ebook img

Spectral generalizations of line graphs: on graphs with least negative eigenvalue -2 PDF

311 Pages·2004·1.171 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Spectral generalizations of line graphs: on graphs with least negative eigenvalue -2

LONDONMATHEMATICALSOCIETYLECTURENOTESERIES ManagingEditor:ProfessorN.J.Hitchin,MathematicalInstitute, UniversityofOxford,24–29StGiles,OxfordOX13LB,UnitedKingdom Thetitlesbelowareavailablefrombooksellers,orfromCambridgeUniversityPressatwww.cambridge.org 100 Stoppingtimetechniquesforanalystsandprobabilists, L.EGGHE 105 Alocalspectraltheoryforclosedoperators, I.ERDELYI&WANGSHENGWANG 107 CompactificationofSiegelmodulischemes, C.-L.CHAI 109 Diophantineanalysis, J.LOXTON&A.VANDERPOORTEN(eds) 113 Lecturesontheasymptotictheoryofideals, D.REES 116 Representationsofalgebras, P.J.WEBB(ed) 119 Triangulatedcategoriesintherepresentationtheoryoffinite-dimensionalalgebras, D.HAPPEL 121 ProceedingsofGroups–StAndrews1985, E.ROBERTSON&C.CAMPBELL(eds) 128 Descriptivesettheoryandthestructureofsetsofuniqueness, A.S.KECHRIS&A.LOUVEAU 130 Modeltheoryandmodules, M.PREST 131 Algebraic,extremal&metriccombinatorics, M.-M.DEZA,P.FRANKL&I.G.ROSENBERG(eds) 141 Surveysincombinatorics1989, J.SIEMONS(ed) 144 Introductiontouniformspaces, I.M.JAMES 146 Cohen-MacaulaymodulesoverCohen-Macaulayrings, Y.YOSHINO 148 Helicesandvectorbundles, A.N.RUDAKOVetal 149 Solitons,nonlinearevolutionequationsandinversescattering, M.ABLOWITZ&P.CLARKSON 150 Geometryoflow-dimensionalmanifolds1, S.DONALDSON&C.B.THOMAS(eds) 151 Geometryoflow-dimensionalmanifolds2, S.DONALDSON&C.B.THOMAS(eds) 152 Oligomorphicpermutationgroups, P.CAMERON 153 L-functionsandarithmetic, J.COATES&M.J.TAYLOR(eds) 155 Classificationtheoriesofpolarizedvarieties, TAKAOFUJITA 158 GeometryofBanachspaces, P.F.X.MU¨LLER&W.SCHACHERMAYER(eds) 159 GroupsStAndrews1989volume1, C.M.CAMPBELL&E.F.ROBERTSON(eds) 160 GroupsStAndrews1989volume2, C.M.CAMPBELL&E.F.ROBERTSON(eds) 161 Lecturesonblocktheory, BURKHARDKU¨LSHAMMER 163 Topicsinvarietiesofgrouprepresentations, S.M.VOVSI 164 Quasi-symmetricdesigns, M.S.SHRIKANDE&S.S.SANE 166 Surveysincombinatorics,1991, A.D.KEEDWELL(ed) 168 Representationsofalgebras, H.TACHIKAWA&S.BRENNER(eds) 169 Booleanfunctioncomplexity, M.S.PATERSON(ed) 170 ManifoldswithsingularitiesandtheAdams-Novikovspectralsequence, B.BOTVINNIK 171 Squares, A.R.RAJWADE 172 Algebraicvarieties, GEORGER.KEMPF 173 Discretegroupsandgeometry, W.J.HARVEY&C.MACLACHLAN(eds) 174 Lecturesonmechanics, J.E.MARSDEN 175 Adamsmemorialsymposiumonalgebraictopology1, N.RAY&G.WALKER(eds) 176 Adamsmemorialsymposiumonalgebraictopology2, N.RAY&G.WALKER(eds) 177 Applicationsofcategoriesincomputerscience, M.FOURMAN,P.JOHNSTONE&A.PITTS(eds) 178 LowerK-andL-theory, A.RANICKI 179 Complexprojectivegeometry, G.ELLINGSRUDetal 180 LecturesonergodictheoryandPesintheoryoncompactmanifolds, M.POLLICOTT 181 GeometricgrouptheoryI, G.A.NIBLO&M.A.ROLLER(eds) 182 GeometricgrouptheoryII, G.A.NIBLO&M.A.ROLLER(eds) 183 Shintanizetafunctions, A.YUKIE 184 Arithmeticalfunctions, W.SCHWARZ&J.SPILKER 185 Representationsofsolvablegroups, O.MANZ&T.R.WOLF 186 Complexity:knots,colouringsandcounting, D.J.A.WELSH 187 Surveysincombinatorics,1993, K.WALKER(ed) 188 Localanalysisfortheoddordertheorem, H.BENDER&G.GLAUBERMAN 189 Locallypresentableandaccessiblecategories, J.ADAMEK&J.ROSICKY 190 Polynomialinvariantsoffinitegroups, D.J.BENSON 191 Finitegeometryandcombinatorics, F.DECLERCKetal 192 Symplecticgeometry, D.SALAMON(ed) 194 Independentrandomvariablesandrearrangementinvariantspaces, M.BRAVERMAN 195 Arithmeticofblowupalgebras, WOLMERVASCONCELOS 196 Microlocalanalysisfordifferentialoperators, A.GRIGIS&J.SJO¨STRAND 197 Two-dimensionalhomotopyandcombinatorialgrouptheory, C.HOG-ANGELONIetal 198 Thealgebraiccharacterizationofgeometric4-manifolds, J.A.HILLMAN 199 InvariantpotentialtheoryintheunitballofCn, MANFREDSTOLL 200 TheGrothendiecktheoryofdessinsd’enfant, L.SCHNEPS(ed) 201 Singularities, JEAN-PAULBRASSELET(ed) 202 Thetechniqueofpseudodifferentialoperators, H.O.CORDES 203 HochschildcohomologyofvonNeumannalgebras, A.SINCLAIR&R.SMITH 204 Combinatorialandgeometricgrouptheory, A.J.DUNCAN,N.D.GILBERT&J.HOWIE(eds) 205 Ergodictheoryanditsconnectionswithharmonicanalysis, K.PETERSEN&I.SALAMA(eds) 207 GroupsofLietypeandtheirgeometries, W.M.KANTOR&L.DIMARTINO(eds) 208 Vectorbundlesinalgebraicgeometry, N.J.HITCHIN,P.NEWSTEAD&W.M.OXBURY(eds) 209 Arithmeticofdiagonalhypersurfacesoverinfinitefields, F.Q.GOUVE´A&N.YUI 210 HilbertC∗-modules, E.C.LANCE 211 Groups93Galway/StAndrewsI, C.M.CAMPBELLetal(eds) 212 Groups93Galway/StAndrewsII, C.M.CAMPBELLetal(eds) 214 GeneralisedEuler-Jacobiinversionformulaandasymptoticsbeyondallorders, V.KOWALENKOetal 215 Numbertheory1992–93, S.DAVID(ed) 216 Stochasticpartialdifferentialequations, A.ETHERIDGE(ed) 217 Quadraticformswithapplicationstoalgebraicgeometryandtopology, A.PFISTER 218 Surveysincombinatorics,1995, PETERROWLINSON(ed) 220 Algebraicsettheory, A.JOYAL&I.MOERDIJK 221 Harmonicapproximation, S.J.GARDINER 222 Advancesinlinearlogic, J.-Y.GIRARD,Y.LAFONT&L.REGNIER(eds) 223 Analyticsemigroupsandsemilinearinitialboundaryvalueproblems, KAZUAKITAIRA 224 Computability,enumerability,unsolvability, S.B.COOPER,T.A.SLAMAN&S.S.WAINER(eds) 225 Amathematicalintroductiontostringtheory, S.ALBEVERIOetal 226 Novikovconjectures,indextheoremsandrigidityI, S.FERRY,A.RANICKI&J.ROSENBERG(eds) 227 Novikovconjectures,indextheoremsandrigidityII, S.FERRY,A.RANICKI&J.ROSENBERG(eds) 228 ErgodictheoryofZdactions, M.POLLICOTT&K.SCHMIDT(eds) 229 Ergodicityforinfinitedimensionalsystems, G.DAPRATO&J.ZABCZYK 230 Prolegomenatoamiddlebrowarithmeticofcurvesofgenus2, J.W.S.CASSELS&E.V.FLYNN 231 Semigrouptheoryanditsapplications, K.H.HOFMANN&M.W.MISLOVE(eds) 232 ThedescriptivesettheoryofPolishgroupactions, H.BECKER&A.S.KECHRIS 233 Finitefieldsandapplications, S.COHEN&H.NIEDERREITER(eds) 234 Introductiontosubfactors, V.JONES&V.S.SUNDER 235 Numbertheory1993–94, S.DAVID(ed) 236 TheJamesforest, H.FETTER&B.GAMBOADEBUEN 237 Sievemethods,exponentialsums,andtheirapplicationsinnumbertheory, G.R.H.GREAVESetal 238 Representationtheoryandalgebraicgeometry, A.MARTSINKOVSKY&G.TODOROV(eds) 240 Stablegroups, FRANKO.WAGNER 241 Surveysincombinatorics,1997, R.A.BAILEY(ed) 242 GeometricGaloisactionsI, L.SCHNEPS&P.LOCHAK(eds) 243 GeometricGaloisactionsII, L.SCHNEPS&P.LOCHAK(eds) 244 Modeltheoryofgroupsandautomorphismgroups, D.EVANS(ed) 245 Geometry,combinatorialdesignsandrelatedstructures, J.W.P.HIRSCHFELDetal 246 p-Automorphismsoffinitep-groups, E.I.KHUKHRO 247 Analyticnumbertheory, Y.MOTOHASHI(ed) 248 Tametopologyando-minimalstructures, LOUVANDENDRIES 249 Theatlasoffinitegroups:tenyearson, ROBERTCURTIS&ROBERTWILSON(eds) 250 Charactersandblocksoffinitegroups, G.NAVARRO 251 Gro¨bnerbasesandapplications, B.BUCHBERGER&F.WINKLER(eds) 252 Geometryandcohomologyingrouptheory, P.KROPHOLLER,G.NIBLO&R.STO¨HR(eds) 253 Theq-Schuralgebra, S.DONKIN 254 Galoisrepresentationsinarithmeticalgebraicgeometry, A.J.SCHOLL&R.L.TAYLOR(eds) 255 Symmetriesandintegrabilityofdifferenceequations, P.A.CLARKSON&F.W.NIJHOFF(eds) 256 AspectsofGaloistheory, HELMUTVO¨LKLEINetal 257 Anintroductiontononcommutativedifferentialgeometryanditsphysicalapplications2ed, J.MADORE 258 Setsandproofs, S.B.COOPER&J.TRUSS(eds) 259 Modelsandcomputability, S.B.COOPER&J.TRUSS(eds) 260 GroupsStAndrews1997inBath,I, C.M.CAMPBELLetal 261 GroupsStAndrews1997inBath,II, C.M.CAMPBELLetal 262 Analysisandlogic, C.W.HENSON,J.IOVINO,A.S.KECHRIS&E.ODELL 263 Singularitytheory, BILLBRUCE&DAVIDMOND(eds) 264 Newtrendsinalgebraicgeometry, K.HULEK,F.CATANESE,C.PETERS&M.REID(eds) 265 Ellipticcurvesincryptography, I.BLAKE,G.SEROUSSI&N.SMART 267 Surveysincombinatorics,1999, J.D.LAMB&D.A.PREECE(eds) 268 Spectralasymptoticsinthesemi-classicallimit, M.DIMASSI&J.SJO¨STRAND 269 Ergodictheoryandtopologicaldynamics, M.B.BEKKA&M.MAYER 270 AnalysisonLiegroups, N.T.VAROPOULOS&S.MUSTAPHA 271 Singularperturbationsofdifferentialoperators, S.ALBEVERIO&P.KURASOV 272 Charactertheoryfortheoddordertheorem, T.PETERFALVI 273 Spectraltheoryandgeometry, E.B.DAVIES&Y.SAFAROV(eds) 274 TheMandlebrotset,themeandvariations, TANLEI(ed) 275 Descriptivesettheoryanddynamicalsystems, M.FOREMANetal 276 Singularitiesofplanecurves, E.CASAS-ALVERO 277 Computationalandgeometricaspectsofmodernalgebra, M.D.ATKINSONetal 278 Globalattractorsinabstractparabolicproblems, J.W.CHOLEWA&T.DLOTKO 279 Topicsinsymbolicdynamicsandapplications, F.BLANCHARD,A.MAASS&A.NOGUEIRA(eds) 280 CharactersandautomorphismgroupsofcompactRiemannsurfaces, THOMASBREUER 281 Explicitbirationalgeometryof3-folds, ALESSIOCORTI&MILESREID(eds) 282 Auslander-Buchweitzapproximationsofequivariantmodules, M.HASHIMOTO 283 Nonlinearelasticity, Y.FU&R.OGDEN(eds) 284 Foundationsofcomputationalmathematics, R.DEVORE,A.ISERLES&E.SU¨LI(eds) 285 Rationalpointsoncurvesoverfinitefields, H.NIEDERREITER&C.XING 286 Cliffordalgebrasandspinors2ed, P.LOUNESTO 287 TopicsonRiemannsurfacesandFuchsiangroups, E.BUJALANCE,A.F.COSTA&E.MART`INEZ(eds) 288 Surveysincombinatorics,2001, J.HIRSCHFELD(ed) 289 AspectsofSobolev-typeinequalities, L.SALOFF-COSTE 290 QuantumgroupsandLietheory, A.PRESSLEY(ed) 291 Titsbuildingsandthemodeltheoryofgroups, K.TENT(ed) 292 Aquantumgroupsprimer, S.MAJID 293 SecondorderpartialdifferentialequationsinHilbertspaces, G.DAPRATO&J.ZABCZYK 294 Introductiontothetheoryofoperatorspaces, G.PISIER LondonMathematicalSocietyLectureNoteSeries.314 Spectral Generalizations of Line Graphs On graphs with least eigenvalue −2 Dragosˇ Cvetkovic´ UniversityofBelgrade PeterRowlinson UniversityofStirling SlobodanSimic´ UniversityofBelgrade publishedbythepresssyndicateoftheuniversityofcambridge ThePittBuilding,TrumpingtonStreet,Cambridge,UnitedKingdom cambridgeuniversitypress TheEdinburghBuilding,CambridgeCB22RU,UK 40West20thStreet,NewYork,NY10011-4211,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia RuizdeAlarco´n13,28014Madrid,Spain DockHouse,TheWaterfront,CapeTown8001,SouthAfrica http://www.cambridge.org (cid:4)C DragosˇCvetkovic´,PeterRowlinson,SlobodanSimic´2004 Thisbookisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithout thewrittenpermissionofCambridgeUniversityPress. Firstpublished2004 PrintedintheUnitedKingdomattheUniversityPress,Cambridge TypefaceTimes10/13pt. SystemLATEX2ε [TB] AcatalogrecordforthisbookisavailablefromtheBritishLibrary. LibraryofCongressCataloginginPublicationData Cvetkovic´,DragosˇM. Spectralgeneralizationsoflinegraphs:ongraphswithleastnegativeeigenvalue−2/ DragosˇCvetkovic´,PeterRowlinson,SlobodanSimic´. p. cm. Includesbibliographicalreferencesandindex. ISBN0-521-83663-8(pbk.) 1.Graphtheory. 2.Eigenvalues. I.Rowlinson,Peter. II.Simic,Slobodan III.Title. QA166.C837 2004 511(cid:5).5–dc22 2003065393 ISBN0521836638paperback Inmemoryofourlateparents: JelkaCvetkovic´ (1904–1993) MladenCvetkovic´ (1901–1979) IreneRowlinson (1910–2001) ArthurRowlinson (1908–1996) OlgaSimic´ (1916–2002) KostaSimic´ (1907–1978) v Contents Preface pagexi 1 Introduction 1 1.1 Basicnotionsandresults 1 1.2 Somegeneraltheoremsfromspectralgraphtheory 10 1.3 Elementaryspectralcharacterizations 21 1.4 Ahistoryofresearchongraphswithleasteigenvalue−2 22 2 Forbiddensubgraphs 25 2.1 Linegraphs 25 2.2 Theeigenspaceof−2forgeneralizedlinegraphs 28 2.3 Generalizedlinegraphs 31 2.4 Someotherclassesofgraphs 44 2.5 Generalcharacterizations 51 2.6 Spectralcharacterizationsofregularlinegraphs 54 3 Rootsystems 64 3.1 Grammatricesandsystemsoflines 64 3.2 Somepropertiesof E 69 8 3.3 Extensionsoflinesystems 72 3.4 Smithgraphsandlinesystems 77 3.5 Analternativeapproach 81 3.6 Generalcharacterizationtheorems 83 3.7 CommentsonsomeresultsfromChapter2 86 4 Regulargraphs 88 4.1 Regularexceptionalgraphs 88 4.2 Characterizingregularlinegraphsbytheirspectra 91 vii viii Contents 4.3 Specialcharacterizationtheorems 96 4.4 Regularexceptionalgraphs:computerinvestigations 100 5 Starcomplements 112 5.1 Basicproperties 112 5.2 Graphfoundations 124 5.3 Exceptionalgraphs 129 5.4 Characterizations 131 5.5 Switching 136 6 Themaximalexceptionalgraphs 139 6.1 Thecomputersearch 139 6.2 Representationsin E 142 8 6.3 Aversatilestarcomplement 146 6.4 Graphswithmaximaldegreelessthan28 149 6.5 Thelastsubcase 153 6.6 Concludingremarks 161 7 Miscellaneousresults 164 7.1 Graphswithsecondlargesteigenvaluenotexceeding1 164 7.2 Graphssharingpropertieswiththeircomplements 170 7.3 Spectrallyboundedgraphs 176 7.4 Embeddingagraphinaregulargraph 178 7.5 Reconstructingthecharacteristicpolynomial 180 7.6 Integralgraphs 183 7.7 Graphequations 188 7.8 Othertopics 190 Appendix 193 TableA1 Somegraphsrelatedtographswithleasteigenvalue−2 194 TableA2 Theexceptionalgraphswithleasteigenvaluegreaterthan−2 198 TableA3 Regularexceptionalgraphsandtheirspectra 213 TableA4 Aconstructionofthe68connectedregulargraphswhichare notlinegraphsbutcospectralwithlinegraphs 228 TableA5 One-vertexextensionsofexceptionalstarcomplements 243 TableA6 Themaximalexceptionalgraphs 249 TableA7 The index and vertex degrees of the maximal exceptional graphs 273 Bibliography 281 Indexofsymbolsandterms 295 Preface Theeigenvaluesdiscussedinthisbookarethoseofa(0,1)-adjacencymatrixof afiniteundirectedgraph.Linegraphs,familiartograph-theoristsfordecades, have the property that their least eigenvalue is greater than or equal to −2. Thispropertyissharedwithgeneralizedlinegraphs,whichcanbeviewedas linegraphsofcertainmultigraphs.Apartfromtheseclassesofexamplesthere areonlyfinitelymanyfurtherconnectedgraphswithspectrumintheinterval [−2,∞), and these are called exceptional graphs. This book deals with line graphs,generalizedlinegraphsandexceptionalgraphs,inthecontextofspectral propertiesofgraphs.Havingworkedinspectralgraphtheoryformanyyears,the authorscametoseetheneedforasinglesourceofinformationontheprincipal resultsinthisarea.Workbeganearlyin2000,andtheprincipalmotivationfor writingthebookatthisjuncturewastheconstructionofthemaximalexceptional graphsin1999.Theworkingtitlehasbecomethesubtitleonthegroundsthat ‘Graphswithleasteigenvalue−2’mightappearunreasonablyspecializedtothe casualobserver.Infact,thesubtitleisnotwhollyaccurateinthatitisnecessary totreatalsothegraphswithleasteigenvaluegreaterthan−2. The requirement that the spectrum of a graph lies in [−2,∞) is a natural one, and in principle not a restriction at all. The reason is to be found in the classicalresultofH.Whitney,whoshowedin1932thattwoconnectedgraphs (withmorethanthreevertices)areisomorphicifandonlyiftheirlinegraphs areisomorphic. ThetitlesofChapters2,3and5,namely‘Forbiddensubgraphs’,‘Rootsys- tems’and‘Starcomplements’reflectthreemajortechniquesandthreeperiods inthestudyofgraphswithleasteigenvalue−2.Ofcourse,earlyresultswereof- tenimprovedusinglatertechniques,butonconsideringtheinterplaybetween techniques, the authors decided that a presentation broadly in chronological orderwasthemostnaturalapproach. ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.