ebook img

Spectral lag of gamma-ray burst caused by the intrinsic spectral evolution and the curvature effect PDF

0.46 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Spectral lag of gamma-ray burst caused by the intrinsic spectral evolution and the curvature effect

AstronomischeNachrichten,24January2011 Spectral lag of gamma-ray burst caused by the intrinsic spectral evolu- tion and the curvature effect Z.Y.Peng1,Y.Yin2,X.W.Bi3,Y.Y.Bao4,andL.Ma1,⋆ 1 DepartmentofPhysics,YunnanNormalUniversity,Kunming,Yunnan650092,China 2 DepartmentofPhysics,LiupanshuiNormalCollege,Liupanshui553004,China 3 DepartmentofPhysics,HongheUniversity,Mengzi661100,China 1 4 DepartmentofPhysics,YuxiNormalCollege,Yuxi653100,China 1 0 2 Thedatesofreceiptandacceptanceshouldbeinsertedlater n a Keywords gamma-raybursts:gamma-raytheory:relativity J Assuminganintrinsic‘Band’shapespectrumandanintrinsicenergy-independentemissionprofilewehaveinvestigated 1 theconnectionbetweentheevolutionoftherest-framespectralparametersandthespectrallagsmeasuredingamma-ray 2 burst(GRB)pulsesbyusingapulsemodel.Wefirstfocusourattentionontheevolutionofthepeakenergy,E0,p,and ] neglecttheeffectofthecurvatureeffect.ItisfoundthattheevolutionofE0,palonecanproducetheobservedlags.When E E0,p variesfromhardtosoftonlythepositivelagscanbeobserved.ThenegativelagswouldoccurinthecaseofE0,p H varyingfromsofttohard.WhentheevolutionofE0,pandthelow-energyspectralindexα0varyingfromsofttohardthen tosoftwecanfindtheaforesaidtwosortsoflags.Wethenexaminethecombinedcaseofthespectralevolutionandthe . h curvatureeffectoffireballandfindtheobservedspectrallagswouldincrease.Asampleincluding15singlepulseswhose p spectralevolutionfollowshardtosofthasbeeninvestigated.Allthelagsofthesepulsesarepositive,whichisingood - agreementwithourtheoreticalpredictions.Ouranalysisshowsthatonlytheintrinsicspectralevolutioncanproducethe o spectrallagsandtheobservedlagsshouldbecontributedbytheintrinsicspectralevolutionandthecurvatureeffect.Butit r isstillunclearwhatcausethespectralevolution. t s a Copyrightlinewillbeprovidedbythepublisher [ 1 v 1 Introduction ter,whichwillcausethesoftradiationtobeupscatteredby 2 inverse Comptonization. The photons get harder the more 6 The phenomenonof the observed spectral lag of Gamma- scatterings they suffer and thus they are more delayed. A 0 rayburst(GRB)isverycommon.SinceChengetal.(1995) definitiveexplanationoftheoriginofthemhasnotyetbeen 4 . first analyzed the spectral lags of GRBs based on BATSE given.Theoriginofthespectrallagsarestillunclear. 1 Large Area Detector channel 1 (25-50 keV) and channel Kocevski&Liang(2003)pointedoutthattheobserved 0 3 (100-300keV) light curves,several authorshave carried lagisthedirectresultofspectralevolution.Theymeasured 1 1 out more analysis work on the GRB lags (e.g., Norris et the rate of Ep decay (Φ0) for a sample of clean single- : al.,2000;Wu&Fenimore2000;Chenetal.2005;Yietal. peakedburstswithmeasuredlagandusedthisdatatopro- v 2006;Pengetal.2007). vide an empirical relation that expresses the GRB lag as i X Severalattemptstoexplaintheoriginofthespectrallag a function of the burst’s spectral evolution rate. While the r havebeenputforward.Thedominantbehaviorobservedin studiesofGRBspectrahaveshownthatGRBspectralevo- a GRBs, positive lags, is that the soft radiation lagging the lutionisacommonphenomenon(e.g.,,Kargatisetal.1994; hard,canbeproducedbyseveralreasons.Anintrinsiccool- crideretal.1997;Band1997;Kanekoetal.2006;Butler& ing of the radiating electrons cause the radiation to domi- Kocevski2007). nate at lowerenergies.A Comptonreflectionof a medium Recently,Shenetal.(2005)tentativelystudiedthecon- atasufficientdistancefromtheinitialhardsourcewillalso tribution of curvature effect of fireball to the lag, and the cause a positive lag. While the photons emit at relativis- resultinglagsareveryclosedtotheobservedone.Luetal. tic speeds fromdifferentlatitudesof a convexsurface(the (2006)alsostudiedthespectrallagsmoredetailedbasedon curvatureeffect)willcausetheradiationtobedelayedand Dopplereffectoffireball(orinsomepapers,thecurvature softened,thusproducinga observedpositive lag (e.g.,Qin effect) (see, Qin 2002; Qin et al. 2004; Peng et al. 2006 2002;Ryde & Petrosian 2002;Qin et al. 2004;Shen et al. for more detailed description) and confirmed that the cur- 2005).Thenegativelagisdefinedasthehardradiationlag- vature effect can produce the observedspectral lags. They gingbehindthesoft.However,fewattemptsaremadetoex- performedmoreprecisecalculationwithbothformulaepre- plaintheoriginofthenegativelag.Thepossiblescenariois sented by Shen et al. (2005) and Qin et al. (2004). Some ahotmedium,sayaleptoncloudsurroundingacooleremit- conclusionsobtainedbyShenetal.(2005)wereascertained, and more complete conclusions on spectral lags resulting ⋆ Correspondingauthor:e-mail:[email protected] fromcurvatureeffectwereobtained.Luetal.(2006)argued Copyrightlinewillbeprovidedbythepublisher 2 Z.Y.Pengetal.:Spectrallagofgamma-rayburstcausedbytheintrinsicspectralevolutionandthecurvatureeffect that,aslongasthewholefireballsurfaceisconcerned,both which could be assigned to any values of t , and R is θ c formulaswereidenticalinthecaseofultra-relativisticmo- the radius of the fireball measured at t = t . Variable θ c tions.OthercasesdidnotstudybyShenetal.(2005)were τ is a dimensionless relative observation time defined by investigatedbyLuetal.(2006)andsomenewconclusions τ [c(t t ) D + R ]/R , where D is the distance c c c ≡ − − weredrawn.Theseseemshowthatthecurvatureeffectcan ofthefireballtotheobserver,andtistheobservationtime indeedproducethespectrallags.Inaddition,severalstudies measuredbythedistantobserver. show thatthe curvatureeffectalso playsan importantrole Informula(1),I(τ )representsthedevelopmentofthe θ in the early X-ray afterglow of GRBs where the so-called intensitymagnitudeofradiationintheobserverframe,called softeningphenomenonisobserved(Qin2008a,2008b;Qin asa localpulse funection,andg0,ν(ν0,θ)describesthe rest- 2009). frameradiationmechanisms. Aspointedoutabovethatthefundamentaloriginofthe ForthesakeofsimplicitywefirstadoptGaussianpulse observed lag is the evolution of the GRB spectra and the as rest-frame local pulse. As for the rest-frame radiation curvatureeffectcanproducetheobservedlags.Moreoverit spectrum we employ the most frequently used Band func- ismentionedclearlythatwhilstthecurvatureeffectcanac- tion (Band et al. 1993) since it is rather successfully em- count for the main part of the hardnessratio curvesof the ployed to fit the spectra of the GRBs. The two forms are GRBs concerned and an intrinsic spectral evolution is re- rewrittenasformulas(2)and(3). quiredtofullyexplainthe observeddata(Qinetal. 2006). τ τ Thesemotivateourinvestigationsbelow.Howtheinfluences I(τ )=I exp[ ( θ− θ,0)2] (τ τ ), (2) θ 0 θ,min θ − σ ≤ ofintrinsicspectralevolutiononthespectrallagsarewhen thecurvatureeffectplaysanimportantroleordoesnot?Can e thenegativelagsbeproducedinthecourseofintrinsicspec- (ν0,θ)1+α0exp[ (2+α )ν0,θ], tral evolution?We introducethe theoreticalformulaof the ν0,p (ν0,θ−< α0−β00)ν0,p GisntuRgdBtihepdeusilnpseeScitenrcaStlieolcantgi3os.nwI2nh.eSVneancrtieiogoulnesc4ptotwshseeibcilnuevrcevasatstiuegsraetoeefftpfhereoctdlauagrces- g0,ν(ν0,θ)=(α20+−αβ00)α0−β0(eνx0ν,pθ0(,pβ0α−02−α+β0α0)0(),νν00,,θp)1+β0 ν0,p ≥ 2+α0 wmhueltnansepoeucstrlayl.Weveoleumtiopnloaynadscaumrvpaletutroeteefsftetchtetapkreedeifcfteioctnsiin- whereI ,σandτ areconstants,α andβ arethelo(w3)- 0 θ,min 0 0 Section 5. In the last section, we give the conclusionsand andhigh-energyindicesintherestframe,respectively,and discussion. ν istherest-framepeakfrequency. 0,p Light curves determined by formula (1) are dependent 2 Theoretical formula on the integral limits τθ,min and τθ,max, which are deter- minedbytheconcernedareaofthefireballsurface,together withtheemissionrangesoftheradiatedfrequencyandthe Theobservedgamma-raypulsesarebelievedtobeproduced e e localtime.Theintegrallimitsareonlydeterminedby in a relativistically expanding and collimated fireball be- cause of the large energies and the short time-scales in- τ =max τ ,τ−1+cosθmax volved. To account for the observed pulses and spectra of τθ,min =min{τθ,min,τ1−−1β+ccoossθθmmaixn }, (4) bursts, the Doppler effect (or curvature effect in some pa- ( θ,max { θ,max (1−βcosθmin} per)overthewholefireballsurfacewouldplayanimportant e where τ and τ are the lower and upper limit of role(e.g.,MeszarosandRees1998;Haileyetal.1999;Qin θ,mine θ,max τ confiningI(τ ), andθ andθ areconfinedbythe 2002; Qin et al. 2004). The Doppler effect is the photons θ θ min max concernedareaofthefireballsurface.Theradiationsareob- emitted from the region on the line of sight and those off the line of sightan angleof θ are Doppler-boostedby dif- servablewithientherangeof ferentfactorsandtraveldifferentdistancestotheobserver. (1 cosθ )+(1 βcosθ )τ τ Therefore,we adopt the modelderivedby Qin (2002)and − min − min θ,min ≤ ≤ (5) (1 cosθ )+(1 βcosθ )τ max max θ,max Qin et al. (2004) to explore the spectral lags. But our at- − − tentionisconcentratedonthecaseofθ 0.Thecountrate Due to the constraintto the lower limit of τ , which is ≃ θ withinenergychannel[ν1,ν2]isrewrittenasformula(1). τθ,min > 1/β (see, Qin et al. 2004), we assign τθ,0 = − 10σ +τ so that the interval between τ and τ C(τ)=[2πRc3 τeτeθθ,,mmianxI(τθ)(1+βτθ)2(1−τ +τθ)dτθ wouldbeθ,lmarigneenoughtomaketherisingphaθs,emoinfthelocθa,0l × νν12 g0,ν(νν0,θ)Rdν]×[hecD2Γ3(1−β)2(1+ 1−ββτ)2]−(11) pounlesecacnloosbetatointhatoftheGaussianpulse.Fromformula(2) R wheretheτ isdimensionlessrelativelocaltimedefinedby θ ∆τ =2√ln2σ, (6) τ c(t t )/R , t is the emission time in the ob- θ,FWHM θ θ c c θ ≡ − server frame, called local time, of photons emitted from whichleadsto the concerned differential surface ds of the fireball (θ is θ the angle to the line of sight), t is the initial local time σ =∆τ /2√ln2, (7) c θ,FWHM Copyrightlinewillbeprovidedbythepublisher ANheaderwillbeprovidedbythepublisher 3 where∆τ istheFWHM (fullwidthathalfmax- assign the σ = 1.0 and take Γ = 100, 200,300, 400, 500, θ,FWHM imum)oftheGaussianpulse.Fromtherelationbetweenτ 600,700,800,900,1000,respectivelysincetheLorentzfac- θ andt ,onegets toroffireballaregenerallylargerthan100.Wefindthatall θ thespectrallagslag inthiscaseare0.Thissuggeststhat 13 ∆t =(R /c)∆τ . (8) θ,FWHM c θ,FWHM there has no spectrallags when the rest-framespectralpa- In thefollowingsections,we assign(2πR3I )/(hcD2)=1, rametersareconstantandthecurvatureeffectdoesnotplay c 0 R =3 1015cm,τ =0. a role on the spectral lag. Fig. 1 (panel (a)) gives a exam- c θ,min × pleplotforthiscase.Thelinesofthepeaktimesofthetwo Becausepeaktimesofdifferentlightcurvesassociated pulsesaresuperposedeachother. with different frequency intervals [ν ,ν ] or different en- 1 2 ergybands[E ,E ]aredifferent,followingShenetal.(2005) 1 2 andLuetal.(2006),wedefinethespectrallagsasthedif- 3.2 Spectrallagsoftherest-framespectral ferencesbetweenthe pulsepeaktimes in two differenten- parametersvaryingfromhardtosoft ergychannels,alowerenergychannel[E ,E ]andahigher 1 2 energychannel[E ,E ].Inthefollowinganalysisweonly Many investigations of the spectra of GRB show that the 3 4 considertheenergychannelpair:BATSEchannels1(25–50 spectralsofteningisanuniversalphenomenon.Inaddition, keV)and3(100–300keV)whichwedenotethelagaslag13 Koceviski and Liang (2003) pointed out as the Ep of νFν sinceitwasinvestigatedbymostofauthors(e.g.,Norriset spectra decays throughthe four BATSE channelsand pro- al.2000;Chenetal.2005). duce what we measure as lag. Schaefer (2004) found that only the evolution of E can produce observed lag using p the general Liang-Kargatis relation (which describes how 3 Spectral lagscaused by the spectral thepeakphotonenergyinthespectrumchangeswithtime). evolutionalone Therefore, we first investigate the case of E in the rest- p framevaryingfromhardtosoft.FollowingQinetal.(2005), Since Kocevski & Liang (2003) pointed out that the ob- weassumeasimpleevolutionofthepeakenergyE ,which 0,p servedlag isthe resultofspectralevolution,letusfirstin- followslogE =0.1 k(τ τ )/(τ τ )(keV) 0,p θ θ,1 θ,2 θ,1 vestigatethespectrallagsduetothespectralevolutionalone. − − − forτ τ τ .Forτ < τ ,logE = 0.1(keV), θ,1 θ θ,2 θ θ,1 0,p Thatisweconsidertheradiationsemittedfromaverysmall ≤ ≤ whileforτ >τ ,logE =0.1 k(keV). areawithθ =0andθ =10−5 1/Γwherethepho- θ θ,2 0,p − min max × HerewealsotakeΓ=100,200,300,400,500,600,700, tonsemittedtravelalmostsamedistancestotheobserver.In 800, 900, 1000, respectively and α = 1, β = 2.25, this case we think that the curvature effect has no role on 0 − 0 − σ = 1.0areassigned.ForeachΓweassumek =0.1,0.2, theproducingofspectrallag. 0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.2,1.3and1.4(they Observations show that the spectral parameters of the correspond to different rates of decreasing) to investigate GRBs vary with time. In addition, the parameters of the thespectrallag’sdependence. Band function low- and high-energy indices α, β and the ThelocalGaussianpulse(seeequation(2))isemployed peak energy of GRB’s νF spectrum E in the observed ν p to study this issue. We adopt τ = 8σ +τ , τ = frame are mainly distributed within 1.5 — 0.5, 3.2 θ,1 θ,min θ,2 — 2.1 and 100 — 700 keV and th−eir typica−l value−s are 12σ+τθ,minandτθ,0 =10σ+τθ,min. − Inthisway,wecancomputethespectrallags.Itisfound α = 1 and β = 2.25, E = 250 keV, respectively p − − that all of the lags are positive. A example light curve is (Preeceetal.1998,2000;Kanekoetal. 2006).Qin(2002) showed in Fig. 1 (panel(b)), which illustrates the connec- showedtheDopplereffectcannotaffecttheintrinsicspec- tionbetweenthespectralevolutionandthespectrallag.This tral shapes. When we take the Doppler effect of fireballs indicatesthemaximumofthephotoncountratesatthehigher intoaccount,theobservedpeakenergywouldberelatedto energy arrives earlier than at the lower energy in the case the peak energy of the rest-frame Band function spectrum of hard-to-soft. Therefore, we can deduce that only hard- (α = α, β = β) by E 1.67ΓE (see, Table 4 in 0 0 p 0,p ≃ to-softspectral evolutioncan producethe positive spectral Qin 2002).In the following we first consider the common lags. evolutionarymodeloftherest-framespectralparametersto investigate the spectral lags. Then the other possible cases arealsotakenintoaccount. 3.3 Spectrallagsoftherest-frameradiationform varyingfromsofttohardwithtime 3.1 Spectrallagsoftherest-framespectral Band(1997)foundthatasmallfractionofGRBspectra( parametersremainconstant ∼ 10%)varyfromsofttohardwithtime.Kargatisetal.(1994) We first explore if the spectral lags would occur when the alsofoundthiscase.Therefore,wealsoinvestigatethecase rest-frame spectral parametersremain unchangedto check of the rest-frameradiationformvaryingfromsoftto hard. theeffectofspectralevolutiononthespectrallag.Thetypi- Wealsoassumeasimplecasethattheevolutionofpeaken- calvaluesofthelow-andhigh-energyindicesα = 1and ergyE follows:logE = 0.8+k(τ τ )/(τ 0 0,p 0,p θ θ,1 θ,2 − − − − β = 2.25andE =250/1.67ΓkeVaretaken.Herewe τ ) (keV) for τ τ τ . For τ < τ , and 0 0,p θ,1 θ,1 θ θ,2 θ θ,1 − ≤ ≤ Copyrightlinewillbeprovidedbythepublisher 4 Z.Y.Pengetal.:Spectrallagofgamma-rayburstcausedbytheintrinsicspectralevolutionandthecurvatureeffect Fig.1 Example light curves of the Band spectral parameters E remain unchanged (a), the E varying from hard 0,p 0,p tosoft(b)andsofttohard(c),wherethesolidanddashedcurvesrepresentthelightcurvesofBATSEchannels1and3, respectively. logE = 0.8 (keV), while for τ > τ , logE = tweenk1andk2comingtoatleast0.5.Thatisiftheincreas- 0,p θ θ,2 0,p − 0.8+k (keV). The Γ, k, α and β are taken the same ingrateofsofttohardislargerthanthedecreasingrateof 0 0 − values as the case of hard-to-soft. We also adopt τ = hardtosoftbyatleast0.5thenegativelagswouldoccur.As θ,1 8σ+τ ,τ =12σ+τ andτ =10σ+τ . the increasing of Γ the difference needed would decrease. θ,min θ,2 θ,min θ,0 θ,min Accordingto ourcomputationthe soft-to-hardspectral The aboveassumption is reasonable for the tracking pulse evolutioncanresultinthenegativespectrallagsalone.Fig. becauseitisconsistentwiththeresultofthehardnessevo- 1(panel(c))alsodemonstratestwoexamplelightcurvesin- lutionarycharacteristicsofthe trackingpulsesinvestigated dicatingtheconnectionbetweenthespectralevolutionand byPengetal.(2009a)thatthedurationoftherisephaseare thespectrallaginthecaseoftherest-frameradiationform muchshorterthanthatofthedecayphase.Fig.2illustrates varyingfromsofttohardwithtime. fourexamplelightcurves. 3.5 Spectrallagsofasuddenlyshiningandgradually 3.4 Spectrallagsoftherest-frameradiationform dimmingintrinsicemissionprofile varyingfromsofttohardthentosoft If the different intrinsic emission profiles are different in Asseveralauthorspointedoutthattheevolutionofthelow- producingthespectrallags.SimilartoQinetal.(2004)and energyindexαandE exhibitthe“tracking”(theobserved p Shenetal.(2005)wealsoconsidertheone-sidedexponen- spectral parameters follow the same pattern as the flux or tialdecayandpower-lawdecayprofile,whicharelistedas countratetimeprofile,i.e.theevolutionofspectralparam- follows,respectively: etersexhibitsoft-to-hard-to-soft)behaviors(e.g.,Fordetal. 1995; Crider et al. 1997; and Kaneko et al. 2006; Peng et al.2009a,2009b).SoweinvestigatethecaseofE0,p vary- I(τ )=I exp[ (τθ−τθ,min)] (τ τ ), (9) ing from soft to hard then to soft. In order to ensure that θ 0 θ,min θ − σ ≤ the three parameters are in the range of observed values we adopted the following evolutionary form: logE = e 0,p 0.8+k1(τ τ )/(τ τ )(keV)forτ τ τ τ − θ− θ,1 θ,0− θ,1 θ,1 ≤ θ ≤ I(τ )=I (1 θ− θ,min )µ (τ τ ), (τkθ,e0V, l)ogfoEr0τ,p = −τ0.8+τk1,−lokg2E(τθ −=τθ,0)0/.8(τ+θ,2k−1 τθ,k02) θ 0 − τθ,max−τθ,min θ,min ≤ θ(10) θ,0 θ θ,2 0,p ≤ ≤ − − e (keV)forτθ > τθ,2,whileforτθ < τθ,1,logE0,p = −0.8 We assume the τθ,min = 0 and µ = 2 in the follow- (keV). where the k1 and k2 denote the increasing rate of inganalysis.Thehard-to-softandsoft-to-hardspectralevo- soft-to-hard phase and the decreasing rate of hard-to-soft lution are investigated to check if the two sorts of local phase, respectively.We take Γ = 100,200,300,400,500, pulsesalso resultin the same resultsas those ofthe Gaus- 600, 700, 800, 900, 1000, respectively and k1 = 0.3, 0.4, sian pulses. The same evolutional patterns adopted above 0.5,0.6,0.7,0.8,0.9,1.0,and1.1,k2 = 0.1,0.2,0.3,0.4, areemployedtoexplorethisissue.Wefindtheresultsarein 0.5, 0.6, 0.7, and 0.8, respectively. We also adopt τθ,1 = agreementwiththatofGaussianlocalpulses.Theexample 8σ+τθ,min,τθ,2 =12σ+τθ,minandτθ,0 =10σ+τθ,min. plotsinFigs.3and4alsoillustratetheconnectionbetween We use this form to investigate the spectral lags and the spectral evolution and spectral lag for the exponential find that the negativelag disappears. We explore E and decayandpower-lawdecay,respectively.Thissuggeststhe 0,p α varying from soft to hard then to soft. The same form intrinsic emission profile has no effect on the connection 0 as E is also adopted for α . We find there are negative between the spectral evolution and the spectral lags. Like- 0,p 0 spectral lags in this case but it does notoccurin the small wise, the hard-to-softevolutionproducespositive lagsand Γ =100. When the Γ is larger than 100, the negative lags thesoft-to-hardevolutionleadstonegativelagsifweadopt willcomeintobeingonlyinthecaseofthedifferencesbe- otherrest-framelocalpulses. Copyrightlinewillbeprovidedbythepublisher ANheaderwillbeprovidedbythepublisher 5 0.00010 0.000012 E0,psoft-hard-soft 0.000010 E0,psoft-hard-soft 0.00008 k1=0.7,k2=0.3 k1=0.9,k2=0.2 0.000008 ) ) 0.00006 C( 0.000006 C( 0.00004 0.000004 0.00002 0.000002 0.000000 0.00000 0.000020 0.000025 0.000030 0.00020 0.00025 0.00030 0.00035 Fig.2 Example light curvesof the negative(left panel) and positive (rightpanel) spectral lags for the case of soft-to- hard-to-soft,wherethesymbolsarethesameasthoseadoptedinFig.1. 1.60E-008 6.00E-008 1.40E-008 5.00E-008 0,phard-to-soft 1.20E-008 0,psoft-to-hard k=0.5 k=0.5 1.00E-008 4.00E-008 ) ) C( 8.00E-009 C( 3.00E-008 6.00E-009 2.00E-008 4.00E-009 1.00E-008 2.00E-009 0.00E+000 0.00E+000 0.00000 0.00002 0.00004 0.00006 0.00000 0.00002 0.00004 0.00006 Fig.3 ExamplelightcurveofE variesfromhardtosoft(leftpanel)andsofttohard(rightpanel)forthecaseofthe 0,p exponentialdecaylocalpulse,wherethesymbolsarethesameasthoseadoptedinFig.1. 4 Spectral lagscaused by the spectral getherinFig.5(panel(a))byconsideringasetofparame- evolutionandthe curvature effect tervalues.Notethatthehistogramplotsmaymeannothing because when one consider another set of parameter val- uestheygeta differentresult. Itis shownthat(i) theaver- As previous section pointed out that the curvature effect agevalueofspectrallagscausedbyspectralevolutionand mustbeplayaroleontheproducingoftemporalandspec- combinedeffectare0.1086sand0.1692s,respectivelyand tralprofilewealsotaketheeffectintoaccounttostudythe (ii)thecorrespondingmediansare0.007sand0.016s,re- spectral lag. The evolutionary form, hard-to-soft and soft- spectively. These show the lags caused by the combined to-hard, are combined with curvature effect to explore the effect increase indeed. Whether the curvature effect also influenceofthecombinedeffectsonthespectrallags.That make the lags increase in the case of soft-to-hard or not? is we consider the radiation emitted from a big area with We also check the spectral lags resulting from the curva- θ = 0 and θ = π/2 where the photons emitted min max tureeffectandevolutionofE followingsoft-to-hard.The travel different distances to the observer. The photons on 0,p lagsproducedbyspectralevolutionaloneandthecombined the line of sight arrive at us earlier than that of off sight- effect are also compared. The mean values are -0.1200 s line. In this way the lags due to curvatureeffect is always and -0.0114 s for spectral evolution and combined effect, positiveandthehard-to-softevolutionalsomakethelagis respectively.Whereasthecorrespondingmedianvaluesare positive.Thereforewethinkthespectrallagscausedbythe -0.0102sand-0.0005s,respectively.Fig.5(panel(b))also combinedeffectmustbeincrease. shows that the lags indeed increase in the case of soft-to- We first consider the case of E0,p varying from hard hard. In addition, we also find due to the curvature effect to softcombinedwith the curvatureeffect.Inaddition,we somenegativelagschangeintopositiveones.Inviewofthe also assume the evolutionof E0,p followsthe same means analysis of the above two cases we can conclude that the as theabovesection.Tocomparethelagsproducedbythe curvatureeffectindeedmakethelagsincreasesignificantly. spectralevolutionalonewith thatbythe spectralevolution and curvature effect together we plot two sorts of lags to- Copyrightlinewillbeprovidedbythepublisher 6 Z.Y.Pengetal.:Spectrallagofgamma-rayburstcausedbytheintrinsicspectralevolutionandthecurvatureeffect 0.0000040 0.000008 0.0000035 0,psoft-to-hard 0.000007 0,phard-to-soft 0.0000030 k=0.5 k=0.5 0.000006 0.0000025 ) ) 0.000005 ( C( 0.000004 C 0.0000020 0.0000015 0.000003 0.0000010 0.000002 0.000001 0.0000005 0.000000 0.0000000 0.0000 0.0002 0.0004 0.0006 0.0008 0.0000 0.0002 0.0004 0.0006 0.0008 Fig.4 ExamplelightcurveofE variesfromhardtosoft(leftpanel)andsofttohard(rightpanel)forthecaseofpower 0,p lawdecaylocalpulses,wherethesymbolsarethesameasthoseadoptedinFig.1. Fig.5 Thecomparisonsoflagdistributionbetweenthecaseofhard-to-soft(panela)andsoft-to-hard(panelb)evolution alone(solidlines)andthecaseofspectralevolutionandcurvatureeffectsimultaneously(thedashedlines). 5 Observed spectral lagsofthe hard-to-soft apparentlyreproducestheobservedlagdistributioninclud- pulses ingthe measurednegativelags.With this, a goodcase can be made that negative lags do not exist. The existence of multiple overlappingpulses could easily produce negative The above analysis shows that the spectral lags resulting lags,eventhoughthelagsforeachpulsearepositive.Allit fromthehard-to-softspectralevolutionarepositiveandthe takesistwonearlyoverlappingpulseswiththesecondone negative lags may come from the soft-to-hard or soft-to- being harder than the first. In all, we are not convinced in hard-to-soft spectral evolution. We wonder if the observa- thesignificantexistenceofnegativelags. tionsareconsistentwiththepredictions.Thepulsesexhibit hard-to-soft,soft-to-hardandsoft-to-hard-to-softspectralevo- Therefore,weselectasampleonlycontainingtheFRED lution should be checked. However, the spectral parame- (fast rise and exponential decay) pulses provided by Ko- ter evolution of observed pulses generally exhibit hard-to- cevskietal.(2003)tocheckthetheoreticalpredicationsince soft and “tracking” (i.e. soft-to-hard-to-soft). Both behav- these bursts exhibit clean, single-peaked or well-separated iors are defined by E and/or low-energyindex evolution, in multi-peaked events. We can obtain directly the spec- p which are found by several authors (Kaneko et al. 2006; tral parametersofbrightbursts fromKanekoet al. (2006). Fordetal.1995;Crideretal.1997).WithordinaryPoisson TheweakerburstsarealsoanalyzedusingRMFITsoftware noiseinGRBlightcurves,therewillbesignificantscatterin and fitted with Band model. Similar to Peng et al. (2009a, themeasuredlags.Thepercentageoflagsincreasesubstan- 2009b,2010)andRyde&Svensson(2002)asignal-to-noise tially towards small values, with many (the high luminos- ratio(S/N)oftheobservationsofatleast 30togethigher ≥ ityevents)havingnear-zerolags.Insuchacase,weexpect timeresolutionareadopted.Forthehard-to-softpulsesonly theretobemany“measured”negativelags,evenifalllags thatcontainingatleast1datapointsofE beforethepeak p are positive-definite. That is, a convolution of a positive- time of pulse and 4 in all are included in the our analysis. definitelagdistributionwiththeknownmeasurementerrors Finally, we select 15 hard-to-soft pulses as our sample to Copyrightlinewillbeprovidedbythepublisher ANheaderwillbeprovidedbythepublisher 7 Fig.6 SpectralevolutionofE andtemporalbehaviorsofGRBpulsesofBATSEchannels3and1inoursampleforthe p caseofhard-to-soft,wheretheblacklinesrepresentthelightcurvesofchannel3.Thepositivelagsareevident. Copyrightlinewillbeprovidedbythepublisher 8 Z.Y.Pengetal.:Spectrallagofgamma-rayburstcausedbytheintrinsicspectralevolutionandthecurvatureeffect testourpredictions.IllustratedinFig.6arethespectraland temporalbehaviorsforoursample. Wefirstemploythewidelyusedcross-correlationfunc- 0.25 tion(CCF)tocomputethespectrallagsbetweenthepulses 0.20 ofthesameburstseenintheBATSEchannels1and3.Sim- ilar to Norrisetal. (2000)we adopta cubicpolynomialto 0.15 fitthepeakoftheresultingdiscreteCCFfunctionandtake ag13 thepeakofthecubicpolynomialformasthelag.Theerror L 0.10 intheaverageCCFlag,lag ,isfoundbysimulationswith 13 0.05 Gaussian noise added to each of the two channels. These spectrallagsresultingfromtheevolutionofhard-to-softare 0.00 listedinTable1.Wefindnonegativelagsinthehard-to-soft 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 pulses. CCF13 Recently Hakkila et al. (2008) point out that the CCF and pulse peak lags occasionally disagree. In order to fur- Fig.7 Peaklag(s)versusCCFlag(s).Agoodlinearcor- ther test it we also find pulse peak lags which are defined respondenceexists,asexpected. as thedifferencesbetweenthe pulsepeakinBATSE chan- nels1and3.Inordertofindthepeaktimeofpulsewemust andfindthatthespectrallagsresultingfromthesedifferent select a pulse modelto fit these pulses. Following Peng et localpulsesareconsistentwiththoseoftheGaussianpulse. al. (2006) we only select the function presented in equa- Let us check whether there are any differences in the tion (22) of Kocevski et al. (2003). We fit those selected measurements between peak lags, Lag , adopted in the background-subtractedpulsesusingtheKRLfunction.Our 13 aboveanalysisand the widelyused crosscorrelationfunc- fittingsareconstrainedonthechannels1and3tofindtheir tionlags,CCF (e.g.,Norrisetal.2000).SimilartoBand differenceofpeaktimes.Thebestfittingparametersarede- 13 (1997) and Norris et al. (2000) we fitted a cubic polyno- pended on which χ2 of the fitting model is smaller. The ν mialtothepeakoftheresultingdiscreteCCFfunctionand pulsepeaklagsalongwiththefittingχ2 inchannels1and3 ν find the differenceof the correspondingpeak time. In Fig. arealsolistedinTable1.FromTable1wefindallthelags 7 the peak lag, Lag , is plotted as a function of the CCF of hard-to-soft pulse are positive. We also check the CCF 13 lag,CCF .Alinearfitisgivenwhichshowsthatthereisa lags and peak lags by smoothing the light curves with the 13 goodcorrespondencebetweenthetwomethods.Thebestfit DB3 wavelet(Qin et al. 2004)and obtainthe same results isLag =( 0.03 0.03)+(1.28 0.23) CCF .The (see,Table1). 13 − ± ± × 13 valuesofinterceptandslopeareconsistentwiththeresults of Ryde et al. (2005).Therefore,the peak lags we used in 6 Conclusions and discussions thisstudywouldnotaffectouranalysisresults. Weselectasampleconsistingof15pulseswhosepeak SpectralevolutionisanestablishedcharacteristicinGRBs. energyE followhard-to-softevolutiontotestourtheoreti- p Moreoverthe trend for their high-energyphotonsto arrive calpredictions.OuranalysisshowsthatalloftheCCFlags before the lower-energy ones (“hard-to-soft” evolution) is and analytic lags of hard-to-softpulses are positive within universal phenomenon, which leads to positive lags. Ko- the range of uncertainty.In order to decrease the effect of cevski & Liang (2003) showed the robust connection be- noise on our results we smoothed the data with the DB3 tween the spectral lag measuredin GRBs and the hard-to- wavelet (the second-class decomposition) using the MAT- softevolutionoftheburstspectrabyemployingasampleof LAB software (Qin et al. 2004). Then we re-calculate the cleansingle-peakedburstswithmeasuredlag.Inthispaper, two types of lags (see, Table 1) and find the lags are also we haveinvestigatedtheconnectionbetweentheevolution positive.Thisindicateshard-to-softspectralevolutionmay of the rest-frame spectral parameters and the spectral lag indeed produce positive lags, which is in good agreement using a theoretical model derived by Qin (2002) and Qin withourtheoreticalprediction. et al. (2004). We first assume an intrinsic Band spectrum Currently we can not ascertain if the negative lag pre- andaGaussianemissionprofiletostudytheissue.Ourthe- dicted by our adopted model are consistent with observa- oretical analysis shows that the connectionexists not only tion because we are not convinced in the significant exis- betweenthe hard-to-softevolutionof the burstspectra and tenceofnegativelagsinourobservation.Themainreasons the spectrallag butbetween the soft-to-hardevolutionand mentionedintheprevioussectionarethenear-zerolagsof the spectral lag as well as between the soft-to-hard-to-soft mostpulseaswellastheexistenceofmultipleoverlapping andthespectrallag.Inaddition,thehard-to-softspectralpa- pulses. Even then we can make a theoretical predication rametersevolutioncanproducethepositivelags,whilethe abouttheproducingofthenegativelags,i.e.thesoft-to-hard negative lags may be resulting from the evolution of soft- andthesoft-to-hard-to-softspectralevolutionmaygiverise to-hardaswellassoft-to-hard-to-soft.Wealsotakeaccount to the negative lags, which reserves the further investiga- of the other local pulse formsstudied by Qin et al. (2004) tionsinthefutureobservations. Copyrightlinewillbeprovidedbythepublisher ANheaderwillbeprovidedbythepublisher 9 Table1 AlistofvariousobservedlagsofGRBpulseswhosespectralevolutionfollowingfromhardtosoft trigger st(s) et(s) lag13,p(s) dlag13,p(s) lag13,c(s) dlag13,c(s) χ2ν,1 χ2ν,3 1406 -2.0 15.0 1.864±0.169 1.857±0.169 1.152±0.019 0.487±0.509 1.05 1.07 2138 -2.0 15.0 0.988±0.302 1.001±0.316 1.024±0.057 0.604±0.178 1.10 0.99 2387 -2.0 20.0 2.188±0.204 2.169±0.207 1.856±0.019 1.574±0.177 1.12 1.15 2662 -2.0 15.0 1.331±0.285 1.355±0.272 0.768±0.159 0.712±0.139 1.01 1.17 2665 -2.0 15.0 1.552±0.196 1.555±0.196 1.507±0.503 1.417±0.148 0.89 0.91 3256 -2.0 15.0 2.120±0.428 2.828±0.390 1.532±0.806 1.325±0.147 1.04 1.07 3257 -1.0 15.0 1.667±0.517 1.606±0.509 1.283±0.075 1.134±0.094 0.97 0.92 3875 -1.0 5.0 0.262±0.029 0.257±0.031 0.162±0.026 0.169±0.011 1.40 1.18 4368 -2.0 10.0 0.346±0.047 0.346±0.048 0.265±0.027 0.265±0.013 1.03 0.82 5621 3.2 4.5 0.032±0.022 0.076±0.011 0.028±0.002 0.030±0.001 1.24 1.71 6397 -2.0 20.0 1.158±0.082 1.160±0.082 0.942±0.031 0.934±0.171 1.17 1.70 7548 2.0 12.0 0.814±0.075 0.816±0.075 0.596±0.232 0.628±0.063 0.88 1.10 7588 -2.0 15.0 2.230±0.120 2.220±0.120 1.125±0.292 1.427±0.390 0.87 0.93 7638 -2.0 15.0 1.124±0.114 1.420±0.134 0.968±0.012 0.931±0.162 1.15 1.04 7648 -2.0 15.0 2.490±0.243 2.501±0.248 1.574±1.202 1.528±0.386 1.01 1.03 Note:standetdenotesthestartandendtimesinceburststriggerofselectedpulses,respectively.lag13,pandlag13,crepresentspeak timelagandCCFlag,whiledlag13,panddlag13,carethecorrespondinglagsbutthelightcurvehavingbeensmoothedwiththeDB3 wavelet,χ2ν,1andχ2ν,3isthefittingχ2ν ofchannels1and3,respectively. When taking the spectral evolution and curvature ef- thoughttheinterpretationofpeakenergyE (andhenceits p fectintoaccountsimultaneouslywefindthelagsarelarger evolution)dependsontheradiationmechanismthatisused than those associated with the case that we only consider toexplaintheGRBspectra.Moreovertheyalsoattemptedto the spectral evolution (see, Fig. 5). The two factors must examineseveralmechanismsthatcouldproducethe decay playtherolessimultaneouslyontheproducingofthespec- oftheGRBspectraanddiscusshowthisevolutioncouldbe trallagssincethecurvatureeffectmustbeplayaimportant connectedtotheburstsluminosityforeachmodel.Whereas role on the producing of spectral and temporal profile of for the soft-to-hard-to-softspectral evolution few attempts the GRB. In other words, the observed lags should suffer have been made to explain it. Peng et al. (2009a) argued from this two factors simultaneously. Therefore we argue thatthephenomenonmaybecausedbybothkinematicand thatthenumberoftheobservednegativelagshouldbemuch dynamicprocess.Howevertheydidnotprovidefurtherev- smallerthanpositivelags.Recently,Chenetal.(2005)used idencestodistinguishwhichoneisdominant.Theissueof the data acquiredin the time-to-spill(TTS) mode for long spectralevolutionofhard-to-softandsoft-to-hard-to-softis GRBs by BATSE and found that positive lags is the norm still unclear,whichdeservescarefulstudiesandfurtherin- in this selected sample set of long GRBs. While relatively vestigations. fewinnumber,somepulsesofseverallongGRBsdoshow negativelags, which is also consistentwith our theoretical Acknowledgements. ThisworkwassupportedbytheScienceFund oftheEducationDepartmentofYunnanProvince(08Y0129,09Y0414), predication. theNaturalScienceFundofYunnanProvince(2009ZC060M),the Boththetheoryandobservationsuggesttheconnection keyprojectofappliedbasicstudyofYunnanProvince(2008CC011), betweenthespectralevolutionandthespectrallagsindeed NationalNaturalScienceFoundationofChina(No.10778726). exists.Therefore,wemustmakeclearthemechanismofin- trinsic spectral evolution in order to reveal the underlying References physics of the spectral lag. To explore this, we must first understandthemechanismthatproducesbreaksintheGRB Band,D.L.,Matteson,J.,Ford,L.,etal.:1993,ApJ413,281 spectraandwhatcausesitsevolutionbutitisadifficultis- Band,D.L.:1997,ApJ486,928 sue.Asforthephysicalmodelofhard-to-softspectralevo- Butler,N.R.,Kocevski,D.:2007,ApJ663,407 lutionseveralauthorshaveproposedthepossibleorigin.For Chen, L.,Lou, Y. Q.,Wu, M.,Qu, J. L.,Jia, S.M.,Yang, X. J.: example,Tavani(1996)showedthebehaviorofhard-to-soft 2005,ApJ619,983 spectralevolutionarecausedbythevariationoftheaverage Cheng,L.X.,Ma,Y.Q.,Cheng,K.S.,Lu,T.,Zhou,Y.Y.:1995, Lorentzfactorof pre-acceleratedparticlesandthestrength A&A300,746 ofthelocalmagneticfieldattheGRBsiteasthesynchrotron Crider,A.,Liang,E.P.,Smith,I.A.,etal.:1997,ApJ479,L39 Ford, L. A., Band, D. L., Matteson, J. L., et al.: 1995, ApJ 439, emissionevolveswithintheburst.WhileLiang(1997)pro- 307 posedaphysicalmodelofhard-to-softspectralevolutionin Hailey,C.J.,Harrison,F.A.,Mori,K.:1999,ApJ520,L25 whichimpulsivelyacceleratednon-thermalleptonscoolby Hakkila,J.,Giblin,T.W.,Norris,J.P.,Fragile,P.C.,Bonnell,J. saturated Compton upscattering of soft photons. Kocevski T.:2008,ApJ677,L81 &Liang(2003)pointedoutitisaharderquestionduetoun- Kaneko,Y.,Preece,R.D.,Briggs,M.S.Paciesas,W.S.,Meegan, certainties involved with the microphysicsof GRBs. They C.A.,Band,D.L.:2006,ApJS166,298 Copyrightlinewillbeprovidedbythepublisher 10 Z.Y.Pengetal.:Spectrallagofgamma-rayburstcausedbytheintrinsicspectralevolutionandthecurvatureeffect Kargatis,V.E.,Liang,E.P.,Hurley,K.C.,Barat,C.,Eveno, E., Niel,M.:1994,ApJ422,260 Kocevski,D.,Liang,E.:2003,ApJ594,385 Kocevski,D.,Ryde,F.,Liang,E.:2003,ApJ596,389 Liang,E.:1997,ApJ491,L15 Lu,R.J.,Qin,Y.P.,Zhang,Z.B.,Yi,T.F.:2006,MNRAS367, 275 Me´sza´ros,P.,Rees,M.J.:1998,ApJ502,L105 Norris,J.P.,Marani,G.F.,Bonnell,J.T.:2000,ApJ534,248 Norris,J.P.,Bonnell,J.T.,Kazanas,D.,Scargle,J.D.,Hakkila,J., Giblin,T.W.:2005,ApJ627,324 Peng,Z.Y.,Qin,Y.P.,Zhang,B.B.,Lu,R.J.,Jia,L.W.,Zhang, Z.B.:2006,MNRAS368,1351 Peng, Z.Y.,Lu, R. J.,Zhang, B.B.,Qin, Y. P.:2007, ChjAA 7, 428 Peng,Z.Y.,Ma,L.Lu,R.J.Fang,L.M.Bao,Y.Y.,Yin,Y.:2009a, NewA14,311 Peng,Z.Y.,Ma,L.,Zhao,X.H.,Yin,Y.Fang,L.M.Bao,Y.Y.: 2009b,ApJ698,417 Peng,Z.Y.,Yin,Y.,Bi,X.W.,Zhao,X.H.,Fang,L.M.,Bao,Y. Y.,Ma,L.:2010,ApJ718,894 Preece, R. D., Briggs, M. S., Mallozzi, R. S., Pendleton, G. N., Paciesas,W.S.,Band,D.L.:1998,ApJ496,849 Preece, R. D., Briggs, M. S., Mallozzi, R. S., Pendleton, G. N., Paciesas,W.S.,Band,D.L.:2000,ApJS126,19 Qin,Y.P.:2002,A&A396,705 Qin,Y.P.,Zhang,Z.B.,Zhang,F.W.,CuiX.H.:2004,ApJ617, 439 Qin,Y.P.,Dong,Y.M.,Lu,R.J.,Zhang,B.B.,Jia,L.W.:2005, ApJ632,1008 Qin,Y.P.,Su,C.Y.,Fan,J.H.,GuptaA.C.:2006,Phys.Rev.D 74,063005 Qin,Y.P.2008,ApJ,683,900 Qin,Y.P.,Gupta,A.C.,Fan,J.H.,Lu,R.-J.:2008,JCAP11,004 Qin,Y.P.:2009,ApJ691,811 Ryde,F.,Petrosian,V.:2002,ApJ578,290 Ryde,F.,Kocevski,D.,Bagoly,Z.,Ryde,N.,Me´sza´ros,A.:2005, A&A432,105 Schaefer,B.E.:2004,ApJ602,306 Shen,R.F.,Song,L.M.,Li,Z.:2005,MNRAS362,59 Tavani,M.:1996,ApJ466,768 Wu,B.,Fenimore,E.:2000,ApJ535,L29 Yi,T.F.,Liang,E.W.,Qin,Y.P.,Lu,R.J.:2006,MNRAS367, 1751 Copyrightlinewillbeprovidedbythepublisher

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.