ebook img

Spectral modelling of the "Super-Chandra" Type Ia SN 2009dc - testing a 2 M_sun white dwarf explosion model and alternatives PDF

0.97 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Spectral modelling of the "Super-Chandra" Type Ia SN 2009dc - testing a 2 M_sun white dwarf explosion model and alternatives

Mon.Not.R.Astron.Soc. (2012) (MNLATEXstylefilev2.2) Spectral modelling of the “Super-Chandra” Type Ia SN 2009dc – testing a 2 M white dwarf explosion model and alternatives ⊙ Stephan Hachinger1,2, Paolo A. Mazzali1,2, Stefan Taubenberger2, Michael Fink3,2 Ru¨diger Pakmor4,2, Wolfgang Hillebrandt2, Ivo R. Seitenzahl3,2 2 1 1IstitutoNazionalediAstrofisica-OAPd,vicolodell’Osservatorio5,35122Padova,Italy 0 2Max-Planck-Institutfu¨rAstrophysik,Karl-Schwarzschild-Str.1,85748Garching,Germany 2 3Universita¨tWu¨rzburg,Emil-Fischer-Str.31,97074Wu¨rzburg,Germany 4HeidelbergInstituteforTheoreticalStudies,Schloss-Wolfsbrunnenweg35,69118Heidelberg,Germany p e S arXivv1,2012Sep06.Thedefinitiveversionwillbeavailableatwww.blackwell-synergy.com. 6 ] R ABSTRACT Extremely luminous, “super-Chandrasekhar” (SC) Type Ia Supernovae (SNe Ia) are as yet S an unexplainedphenomenon.We analyse a well-observed SN of this class, SN 2009dc, by . h modelling its photospheric spectra with a spectral synthesis code, using the technique of p “Abundance Tomography”.We present spectral models based on different density profiles, - correspondingtodifferentexplosionscenarios,anddiscusstheirconsistency.First,weusea o r densitystructureofasimulatedexplosionofa2M⊙rotatingC-Owhitedwarf,whichisoften t proposed as a possibility to explain SC SNe Ia. Then, we test a density profile empirically s a inferredfromthe evolutionof line velocities(blueshifts).This modelmay be interpretedas [ a core-collapse SN with an ejecta mass of ∼3M . Finally, we calculate spectra assuming ⊙ an“interactionscenario”.Insuchascenario,SN2009dcwouldbeastandardWDexplosion 1 withanormalintrinsicluminosity,andthisluminositywouldbeaugmentedbyinteractionof v 9 the ejecta with a H-/He-poorcircumstellar medium.We find that noneof the models tested 3 easilyexplainsSN2009dc.Withthe2M⊙WDmodel,ourabundanceanalysispredictssmall 3 amountsof burningproductsin the intermediate-/high-velocitypartof the ejecta (v&9000 1 kms−1).However,intheoriginalexplosionsimulations,wherethenuclearenergyreleaseper . unitmass is large,burnedmaterialis presentat highvelocities. Thiscontradictioncan only 9 0 beresolvedifasymmetriesstronglyaffecttheradiativetransferorifC-Owhitedwarfswith 2 massessignificantlyabove2M⊙exist.Inacore-collapsescenario,lowvelocitiesofFe-group 1 elementsareexpected,buttheabundancestratificationinSN2009dcseems“SNIa-like”.The : interaction-basedmodellookspromising,andwehavesomespeculationsonpossibleprogen- v itor configurations. However, radiation-hydrodynamicssimulations will be needed to judge i X whetherthisscenarioisrealisticatall. r Keywords: supernovae:individual(SN2009dc)–supernovae:general–techniques:spec- a troscopic–radiativetransfer 1 INTRODUCTION dependently of distance. Empirical calibration procedures exploit this,allowingfortheconstructionofaccurateSNHubblediagrams. TypeIasupernovae(SNeIa)aresubjecttovigorousresearchow- The fact that SNe Ia constitute a relatively homogeneous ingtotheirrelevancetodifferentfieldsofastrophysics.Theirpro- SN subclass is usually explained by the homogeneity of their duction via different paths of binary evolution is investigated in progenitor systems, which are supposedly carbon-oxygen white detail (e.g. Ruiteretal. 2009; Claeysetal. 2010; Podsiadlowski dwarfs (WDs) in binary systems. In the “classical” single- 2010),asistheirimpactongalaxies(e.g. Scannapiecoetal.2008; degenerate Chandrasekhar-mass scenario, one WD explodes af- Tangetal. 2009). Most prominently they are used today in cos- ter having accreted matter from a companion star. A thermonu- mological studies (e.g. Perlmutteretal. 1997; Riessetal. 1998; clear runaway occurs when the WD is close to the stability Perlmutteretal.1999;Astieretal.2006;Wood-Vaseyetal.2007) limit(Hillebrandt&Niemeyer2000),i.e.itsChandrasekhar mass tomeasureluminositydistances.SNeIashowdifferencesintheir (MCh,non-rot∼1.4M⊙ withoutrotation).Numericalsimulationsof intrinsicluminosity.Observationshave,however,shownthatthelu- such explosions have been successful in explaining the “leading- minosityofeachobjectcanbeestimatedfromitslightcurveshape order” homogeneity in the observations, and also part of the di- (e.g. Phillips 1993; Phillipsetal. 1999), which is measurable in- versityamongtheobjects(Mazzalietal.2007;Kasenetal.2009). ©2012TheAuthors.Journalcompilation©2012RAS 2 Hachingeret al. ThemostimportantvariationinthepropertiesofSNeIaiscaused Hachingeretal.2009)fromdatatakeninthephotosphericphase, byadifferentefficiencyinproducing56Ni,whichpowerstheop- whenthecoreoftheejectaisopaquetoopticalradiation.Assuming tical light curve through the radioactive decays 56Ni → 56Co → differentdensityprofilesandrisetimes,weinferabest-matching 56Fe. abundance structure,respectively, byfittingtheobservations with Despite the success of standard explosion models, peculiar synthetic spectra. Comparing models based on different assump- SNe Ia, discovered in increasing numbers (e.g. Filippenkoetal. tions, we assess the applicability of different explosion scenarios 1992; Phillipsetal. 1992; Lietal. 2003; Howelletal. 2006), are byjudgingthefitqualityandthephysicalconsistencyofthemod- difficult to explain thus far. Meanwhile, the precision of cosmo- els. logical studies based on SNe Ia has significantly increased. In Below (Sec. 2), we first give a relatively extended overview this situation, we have to clarify what mechanisms can produce ofourmethodology asitisrelevanttothepresentwork.Wethen SNe Ia in order to avoid errors in SN cosmology which could showatomographymodelbasedonadensityprofilerepresenting be caused by populations of peculiar SNe (cf. e.g. Foleyetal. theexplosionofa2.0M⊙rotatingwhitedwarf,andanothermodel 2010). Within the “classical” single-degenerate Chandrasekhar- basedonanempiricallyconstructed 3.0M⊙ densityprofile(Sec- mass scenario, there is the possibility of having an “supermas- tions3and4).Finally,wepresentathirdtomographyexperiment sive”whitedwarfasprogenitor,whichisstabilisedbyrotation(e.g. with a more speculative set-up: we model the spectra assuming Steinmetzetal. 1992; Yoon&Langer 2005; Howelletal. 2006; thattheSNisaChandrasekhar-massexplosion(ofanon-rotating Pfannesetal. 2010a; Fink 2010; Hachisuetal. 2012, Fink et al. WD)where some light is“externally” generated through interac- 2012 in prep.). Also other explosion scenarios are re-considered tionoftheejectawithasurroundingmedium(Sec.5).Wediscuss toproduce peculiar and even normal SNeIa–most prominently, allourmodelsintermsofconsistencyandtheoreticalinterpretation thedouble-degenerate/WD-merger scenario(Pakmoretal.2010a) (Sec.6)beforeweconclude(Sec.7). andthesingle-degeneratesub-Chandrasekhar scenario(Finketal. 2007,2010;Simetal.2010),whereaHeshellaroundtheWDdet- onatesandtriggerstheexplosionofthestar.Furthermore,thereare relativelynew,somewhat“exotic”SNIamodels(e.g.Bravoetal. 2 METHODANDDATA 2009). 2.1 Radiative-transfercode On the observational side, one prominent SN Ia subclass waiting to be explained are the “super-Chandrasekhar mass” ob- We use a 1-D stationary Monte-Carlo radiative-transfer code jects [SC SNe Ia – Howelletal. (2006); Hickenetal. (2007); (Abbott&Lucy1985,Mazzali&Lucy1993,Lucy1999,Mazzali Scalzoetal. (2010), and references below; the designation refers 2000andStehleetal.2005)tocalculatesyntheticSNspectrafrom totheChandrasekharmassfornon-rotatingWDs].Theearly-time agivendensityandabundanceprofile. spectraoftheseSNeresemblethoseofotherSNeIawhiletheirlu- The code computes the radiative transfer from an assumed minosityisabouttwicetheaverage(Howelletal.2006).According photospherethroughtheSNejectaatagivenepoch.Aninitialden- toArnett’srule(Arnett1982),56NimassesofmorethanaChan- sityprofileisusedtocalculatethedensitieswithintheejecta,as- drasekhar massarerequiredtoexplaintheluminosityofsomeof suming homologous, force-free expansion. This expansion phase theseobjects.Aluminositypredictionfromthelight-curveshape, commencesshortlyafterexplosioninmostSNmodels[e.g.Ro¨pke usingtherelationofPhillipsetal.(1999),failsatleastforsomeSC (2005);cf.however Sec.5.1],sothat r=v×t holdsforeach SNe(Taubenbergeretal.2011).Possibly,partoftheluminosityof particleatalltimesrelevanttothisworkingoodapproximation(r: SC SNe comes from energy sources other than 56Ni decay, such distancefromthecentre,t:timefromexplosion,v:velocityatthe asinteraction of theejectawith circumstellar material. Themore onsetofhomologousexpansion).Radiusandvelocitycanthenbe conventionalparadigm,however,isthatSCSNeIaaremoremas- usedinterchangeablyasspatialcoordinates. sivethannormalobjects(possiblytheresultofarotatingprogenitor Fromthephotosphere, whichislocatedat anadjustablev , ph WD), and produce more 56Ni than a Chandrasekhar-mass explo- continuousblackbodyradiation[I+=B (T ),whereI+ isthe ν ν ph ν sioncoulddo(Howelletal.2006).Inanycase,in-depthanalyses specific intensity in outward directions, and B (T ) the specific ν ph ofobservationswithradiativetransfermodelsareneededtobetter intensity according to the Planck law at temperature T ] is as- ph understandSCobjects. sumedtobeemittedintotheatmosphere.Notabledeviationsfrom In this work, we study the recent SC SN 2009dc, which thisapproximationtothefluxintheinnerlayersappearinthered reached a peak M ∼ −20 and exploded in a tidal bridge be- andinfrared,whereadiscrepancyinthefluxlevelofsyntheticto bol tweentwogalaxies(UGC10063/64,typesS0/SBd).Observations observedspectrathereforeissometimesunavoidable. withanextraordinarilygoodtimecoverageareavailableforthisSN The photon packets simulated undergo Thomson scattering (Yamanakaetal. 2009; Tanakaetal. 2010; Silvermanetal. 2011; and interactions with lines, which are treated in the Sobolev ap- Taubenbergeretal.2011).Atmaximumlight,SN2009dchasspec- proximation. A downward branching scheme ensures a good ap- tralpropertiessimilartoSN2003fg(Howelletal.2006),andthere- proximationtothebound-boundemissivity.Radiativeequilibrium fore is representative at least for part of the SC objects. Other isenforcedbyconstruction(Lucy1999)oftheMonte-Carlosimu- SC SNe are different to some degree. For example, SN 2007if lation.Theexcitationandionisationstateofthematteriscalculated (Scalzoetal. 2010) shows higher-temperature spectra and some- fromtheradiationfieldstatisticsusingamodifiednebularapprox- whathigherlinevelocities(asalsoSN2006gz,Hickenetal.2007). imation(Mazzali&Lucy1993;Mazzali2000).Inthisapproxima- Thereasonsfor thisdiversity areunclear, asisthetheoreticalin- tion,thegasstateineachradialgridcellismostlydeterminedfrom terpretationofSCSNe.Weusearadiative-transfercodetomodel aradiationtemperatureT andadilutionfactorW.T corresponds R R theobserved spectraofSN2009dc, inferringejectadensitiesand tothemeanfrequencyoftheradiationfieldandW parametrisesits abundances. The method we employ (Abundance Tomography, energydensity(forgivenT ).Weiterateexcitation,ionisationand R Stehleetal.2005)hasproved suitableforinferringtheproperties theradiationfieldinturnuntiltheT valueswithintheatmosphere R ofquitediverseSNe(e.g.Tanakaetal.2011,Mazzalietal.2008, areconvergedtotheper centlevel.Withintheseiterations,T is ph ©2012TheAuthors.Journalcompilation©2012RAS,MNRAS Spectroscopicanalysisof SN2009dc 3 automatically adjusted in order to match a given bolometric out- thefreedomtheseconstraintsgiveus(roughly±1000kms−1),we putluminosityL .Thus,thephotospheric luminosityisadapted choosev suchthatweobtainanoptimumfit. bol ph so as to compensate for reabsorption of radiation, which occurs During the fitting process, we assess and take into account whenpacketsre-enterthephotosphere.Afterthetemperatureitera- additional effectsof L and v onthestrength of spectral lines bol ph tions,theemergentspectrumiscalculatedbyformalintegrationof viatheplasmastate.Alowerv tendstomaketheradiationfield ph thetransferequation(Lucy1999),usingasourcefunctionderived bluer at least in parts of the atmosphere (cf. above). This results fromtheMonteCarlostatistics. inhigher radiation temperatures and an increased ionisation (and occupationofexcitedlevels).AhigherluminosityL makesthe bol radiationfieldstrongerandbluer,withthesameresult. 2.2 Spectralmodels To summarize, a “SN model” from which our code calculates a syntheticspectrumisspecifiedbythedensityprofile,theabundance 2.2.3 Timet–sensitivityofthemodelontherisetime stratification,theluminosityL ,thephotosphericvelocityv and bol ph thetimefromexplosiont. Thetimefromexplosiontmustbedeterminedfromtherespective Spectral modelling means adjusting thismodel toobtain the observational epoch [usually given relative to B-band maximum bestpossiblematchofsyntheticandobservedspectrum;themodel (B max.)]andtheassumed1 risetimetr,inwhichtheSNrisesto parameters will then represent the SN properties. Usually, a spe- Bmax.afterexplosion. cificdensityprofileandrisetimeisassumedbeforestartingtofit When the density distribution in velocity space is kept con- thespectra. Below, webriefly discuss how thevarious remaining stant2, and tr is changed, the spectrum shows an overall shift of parametersinfluencetheradiativetransferandthespectra,andwe linevelocities(meanblueshifts)forthefollowingreasons: describeourgeneralstrategyforfittingtheobservations,including • Modelswithasmallert(smallert)usuallyhavephotospheres thetomographytechnique. r athigherv .Withthemorecompactejecta,thehigherv is ph ph necessaryinordertoavoidexcessivebackscatteringandatoo 2.2.1 Abundancesandtheirimprintonthespectrum bluespectrumoftheoutgoingradiationatthelowerboundary (whenahighluminosityisemittedfromasmallphotosphere). Thepart oftheabundance structurerelevant fortheSNspectrum Thehigherv thenleadstosomeincreaseoflinevelocities. ph varieswiththeepoch(seealsoSec.2.2.5).Foreachmodel,onlythe • The ejecta are more compact for a smaller t , since abundancesabovethephotosphere(i.e.atv>v )arerelevant. r ph r=v×t, where t is the sum of t and the epoch (relative The abundances of intermediate-mass elements (IME, e.g. r toB maximum).Therefore,forasmallert theenergyden- Mg,Si,S,Ca)normallyinfluencethestrengthofindividualspectral r sityoftheradiationfieldinsidetheejectatendstobelargerat features.Incontrast,mostFe-groupelementsdonotleavedistinct anygivenvelocityv(withL keptconstant).Thezonewhere featuresintheopticalspectra.Theyratherinfluencethespectrum bol ionisationislowenoughforlineformation(i.e.triply-andes- bymodulatingthelineblockingintheUVandbya“transfer”of pecially doubly-ionised species dominate) will be located at fluxtothered[viabranching,seeMazzali(2000)].Thelineblock- higherv.Thisthenreflectsinhigherlinevelocities. ing effect has the consequence of backwarming within the atmo- sphere(steepeningofthetemperatureprofile),exertinganindirect Whenreducingt belowrealisticvalues,lineformationwould influence on line strengths of all elements via the ionisation and r havetooccurintheoutermostzonesoftheejecta.Thelowdensities excitationstateoftheplasma. Thisstateisnot fixedbyinput pa- (andthestrongionisationduetothelowdensities)inthesezones rametersinourapproach,butisdeterminedsuchthatitisconsistent howeverdisfavourtheformationofprominentfeaturessuchasSiII withtheradiationfield. λ6355. As a result, the spectra of an observed object can not be explainediftoolowarisetimeisassumed. 2.2.2 InfluenceofL andv bol ph L istheparametercontrollingthefluxlevelinthesyntheticspec- bol trum.Foreachepoch,itisadaptedduringthefittingprocesssoas 2.2.4 Fittingobservedspectra to match the overall flux in the optical part of the observed (and Theprocessofspectralfittingbeginswithchoosingadensitypro- flux-calibrated) spectrum. Therefore, it is easily constrained to a fileandarisetime,whichsubsequentlyremainunchanged.Wethen reasonableprecision. iteratively determine optimum values of those abundances which Thephotosphericvelocityvph hasvarious,morecomplicated influencefeaturesontheonehand,andparametersthatcontrolthe effectsonthemodel.First,itsetsalowerlimittotheradiiatwhich temperaturestructureandthelinevelocitiesontheother.Wetryto lineabsorptioncanoccurinthesimulation.Second,itdetermines matchthespectralfeaturesaswellastheoverallflux,butifthisis theintegratedopticaldepthoftheatmosphere,whichshouldbeap- not possible simultaneously, we prefer a better fit tothe lines. In propriate(τ & 23 intherelevantwavelengthrange)eveniftheno- the present case, we sometimes allow the synthetic spectra to be tionofasharpphotosphereemittingablackbodyisquiteapproxi- tooredifotherwisethemodelatmosphereswouldbecometoohot. mativeinTypeISNe(Saueretal.2006).Foroursimulations,itis important thatthephotosphere isassumeddeepenough suchthat theassumptionofablack-bodylikeemissionatthatdepthissatis- fiedaswellaspossible.Averylowvph,however,generallyleads 1 Therisetimetrcanonlytosomedegreebeconstrainedfromtheavailable toaveryblueradiationfieldatthelowerboundary,astheemitting earlylightcurvedata[cf.Taubenbergeretal.(2011)andSec.2.4]. surfaceshrinks.Whenthisisnotfullycompensatedbyattenuation 2 Here,wemeanthatthetime-invariant densitydistribution dm(v), i.e. dv above thephotosphere, the model spectrum will be bluer. Within theexplosionmodel,iskeptconstant. ©2012TheAuthors.Journalcompilation©2012RAS,MNRAS 4 Hachingeret al. 2.2.5 AbundanceTomography 2.4 ObservationsofSN2009dc The method of Abundance Tomography (Stehleetal. 2005) ex- We analyse the luminosity-calibrated spectra of SN 2009dc of tendstheapproachoffittingonespectrum(Mazzali&Lucy1993). Taubenbergeretal. (2011). This data set samples SN 2009dc ex- ItaimsatinferringtheabundanceprofileofaSNstepbystepfrom tremelywellfrom9.4dbeforeB maximumtolatetimes.Wedo theoutertotheinnerlayers(assumingadensitystructureandarise notmodelspectralaterthan36.4dpastBmaximum.Atthisepoch time).Tothisend,onefitsatimeseriesofphotosphericspectra,in –lateforaSNIa–thephotosphererecedesdeepintothe56Ni-rich whichdifferentlayersoftheejectaleavetheirimprint.Inthepho- zoneandourassumptionofradiativeequilibriuminthesimulated tospheric phase, some core of the ejecta is optically thick at UV atmosphereeventuallybreaksdown. andoptical wavelengths. Aspectrum isthenonlysensitive tothe Asthespectraonlyshow aslowevolutionoflinevelocities, optically thin part of the ejecta. As time progresses, a larger and weexpectaverymoderatephotosphericrecessionforallourmod- largerfractionoftheejectabecomesvisible.Therefore,laterspec- els(whichisconfirmedbyouractualcalculations).Thishasanim- traaresensitivetomorecentrallayers, whiletheinfluence ofthe pact on the tomography method: if the abundance zone between outerlayersonthemissmaller. two subsequent photospheres is too thin, the zone has little in- Inordertocreateamodelfortheoutermostejectaofanob- fluenceon thespectrum, whichimpliesalargeuncertainty inthe ject,wefittheearliestspectrumavailable.Thephotosphericveloc- abundancedetermination.Inordertoavoidthis,weonlymodelthe ity,theluminosityandtheabundancesareoptimised.Inthecaseof spectraat−9.4d,−3.7d,+4.5d,+12.5d,+22.6dand+36.4d SN2009dc,weusethreeabundancezonesabovetheearliestpho- withrespecttoBmaximum,leavingouttheotheronesinbetween. tosphereinordertohavecompositiongradientsintheouterejecta, FollowingTaubenbergeretal.(2011),wegenerallyassumean allowingforanoptimumfit(cf.Sec.3.1). extinctiontowardsSN2009dcof Thespectrumatthenextepochcarriestheimprintofthemate- E(B−V) ∼E(B−V) +E(B−V) ∼0.17mag. rialintheouterenvelopeandadditionallythatofthelayerswhich tot host Gal the photosphere has receded into in the meantime. As the outer BecauseoftherelativelyshortdistancetotheSN,wecanaddup abundance structure isalready constrained, the new photospheric thereddeningvalueswithouttakingredshiftintoaccounthere.The velocity and the abundances of the newly-visible layers are now GalacticextinctiontakenintoaccountisE(B−V) =0.07mag Gal theprimaryfittingparameters.Iftheabundancesoftheouterlayers (Schlegeletal.1998),whileBurstein&Heiles(1982)givealower have a significant impact on the quality of the fit, and no decent value E(B−V) =0.04mag. The reddening due to the host Gal fitispossiblewiththevaluesinferredearlier,thosevaluesarere- galaxy carries an error of 0.08mag (Taubenbergeretal. 2011). vised(normallybylessthan30%oftheirinitialvalue)toequally Therefore,thelower-limitreddeningwithintheerrorbarsis optimisethefittoallobservations.Theprocedureiscontinuedwith laterspectrauntilthecompletetimeseriesisfitted. E(B−V)tot >0.06mag. Degeneracies,i.e.equallygoodfitswithdifferentparameters, Whilewegenerallyusethestandardvalueof0.17mag,werepeat arethemostimportantsourceofuncertaintyinthefittingprocess. someanalysesforavalueof0.06magtotesttheinfluenceonthe Abundancesnotwellconstrainedbyanearlyspectrumcansome- results. times be determined when fitting a later spectrum. The respec- The rise time of SN 2009dc has been observationally es- tive values may then undergo significant revision (> 30%). In a timated to be shorter than ∼30d and longer than ∼22d [we fewcases,thisa-posteriorideterminationdoesnotwork.Then,we follow Taubenbergeretal. (2011) here who give a larger, more assume the unknown abundances to match typical nucleosynthe- conservatively-estimatedrangethanSilvermanetal.(2011)]. sispatternswithinSNIaexplosionmodels(Iwamotoetal.1999). Mostimportantly,whenFe-groupelementsdonotleadtothefor- mationofindividualfeatures,themixofFe-groupelementsisset soastoresemblethatintheouter,intermediateorinnerzoneofthe 3 TOMOGRAPHYASSUMINGANEXPLOSIONOFAN Iwamotoetal. (1999) models as appropriate. Furthermore, in the SUPERMASSIVEWD intermediatezoneoftheejecta,Sihasbeenassumedtobethemost Ourfirstsetofmodelsisbasedonadensityprofilerepresentative abundant element, evenwhenthesezonescontributedlittletothe of an explosion of a rotating WD: we adopt the profile resulting formationofthespectralfeatures. fromthe“AWD3det”simulationofFinketal.[2012,inprep.;see alsoFink(2010)],whore-calculatedthe“AWD3detonation”model of Pfannesetal. (2010b) with improved detonation physics. The AWD3det model can be regarded prototypical for explosions of rotating, massive (2M⊙) white dwarfs. Thethermonuclear flame in AWD3det propagates as a pure detonation (shock-driven, su- 2.3 StudyofSN2009dc:concept personic combustion wave) from the very beginning. A pure de- SN2009dcisinmanyrespectsdifferenttootherSNewhichAbun- flagration(subsoniccombustionflame)inamassive,rotatingWD dance Tomography has been applied to. In particular, as it is un- wouldbelesslikelytoexplainSN2009dc,asitdoesnotproduce knownwhichexplosionmodelapplies,thedensityprofileandthe much56Ni(∼0.7M⊙),andleadstoastronglymixedcomposition risetimetrconstitutemajorelementsofuncertaintyinouranalysis. (Pfannesetal. 2010a). Delayed-detonation models for these pro- Wereflectthisinourmodellingapproach:weperformAbun- genitors,inwhichtheflameinitiallyproceedsasadeflagrationand dance Tomography three times, using different density profiles laterasadetonation(cf.Khokhlov1991),produceroughlysimilar whichrepresent different explosion types. Theaimistocompare outcomesasAWD3det,astheinitialdeflagrationinarotatingWD thedifferentmodelsintheendandtoassesstheirconsistency.Be- tendstobeweakandburnslittlematerial(Fink2010). fore conducting our final tomography, respectively, we decide on Inorder toconduct atomography analysisinspherical sym- anoptimumrisetimeforeachdensityprofile. metryasusual,wehadtoreducetheAWD3detdensityfieldtoan ©2012TheAuthors.Journalcompilation©2012RAS,MNRAS Spectroscopicanalysisof SN2009dc 5 Table 1. Rise time estimates from our spectral fits using the AWD3det W7 (reference) AWD3-det densityprofiledescribed inthetext,fordifferent values ofthereddening 3m] at t=100s (after explosion) 0 0.10 .1011 0w97dec0-.e7xp tFfcshEerioar,tao(ovlyptuBmeutmprbf−reoaneorVefilaginenln)ieadvec,caeaahnttsrlhhcddfieetuhmetlfnoeatoeotsbuetwisatdtreyhla,lrvveivapcaene∆rilltuodedyefiλn.tsoglhT−enteo.hhefcetdor∆tsherreerveλceliorsaa=ipnttsiiodeooλnnnatdsi,nymibwndneeg−etthwtvcirrλeapdhelfocnobciunsroltalhw(tuhtweemheiissatncheynhsnmλogtohpioopvebtdteitsimei,mc=lfsuoi.Ssmr6Tei1edhIra6Iiecms5λhef.oo66tdudi3Aem˚re5ntl)h5es-. ρ [g/c ρprofile [tdr] [kmvps−h1] ∆[A˚λ] t[r,do]pt 0.001 0 5000 10000 15000 20000 standard:E(B−V)=0.17mag,prog.metallicityZ∼0 velocity [km/s] AWD3det 27.5 9440 -24.9 Figure1.Densityprofiles usedforAbundance Tomography(Sections 3, 30.0 8640 -3.7 4and 5), and W7profile as a reference. The AWD3det model has been 35.0 7120 20.8 40.0 5950 42.1 31.5 converted to1D(cf.Sec.3);the09dc-expmodelisshownwithitsslope adaptedtoarisetimeof29d(cf.Sec.4.1). E(B−V)=0.06mag,prog.metallicityZ∼0 AWD3det 22.5 10610 -42.9 25.0 9100 -26.8 averaged1-Ddensityprofilebyaddingupthecellmassesintora- 27.5 7860 1.9 dialvelocitybins(Fig.1).Asphericitiesaretosomedegreeinherent 30.0 6850 17.0 27.8 inarotatingexplosionmodel(Fink2010).Wekeepthisinmindas E(B−V)=0.17mag,solarprog.metallicity acaveatforthediscussionofourresults. AWD3det 27.5 10070 -28.5 30.0 9200 -8.0 35.0 7680 19.1 3.1 Risetimeestimate 40.0 6560 38.7 32.1 WedetermineanoptimumrisetimeforourAWD3det-basedmod- elsfromthe−9.4dspectrumofSN2009dc.Theearliestobserva- aregiveninTable1.Thesevaluessampletherelationbetweent tionismost useful for thispurpose, asit ismost sensitiveon the r and∆λ,towhichwecalculatealinearfit(least-squaresmethod). assumedrisetime(therelativedifferenceint,thetimefromexplo- Wedemand∆λ=0andobtainfromthelinear-fitrelationanopti- siononset,islargestatearlyepochs). mumvaluet (seeagainTable1). Theabundance structureoftheearly-timemodelscomprises r,opt Two example models, where one can clearlysee theshift in threeabundanceshells.Thesetupallowsoptimisation,butavoids theλ6355positionwiththeassumedrisetime,areshowninFig. anoverparametrisationandremainssensibleintermsofthechem- ical structure: the models have a zone of thickness 600kms−1 2 together with the observed spectrum of SN 2009dc. A detailed discussionoftheSNspectrumandourfinaloptimummodelbased above the photosphere with some Fe-group elements (up to 15% onAWD3detisgiveninthenextSection(Sec.3.2). bymass;higherfractionsareprobablynotrealistic)andhighIME We first performed our rise time experiment assuming a to- massfraction.Abovethiszone,thereisalayerdepletedinFe-group elementsbutstillrichinIME,withathicknessof∼2000kms−1.It talextinctionofE(B−V)=0.17magandnegligibleprogenitor metallicity.Thelatterassumption, whichprovedoptimum forthe causesrelativelylittlebackscattering,suchthattemperaturedrops fitquality,hastwomainimplicationswhenmodellingtheinterme- quickly with radius and becomes favourable for the formation of diateandouterejecta:First,therearenolowerlimitstothemetal prominent linesduetosingly-ionised IME.Stillabove, theatmo- abundancesintheprogenitorWD(whichwewouldhavetorespect sphereisassumed toconsist ofaC-Omixcontaining onlytraces whendetermining theoptimumabundance structure).Second, no ofotherelements(massfractionsgenerally.10%ofthoseinthe stableFeisproducedintheouterlayerswhichundergoincomplete zone below). The photospheric velocitiesareselected such that a Si-burning in the explosion, as a pure C/O mix provides no ex- reasonable temperature structure (i.e. a large enough strength of cessneutrons(Iwamotoetal.1999).Hence,thereisnozonewhere SiII lines) results and less than two thirds of the radiation pack- stableFeisthedominantiron-groupelementdirectlyaftertheex- etsarere-absorbedduetobackscattering. Wheneverindoubt,we plosion. When the Fe-group mix cannot be determined from the choose the lowest possible photospheric velocity in order not to spectra, we therefore always assume amix of Fe-group elements artificiallysuppresstheformationoflinesdeepinsidetheejecta. whichisdominated56Nianditsdecayproductsand/orby52Cr(cf. AsdescribedinSec2.2.3,thelinevelocitiesinthesynthetic Sec.2.2.5). spectrachangewitht.Wesetupmodelsfordifferentt andcom- r r Afterwards,werepeatedtheanalysisassumingsolarmetallic- pare the positions of the synthetic and the observed SiII λ6355 feature3(measuredasinHachingeretal.2006).Precisely,therise ityandalower-than-standardreddeningE(B−V)tot∼0.06mag (seeSec. 2.4),respectively. Thisenables us toestimate theinflu- timeswehavetestedaret =21d,22.5d,25d,27.5d,30d,35d, r enceoftheseassumptionsonourstudy.Therespectiveresultsare and40d(onlythemostpromisingmodelshavebeenfinalised).For showninTable1aswell. thefourmodelswhichshowtheleastmismatch∆λintheposition For AWD3det, withstandard assumptions, the optimum rise oftheobservedandsyntheticSiIIλ6355feature,trand∆λvalues timeturnsouttobe31.5d(Table1).Evidently,optimumrisetimes frommeasured∆λvalueswillalwayscarrysomeuncertainty,from 3 SiIIλ6355velocitiesinnormalSNeareknowntobewellfittedbyour themeasurementsaswellasthemodellingmethods.Withonestep spectralmodels(e.g.Stehleetal.2005). inour tr grid, theshiftinlineposition(Table1) is,however, rel- ©2012TheAuthors.Journalcompilation©2012RAS,MNRAS 6 Hachingeret al. SN 2009dc: −9.4d Model AWD3det, t =27.5d ) r nits Model AWD3det, tr=40.0d u y SiII ar λ6355 r bit r a ( λ F 3500 4000 4500 5000 5500 6000 6500 7000 λ [ Å ] Figure2.AWD3det-basedmodelsforthe−9.4dspectrumofSN2009dcfornegligibleprogenitormetallicity andE(B−V)=0.17mag.Weshowthe modelsforthemostextremetrvalueslistedinTable1.AnoptimummodelwouldfitthevelocityoftheSiIIλ6355line(marks;inset).Withaveryshortrise time,thevelocity(blueshift)ofthesyntheticfeatureistoohigh(bluegraph);withaverylongrisetime,thevelocityistoolow(orangegraph). atively large, so that we can crudely estimate the error in our t elements(Simassfraction:15%,Fe-groupmassfraction:9%),re- r determinationtobeequalorsmallerthananaveragestepinourtr spectively.CIIλ6580appearsasaprominentlineinthespectra.It grid(3d).Wethusgivethefollowinglimitontherisetime: isreproducedusingsurprisinglylowmassfractionsofC(3%inthe outermostzone,2%everywhereelse),asthehighluminosityofthe t &28.5d. r,09dc/AWD3det SNleadstoanionisationstatefavouringCIIoverCI. A very similar limit is found for solar progenitor metallic- Our synthetic spectra are generally too red. A bluer colour ity.IfoneassumesaweakerreddeningofE(B−V)∼0.06mag, wouldhaveimpliedahighT throughouttheatmosphere.Wecan- R the optimum rise times for our models are lower. This is due to notimplementthis,asalowenoughT iscrucialforareasonable R thelowerluminosity,reducingtheionisationandallowinglinesto ionisationbalance,whichisneededtomatche.g.theratiobetween form further inside in the ejecta (i.e. line velocities as low as in theSiIIIλ4563andSiIIλ6355features. the observations of SN 2009dc can be explained by models with Withinthefirstsixdayscoveredbytheobservations,thespec- relativelyshort risetimes, cf. Sec. 2.2.3). FromTable1,we con- trumofSN2009dc doesnotevolveverymuch.Forbothspectra, clude that for E(B−V)∼0.06mag our rise time limit would the photospheric velocities are low (9050kms−1 at −9.4d and be tr,09dc/AWD3det & 24.8d. However, at present we see no com- 8300kms−1 at−3.7d)comparedtonormalSNeIabeforemaxi- pellingreasonforpreferringthelowreddeningovertheonegiven mum.ThemostprominentlinesduetoSiIIandSIIaresomewhat byTaubenbergeretal.(2011). stronger at −3.7d, but are still formed in the same atmospheric layersasbefore.Thismeansthatareduction ofIMEintheouter layershasnot onlyaneffectonthe−9.4dspectrum, butalsoon 3.2 Tomography laterones. ThesyntheticspectrabasedonAWD3detareshowninFig.3.The risetimewehaveusedfor thecalculationsis30d.Theoptimum rise time inferred above is a bit longer, but 30d is the strict up- perlimitallowedbyobservations (Taubenbergeretal.2011).The 3.2.2 +4.5dmodel code-inputparametersofourtomographymodelsarecompiledin AppendixB. Thespectrumandthemodelhavenowchangedconsiderably.Lines producedbyIMEstillgainmorestrength,astemperaturesdropin theouterlayersoftheatmosphere.Thecoresofthelinesofsingly- 3.2.1 −9.4dand−3.7dmodels ionisedIME(suchasSiII)remainatrelativelyhighvelocities(as The observed −9.4d spectrum of SN 2009dc extends down to at the early epochs). Only the low-velocity wings of the absorp- 3000A˚,wherethefluxisunusuallyhighforaSNIa.Despitethe tionsare caused by the lower layers of theejecta. InSiII λ6355 highluminosityandbluecolour,theopticalspectrumshowsstrong andintheSIIW-feature(observedaround∼ 5400A˚),theselow- signaturesofsingly-ionisedFe-groupandIMEspecies.Thesimi- velocitywingscanunfortunatelynotbereproduced, regardlessof larlyluminousSN2007ifdoesnotshowclearSiIIorSIIlinesat theabundancesassumed.Thismayindicateatoostrongionisation this epoch (Scalzoetal. 2010). This points towards smaller IME inthelowerlayersofthemodel,oratoohighphotosphericveloc- abundances or perhaps towards a higher degree of ionisation in ity, which however is required in order not to obtain a hot lower SN 2007if [cf. SN 1991T – Mazzalietal. (1995) vs. SN 1999ee boundaryspectrum. –Hamuyetal.(2002),wherevariationsinionisationarecrucial]. TheCII λ6580featureintheobserved spectrumhasshifted In the case of SN 2009dc, an optimum fit to the spectra is tomuchlower velocitiesbythisepoch. Thisclearlyindicatesthe achieved with three abundance zones in the outer ejecta (just as presenceofCinthelowerlayers.Theline’sstrengthathighveloc- described in Section 3.1). From the outside inwards, these zones ities,atthesametime,isautomaticallyreducedbecause oflower areunburned(i.e.depletedinFe-groupelementsandalsoIMEto densities and temperatures (the line originates from a highly ex- avoidCaandSihigh-velocityabsorption),somewhatricherinIME citedlevel).AnotherfeatureindicatingadropintemperatureisOI (Si mass fraction 8% inthis model) and finally in IME/Fe-group λ7773,whichbecomesdeeperintheobservationsandinthemodel. ©2012TheAuthors.Journalcompilation©2012RAS,MNRAS Spectroscopicanalysisof SN2009dc 7 CaII, SiII SiII(MgII, FeIII)III SANW D2030d9edt−cb:a−s9e.4dd model Si SII (SiII) SiII CII CII[t=E2(0B.60−dV, l)g=(L0/L.81)=79].,90, vph=9050km/s CoIII,FeIIICoIII,CrIII SN 2009dc:−3.7d AWD3det−based model, t=26.40d, lg(L/L8)=10.01, vph=8300km/s ... nits) FeIII, SII SiII SANW D2030d9edt−cb:a+s4e.5dd model, y u SiII II t=34.50d, lg(L/L8)=9.98, vph=7900km/s bitrar SiII C OI,MgII F (arλ CoIII,FeIIICoIII SiIICaII (MgII,)FeIIISiIII SN 2009dc:+12.5d AWD3det−based model, t=42.50d, lg(L/L8)=9.82, vph=7500km/s y SiIICaIICoII,...CrII,...CoII,FeII,CrII,MgII mostlyFeII (NaI, SiII)? SiII SAt=5NW2. 6D2003d,0d lg9e(Ldt/−Lc8b:)a+=9s2.6e25d., 6v pmdh=o72d0e0lk,m/s mostlCoII OI,MgII MgII CaII MgII SN 2009dc:+36.4d AWD3det−based model, t=66.40d, lg(L/L8)=9.39, vph=4700km/s 3000 4000 5000 6000 7000 8000 9000 λ [ Å ] Figure3.Sequenceofspectralmodels(redgraphs)forSN2009dc,basedontheAWD3detdensityprofile,andobservations(blackgraphs).Identificationsare givenforthemostprominentfeatures. ©2012TheAuthors.Journalcompilation©2012RAS,MNRAS 8 Hachingeret al. velocity [km/s] 3.2.3 +12.5dmodel 3000 5000 8000 11000 15000 100 a) The+12.5dspectrumshowsaconsiderabledropinUVflux.Pho- tospherictemperaturesarelower,but thelineblocking intheUV 10 also increases. The Fe-group abundances at the photosphere are hntniioaogtwnihoedenreffgotehrfceaCtenivoifesoIlIrioIntwahsneeudrpptpCrhreraevnsIisIoaIiuntisngthtsotephetpehcrfletervuasixi.onEuagsrslopyeue-picnooidnaclih∼ls,ye3fdCa5vso0to0aIutIAre˚ia.n:nDgtdhereCsepciriootInemIiatsbhraiee-- mass fraction [%] 1 AEBW−DV=3COMS0dig.e1t7−based, decreasing ionisation, the synthetic FeIII feature at ∼4300A˚ is 0.1 S Ca deepenoughtoreproducetheobservedline,assignificantamounts Ti+Cr of56Nihavedecayedinto56Fe.Noadditional54Feisassumedto F56eN0i0 bepresentinthemodels. 0.01 0 0.5 1 1.5 2 Theobservedfeaturesareallinallreproduced,withsomeex- enclosed mass [Msun] ceptions:at∼4500A˚,thereisamarkedabsorptionandre-emission featureintheobservations,whichisreproducedonlyatlaterepochs 100 b) in our models. The other exception is SiII λ5972, which is too shallow.Wesuggest thatNaI Dstartsinfluencingtheλ5972fea- turearound thisepoch. Naisnot included inour models, aspast 10 attemptstofitthefeaturehavesufferedfromdeviationsintheioni- %] saantdiodnTahtoaef,twShiihsIiIcehlλe6imn3ce5rn5eta(vsMeelsoawzcziitatyhliseehptooawclh.s.1a9T9mh7ei)so.mbsaetcrvhebdeltiwneeemnomveosdteols- mass fraction [ 1 AEBW−DV=3COMS0dig.e1t7−based, wardsthered(lowervelocities)astimeprogresses,whilethecentre 0.1 S ofthesyntheticlinedoesnotchangethatmuch.Wehavealready Ca Ti+Cr rpeemrmovite.dPaSritforfomthethveeloouctietyrmdorostplainyethrseaosbfsaerrvaesdthsepeecatrrlaiemstasypaeccttura- 0.01 F56eN0i0 allybecausedbyafeatureformingbluewards,whichgetsstronger 0 5000 10000 15000 velocity [km/s] withtimeandemitsintotheSiIIλ6355region.Judgingfromour linelist,thisisprobablyaFeIIfeature,butwedonotreproduceit withourmodels. 100 c) 3.2.4 +22.6dmodel 10 %] W7 Artlriincuthem2si2n(a.m6rFeaeddr-kgupereaodstutoipnBseFilnimeggm.lay3xe-n)iim.otsTnu.himTseeh,dbetahFmleaeon-psgchterpooortuoofpsmtpheihelneseemerneletinrnfeetescasetwuidsrietemshsoivinnsettrtolyhyeaasstzmrpooeannctge-- mass fraction [ 1 nsyunctlehCOMSoei−sgis teroftemperatureanddensitystructure. 0.1 S Ca Ti+Cr F56eN0i0 3.2.5 +36.4dmodel 0.01 0 5000 10000 15000 Remarkably,SN2009dcstillshowsaphotosphericspectrumlong velocity [km/s] aftermaximum,withav of4700kms−1at+36.4d.Thequality Figure4.AbundanceTomographyofSN2009dcbasedontheAWD3det ph ofthespectralfitsisrelativelygoodgiventhelateepoch.Theslow densityprofile.The“56Ni0”and“Fe0”linesrepresent the56Niandsta- evolution into the nebular phase indicates higher densities in the bleFeabundances directlyafterexplosion, respectively (cf.AppendixB, TableB1).Panela):abundancesinmassspace.Panelb):same,inveloc- intermediateandinnerpartcomparedtonormalSNeIa. ityspace. Inpanelc),theabundances oftheSNIaexplosion modelW7 The photospheric velocity at +36.4d is much lower than at (Iwamotoetal.1999;cf.Stehleetal.2005)fornormalSNeIaareplotted +22.6d. This jump is, however, probably not physically signifi- forcomparison.Whenassumingazero-metallicityprogenitor[modelW70, cant,andratheranartefactofthephotosphericapproximationfor Iwamotoetal.(1999)],themostsignificantchangeistheabsenceof“Fe0” suchlateepochs:anunusuallylowbackscatteringrateinthelatest- intheouterlayers,representedbythedottedpartoftherespectivecurve. epochmodelshowsthatthisapproximationbeginstobreakdown here. fractions of some per cent suffice to fit the observed CII λ6580 line,althoughitismuchstrongerthaninotherSNeIa.Cmustbe 3.2.6 Abundances present downto∼ 7500kms−1 inorder toexplaintheobserved TheabundancestratificationoftheAWD3det-basedejectamodels lowvelocityinthepost-maximumλ6580feature.Themajorityof isshowninFig.4. thematerialintheweaklyburnedzones,however,consistsofO. The outer zone (v&9650kms−1) only contains small Between∼9000and7000kms−1 IMEarehighlyabundant. amounts of IME and Fe-group elements. This corresponds to the ThemassfractionofFe-groupelementsinthislayer,between12% weaklineblockingandtherelativelyshallowfeaturesintheearly- and58%,isconstrainedbylineblockingoftheUVflux. time spectra. Due to the relatively high ionisation, carbon mass Although our model sequences extend to late epochs, we ©2012TheAuthors.Journalcompilation©2012RAS,MNRAS Spectroscopicanalysisof SN2009dc 9 mostly explore regions of incomplete burning. At velocities 100 <7500kms−1, finally, Fe-group elements start to dominate. a) These zones are sampled by the +22.6d and +36.4d spec- tra. Due to degeneracy, the data can be fitted with different Fe- 10 group abundances. Wechoose rather high massfractions, consis- %] ttt(heiavnebetul−ynw)d9iatt.ohn4gctdeehtsehsoepfrfeaccc5tot6rnNuthsmitaia.ttunwTtdehes9ets3aemb%elaesbsoFsymemferdaaicFsresteicao-tgtnlrytsohaueofp+ftee“r3l56ee6x.m4Npeldion0p”stsihoaoanntl,ordersaep“dshFpyeeer0icen”-. mass fraction [ 1 AEW(BD−V3COMSd)ig=e0t−.0b6asmeadg, 0.1 S “Fe ” is only present deep inside our model ejecta, as our mix Ca 0 Ti+Cr obfleFthe-eglroowup-meelteamlliecnittsyWhas7-bbeaesendsneutculepos(cyfn.thSeesci.s2c.a2lc.5u)lattoiorneWsem70- F56eN0i0 0.01 (Iwamotoetal.1999). 0 5000 10000 15000 velocity [km/s] WithrespecttotheW7/W70nucleosynthesis(seeFig.4c),all burningproductsarefoundatmuchlowervelocitiesinSN2009dc. 100 Asafurtherdifference,the“abundancemixing”isbitstrongerthan b) thatofW7,ashasalsobeenfoundintomographystudiesofother SNeIa(Stehleetal.2005).InSN2009dc,weseeCinfairlydeep 10 layers,andneedsomeFe-groupmaterialintheouterzonestore- %] pbsthiurteoirvndsieuptdyceecaotnrfthadtehcFeasenps-egpacreltoscrouatrpabeealoarnrylyeeptrhorseo.nd.EIuMIxcMceEedEpmtwmafiosathsrtesftrhroiaaemcltoeiisuomtnpeorrierslesaelyidnmeotrwisit,nendt-htm.heTeixshuieunnnsg--, mass fraction [ 1 AsoWlaDr 3COMSmdigeetta−lblicaistyed, ofO,attheexpenseof Si.StricterlimitsontheOabundances in 0.1 S Ca thelowerlayersmaybededuced infurther studiesmodellingthe Ti+Cr nebularspectraofSN2009dc. F56eN0i0 Thecumulativechemicalyields(totalmassofC/O,IMEand 0.01 0 5000 10000 15000 Fe-group elements) of all our models are given and discussed in velocity [km/s] Section6.2. Figure5.Influence ofreddening andmetallicity onthe AWD3det-based tomography (plots in velocity space). Panel a): abundances inferred for the lower limit reddening E(B−V)∼0.06mag and low metallicity. 3.3 Abundanceprofilesandassumptionson Panelb):sameforE(B−V)∼0.17mag(normal),butsolarmetallicity metallicity/reddening (i.e.highermetallicitythaninourstandardmodel).TheabundancesofO, WerepeattheAWD3det-basedtomographyforalowerreddening Si,“Fe0”and“56Ni0”inthestandardmodel[E(B−V)∼0.17mag,low metallicity–cf.Fig.4]areplottedasthick,lighterlinesforcomparison. E(B − V)∼0.06mag and solar progenitor metallicity, respec- tively, in order toexamine how our resultschange withthese as- sumptions. When using a lower reddening, themodels have a lower lu- formthespectrallines.Thisshiftsthebordersofsomeabundance minosityandtheradiationfieldintheirinteriorislessintense,de- zones.Still,theabundancestratificationweinferisagainqualita- creasing the ionisation. This holds even though we use a shorter tivelysimilartothestandard,low-metallicitycase. optimumrisetime(Sec.3.1)ofonly28d(whichtendstoincrease All in all, we see that our results are somewhat sensitive to radiationfielddensities,cf.Sec.2.2.3).Themodelscontainmore reddeningandmetallicity,buttherespectivechangesarenotlarge singly-ionisedmaterial,whichiseffectiveinproducinglines(IME) enoughtocompromiseourconclusions. andblockingtheUVflux(Fe-group).Thus,wereproducethespec- trawithsomewhatlowerabundancesofIMEintheouterlayersof the ejecta, and lower abundances of Fe-group elements. Qualita- tively, however, the abundance stratification in velocity space re- 4 TOMOGRAPHYWITHACORE-COLLAPSE-LIKE, mainsthesame(Fig.5a).Thequalityofthemodelsisabitbetter EMPIRICALLYMOTIVATEDDENSITYPROFILE thanwiththehighstandard reddening, whichtendstoexacerbate themodels’fluxexcessinthered. In this part, we conduct a tomography with an “empirically mo- Ahigh(solar)metallicity,ontheotherhand,impliesthatthere tivated” density profile (“09dc-exp”). This profile is constructed arelowerlimitstotheabundancesofFe-groupelementsintheouter (Sections4.1,4.2)fromtwoexponentials(i.e.itisapiecewiseex- ejecta(Asplundetal.2009).Furthermore,thereisachangeinthe ponentialcurve)withaflatterslopeintheinnerpart.Theouterpart typical nucleosynthesis patterns: significant amounts of 54Fe ap- isinferredfromtheevolutionoflinevelocitiesinthespectra,as- pearinlayerswithincompleteburning(Iwamotoetal.1999).We suming that linesalways form at adensity roughly constant with reflectthis,asfaraspossible, intheabundances of Fe-groupele- time(seeAppendixA). mentsinourmodels(Fig.5b).Theresultingspectrahaveaslightly Although we do not assume any explosion model in the be- worse quality: the outer layers with solar Fe-group abundances ginning,theprofileresemblesdensityprofilesfoundinsimulations blockflux, heatinguptheatmosphere andincreasing thefluxex- ofcore-collapseSNewithC-Ostarprogenitors(e.g.Iwamotoetal. cessinthered,wheretheradiationcanfinallyescape.Photospheric 1994,2000).Withanejectamassof∼3M⊙,ourmodelsbasedon velocities are quite a bit higher in order to keep the backscatter- 09dc-expcanbeseenasanapproachtointerpretSN2009dc asa ing reasonable and the atmospheric temperatures low enough to core-collapseexplosion. ©2012TheAuthors.Journalcompilation©2012RAS,MNRAS 10 Hachingeretal. W7 (reference) Table2.Risetimeestimates fromourspectral fits,usingdifferent expo- =100s (after explosion) 01 .101 eeeexxxxpppp11110044,,,, ttttrrrr====23235050dddd ((((vvvv✕✕✕✕====11110044000000000000kkkkmmmm////ssss,,,, ttttrrrr====23235050....0000dddd)))) Af1tntohr,eo,enwdmhtriiiofeatfawhdledrledtieehvnenneenetirasndvirogitl×fyynfE-elpyfi(rtr(ethosBtneelficidgles−ehl∆sotthlpVfyλaoe)t)r.−ostaTefhnvthetrdeheorermaeouldlpteaeedtttrniaiemoslnelnijsiutec.yimtciyttayalrp.si(rsoTsoeehcfietehliemattesnaexbgatlert)ee,rs,ofitwposetrsiaittdshenidafat,lfgroe,cagrocieonfrnu.rtecsAsvaptplaocopluuneTlednaasidtbneoildgxef 3m] at t 0.01 ρprofile [tdr] [kmvsp−h1] ∆[A˚λ] t[r,do]pt ρ [g/c 0.001 standard:E(B−V)=0.17mag,prog.metallicityZ∼0 0.0001 exp9 25.0 9600 −9.4 5000 10000 15000 20000 27.5 10060 −8.3 velocity [km/s] 30.0 8580 12.4 Figure6.Examplesofthedensityprofilesfortheouterejectaconstructed 35.0 7210 33.7 27.8 inSec.4.1/AppendixA,andtheW7profileasreference.Allprofilesare exp10 25.0 10250 −10.3 27.5 9580 −4.5 plotted forareference timet0=100safterthe explosion, although they 30.0 8630 12.0 havebeencreatedassumingdifferentrisetimestr. 35.0 7250 30.4 27.7 exp12 25.0 10610 −36.9 27.5 9520 −16.4 30.0 8600 5.5 4.1 Empiricallyinferredouterdensityprofileandoptimum 35.0 7170 31.8 30.0 risetime exp14 27.5 10190 −28.5 30.0 9320 −5.2 4.1.1 Gridofempirically-inferreddensityprofiles 35.0 7460 24.4 40.0 6090 42.1 31.6 Wehave constructed atwo-parameter gridof exponential density E(B−V)=0.06mag,prog.metallicityZ∼0 profiles for the outer layers of theejecta (Appendix A; examples seeFig.6).Oneparameteristheabsolutedensityscale,whichwe exp9 22.5 11500 −10.1 25.0 8920 7.1 parametrise here in terms of the velocity v× at which the profile 27.5 7900 20.3 firstintersectstheW7model(cf.Fig.6).Forthisweallowvalues 30.0 7050 30.7 24.0 of 9000, 10000, 12000, or 14000kms−1. Theother parameter is exp10 21.0 10450 −19.5 22.5 10160 −18.3 therisetime(21d, 22.5d, 25d, 27.5d, 30d, 35d or 40d), with 25.0 8880 4.3 whichtheslopeofthedensityprofileinferredfromthelinevelocity 27.5 8000 17.0 24.7 exp12 22.5 10310 −28.8 evolutionchangessomewhat,butnotdrastically(cf.AppendixA). 25.0 9200 −0.1 The set of exponential profiles, which are given names reflecting 27.5 8310 12.9 v× (e.g.“exp9”matchesW7atv× = 9000kms−1),coverswell exp14 2370..50 97747500 −2253..81 25.9 thephysicalparameterspaceinwhichsolutionsforSN2009dcwill 30.0 8920 −6.1 befound(seebelow). 35.0 7200 22.6 40.0 5350 49.4 31.3 Foreachv×,weinferanoptimumrisetimeseparately.Inthe end,wechooseonecombinationof(v×|tr),whichpromisesopti- E(B−V)=0.17mag,solarprog.metallicity mumresults,inordertoconstructthefull09dc-expdensityprofile. exp9 25.0 10200 −2.5 27.5 10920 −6.0 30.0 9190 6.5 4.1.2 Density/risetimetest 35.0 7590 27.4 27.4 exp10 25.0 10800 −29.5 27.5 10130 −8.9 The optimum rise time for each v× is inferred from the position 30.0 9040 7.2 mismatchoftheSiIIλ6355feature,comparingtheobservedspec- 35.0 7650 29.5 29.5 tratothesyntheticones.Thisprocedurehasalreadybeendescribed exp12 25.0 11040 −32.3 27.5 9980 −7.3 in Section 3.1. Again, the influence of solar metallicity, and of a 30.0 9030 6.2 lower-than-standard reddening is explored by repeating the mod- 35.0 7620 26.2 29.7 ellingforthesecases. exp14 27.5 10620 −29.8 30.0 9720 −13.9 Table2gives –for each assumed reddening, metallicityand 35.0 8020 12.1 v× separately – the measured line position mismatches between 40.0 6540 41.8 32.7 the observations and the four optimum models (for different t), r aswellastheresultingt .InFigure7,weplotspectraforase- r,opt lectionofthesemodels(forE(B−V)∼0.17magandnegligible metallicity). withtheresultthattheSiIIλ6355linecannotbewellformed.For Usingasmallerv× fortheempiricaldensityleadstosmaller this reason, the exp9 models allow us to reproduce the observed densities throughout the envelope. Looking from the outer layers SiII line depths only with unrealistically high Si mass fractions inwards,highdensitiesarereachedlater,andthezonefavouredfor & 70%(cf.Iwamotoetal.1999),ifatall(seet = 25.0dmodel r SiII lineformation tendstobedeeper inside (whichreducesline inFig.7).Wethereforeexpecttheactualdensitiesintheouterlay- velocities). Thus, the t values needed to reproduce the low line ersofSN2009dctobehigherthanthoseintheexp9models.The r velocities of SN 2009dc are usually shorter for a low v×. If v× exp14models,ontheotherhand,needalongrisetimetoreproduce isverylow,thezonedense enough forlineformationmaybefar theSiIIλ6355line(Table2)andhaveanexcessivelyhighopacity. inside where theradiation fieldisstrong. Thisthen favours SiIII Thus,theyconstituteanupperlimittotherealdensities. ©2012TheAuthors.Journalcompilation©2012RAS,MNRAS

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.