. There is also the central peak that may come from the But let us recall the results obtained in the study of dynamics emissionregionadditionaltothedisk,butasitwasmentionedin oftheline-drivendisk-wind,wherekinematicsofthegasshows Jovanovic´etal.(2010),itmayalsobecausedbytheperturbation thatbothinfallandoutflowcanoccurindifferentregionsofthe inthedisk. windatthesametime(seeProgaetal.,1998,2000),whichde- ii) thefar-wingsflux variationin the first period,wherethe pendsonradiationforce.Also,recentlyGaskell(2009)reported far-red wing flux does not respondwell to the continuumflux, aboutthepossibilitythataninflowispresentintheBLRofAGN. isprobablycausedbysomephysicalprocessesintheinnermost Finally, one can consider a model as given in Fig. 19: the part of the disk. The observed changes in Hα and Hβ may be disk-likeBLR1followsthekinematicsoftheaccretingmaterial, interpretedintheframeworkofadiskmodelwithchangesinthe and from time to time perturbations can appear in this region locationandsizeofthedisklineemittingregions.InPeriodII, (similar as in the fully accretion disk). The emitting gas in the the good correlation between the continuum and line-segment BLR1 is coming (ejected) from the accretingmaterial and it is flux suggests that the brightness of the disk is connected with ionized by the centralsource. The radiation pressure may con- the ionizing continuum,and that the structure of the disk does tributeinsuchwaythatwehaveawind(anoutflow)inthisre- notsignificantlychange. gion. There may be also a region above the disk-like BLR1 (a BLR2inFig.19),wheretheionizedgasmayhavemotionwith iii)Balmerdecrementisalsodifferentforthesetwoperiods. respecttothecentralblackhole,anddependingontheradiation InthefirstperiodtheBDdecreaseswithcontinuumflux,while pressurethevelocitiesaredifferentindifferentperiods. in the second period the BD stays more-less constant (around 4.5). The segment BD shows two maxima (around ±6000 km s−1) which do not correspondto the red and blue peak, but in- 6.2.Differentnatureofvariationinbroadlinesof3C390.3 steadtheyarefartherintheblueandredwing(thanpeaksveloc- It is interesting to discuss the difference between the variation ities). Also oneminimumaroundzero velocityis present. This minimumchangedpositionbetween±2000kms−1 aroundzero in PeriodI andPeriodII.Itis obviousthatthe disk-parameters velocity.Thiscentralminimum(aswellasshiftedmaxima)may variationcanexplaintheobservedline-parametervariations(as becausedbytheadditional(totheaccretiondisk)emissionthat e.g.inthepeakseparationandline-segmentfluxesvariations).In perhapsispresentinthe3C390.3broadlines.Theseresultssug- Period I, there were several quasi-periodicallow-intensity out- gestthat,in additionto the physicalconditionsacrossdisk,the bursts(seePaperI),anditseemsthattheline,andconsequently sizeoftheHαandHβemittingregionsofthediskplaysanim- thedisk-likegeometricalparametersarechanged.Itmaybethat portantrole.Wemodeledbell-likeBDvs.velocityprofilesinthe in this period the outbursts are caused by some perturbations casewhentheHαdiskislargerthanHβone. in the disk (in the inner part that emits the X-ray radiation as wellasintheouterpartemittingthebroadlines).Thesepertur- iv)thevariationobservedinthelineparameterscanbewell bationsaffectedthelineprofilesandprobablypartlylinefluxes modeledifoneassumeschangesinpositionoftheemittingdisk (especially in the far wings). As it can be seen from modeled withrespecttothecentralblackhole.Theemissionofthedisk- variationtheinner/outerradiusissignificantlychanged. like region is dominant, but there is the indication of the addi- In the Period II, there is a strong outburst, that caused the tional emission. Therefore, to explain the complex line-profile increaseofthebrightnessinthecontinuumandlines.Thelines variabilityoneshouldconsideracomplexmodelthatmayhave stay brighter, but the structure (inner/outerradius) of the disk- adiskgeometrytogetherwithoutflows/inflows(seeFig.19). likeregionisnotchangingmuch.Thereisadifferentresponseof An important conclusion of this work is that, even if the thecontinuumtothelinesegmentsinPeriodIandPeriodII,i.e. disk-like geometryplaysa dominantrole,the variabilityof the inPeriodIIthereisahighercorrelationsbetweenthecontinuum Hα and Hβ line profilesand intensities (and probablypartly in andline-segmentfluxes. thecontinuumflux)hasdifferentnaturefordifferentperiods.It Ontheotherhand,theBDinPeriodIhasadecreasingtrend seems that in Period I, the perturbation(s) in the disk caused with the increase of the continuum flux, while in Period II, it (at least partly) the line and continuum amplification, while in staysalmostconstant.Thismayindicatedifferentnatureofthe Period II the ionizing continuum caused the line amplification variability. It seems that in Period I, beside the ionizing con- withoutbigchangesinthedisk-likestructure. 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.