ebook img

Specialist Mathematics PDF

767 Pages·48.253 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Specialist Mathematics

e s c n a l a l a v y E W b n l o e e s e s a a p r h gl i T c L u d i M o y i v D a a K D S p e M c a i t a l h i e s t m a t i c 2 s & Ca 1 m b ts Senior ridge i M n at h e U A m ustr atic C alia s INCLUDES INTERACTIVE ur n TEXTBOOK POWERED BY ri c CAMBRIDGE HOTMATHS ul u m / V C E Cambridge Senior Maths AC/VC E ISBN 978-1-107-56765-8 © Evans et al. 2016 Cambridge University Press Specialist Mathematics 1&2 Photocopying is restricted under law and this material must not be transferred to another party. Updated May 2021 e s c n a l a l a v y E W b n l o e e s e s a a p r h gl i T c L u d i M o y i v D a a K D S p e M c a i t a l h i e s t m a t i c 2 s & Ca 1 m b ts Senior ridge i M n at h e U A m ustr atic C alia s INCLUDES INTERACTIVE ur n TEXTBOOK POWERED BY ri c CAMBRIDGE HOTMATHS ul u m / V C E Cambridge Senior Maths AC/VC E ISBN 978-1-107-56765-8 © Evans et al. 2016 Cambridge University Press Specialist Mathematics 1&2 Photocopying is restricted under law and this material must not be transferred to another party. Updated May 2021 UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre,NewDelhi–110025,India 103PenangRoad,#05–06/07,VisioncrestCommercial,Singapore238467 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learningandresearchatthehighestinternationallevelsofexcellence. www.cambridge.org ©MichaelEvans,DouglasWallace,KayLipson,DavidTreeby2016 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstprinted2016 20 19 18 17 16 15 14 13 12 11 10 9 8 7 CoverdesignedbyLoupeDesign TypesetbyJanePitkethlyanddiacriTech PrintedinChinabyC&COffsetPrintingCo.Ltd Acataloguerecordforthisbookisavailablefrom theNationalLibraryofAustraliaatwww.nla.gov.au ISBN978-1-107-56765-8Paperback Additionalresourcesforthispublicationatwww.cambridge.edu.au/GO Reproductionandcommunicationforeducationalpurposes TheAustralianCopyrightAct1968(theAct)allowsamaximumof onechapteror10%ofthepagesofthispublication,whicheveristhegreater, tobereproducedand/orcommunicatedbyanyeducationalinstitution foritseducationalpurposesprovidedthattheeducationalinstitution (orthebodythatadministersit)hasgivenaremunerationnoticeto CopyrightAgencyLimited(CAL)undertheAct. FordetailsoftheCALlicenceforeducationalinstitutionscontact: CopyrightAgencyLimited Level12,66GoulburnStreet SydneyNSW2000 Telephone:(02)93947600 Facsimile:(02)93947601 Email:[email protected] Reproductionandcommunicationforotherpurposes ExceptaspermittedundertheAct(forexampleafairdealingforthe purposesofstudy,research,criticismorreview)nopartofthispublication maybereproduced,storedinaretrievalsystem,communicatedor transmittedinanyformorbyanymeanswithoutpriorwrittenpermission. Allinquiriesshouldbemadetothepublisherattheaddressabove. CambridgeUniversityPresshasnoresponsibilityforthepersistenceor accuracyofURLSforexternalorthird-partyinternetwebsitesreferredtoin thispublication,anddoesnotguaranteethatanycontentonsuchwebsitesis, orwillremain,accurateorappropriate.Informationregardingprices,travel timetablesandotherfactualinformationgiveninthisworkiscorrectat thetimeoffirstprintingbutCambridgeUniversityPressdoesnotguarantee theaccuracyofsuchinformationthereafter. Cambridge Senior Maths AC/VC E ISBN 978-1-107-56765-8 © Evans et al. 2016 Cambridge University Press Specialist Mathematics 1&2 Photocopying is restricted under law and this material must not be transferred to another party. Updated May 2021 Contents Introduction ix Acknowledgements xi AnoverviewoftheCambridgecompleteteacherandlearningresource xii 1 AlgebraI 1 1A Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1B Standardform . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1C Solvinglinearequationsandsimultaneouslinearequations . . . 8 1D Solvingproblemswithlinearequations . . . . . . . . . . . . . 13 1E Solvingproblemswithsimultaneouslinearequations . . . . . . 17 1F Substitutionandtranspositionofformulas . . . . . . . . . . . . 19 1G Algebraicfractions . . . . . . . . . . . . . . . . . . . . . . . . 22 1H Literalequations . . . . . . . . . . . . . . . . . . . . . . . . . 25 1I UsingaCAScalculatorforalgebra . . . . . . . . . . . . . . . . 28 ReviewofChapter1 . . . . . . . . . . . . . . . . . . . . . . . 33 2 Numbersystemsandsets 39 2A Setnotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2B Setsofnumbers. . . . . . . . . . . . . . . . . . . . . . . . . . 43 2C Themodulusfunction . . . . . . . . . . . . . . . . . . . . . . 48 2D Surds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2E Naturalnumbers . . . . . . . . . . . . . . . . . . . . . . . . . 57 2F LinearDiophantineequations . . . . . . . . . . . . . . . . . . 62 2G TheEuclideanalgorithm . . . . . . . . . . . . . . . . . . . . . 66 2H Problemsinvolvingsets . . . . . . . . . . . . . . . . . . . . . . 70 ReviewofChapter2 . . . . . . . . . . . . . . . . . . . . . . . 74 Cambridge Senior Maths AC/VC E ISBN 978-1-107-56765-8 © Evans et al. 2016 Cambridge University Press Specialist Mathematics 1&2 Photocopying is restricted under law and this material must not be transferred to another party. Updated May 2021 iv Contents 3 Variation 82 3A Directvariation . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3B Inversevariation . . . . . . . . . . . . . . . . . . . . . . . . . 87 3C Fittingdata . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3D Jointvariation . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3E Partvariation . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 ReviewofChapter3 . . . . . . . . . . . . . . . . . . . . . . . 104 4 Sequencesandseries 110 4A Introductiontosequences . . . . . . . . . . . . . . . . . . . . 111 4B Arithmeticsequences . . . . . . . . . . . . . . . . . . . . . . . 118 4C Arithmeticseries . . . . . . . . . . . . . . . . . . . . . . . . . 122 4D Geometricsequences . . . . . . . . . . . . . . . . . . . . . . . 127 4E Geometricseries . . . . . . . . . . . . . . . . . . . . . . . . . 133 4F Zeno’sparadoxandinfinitegeometricseries. . . . . . . . . . . 137 ReviewofChapter4 . . . . . . . . . . . . . . . . . . . . . . . 140 5 AlgebraII 146 5A Polynomialidentities . . . . . . . . . . . . . . . . . . . . . . . 147 5B Quadraticequations . . . . . . . . . . . . . . . . . . . . . . . 151 5C Applyingquadraticequationstorateproblems . . . . . . . . . 157 5D Partialfractions . . . . . . . . . . . . . . . . . . . . . . . . . . 162 5E Simultaneousequations . . . . . . . . . . . . . . . . . . . . . 169 ReviewofChapter5 . . . . . . . . . . . . . . . . . . . . . . . 173 6 RevisionofChapters1–5 177 6A Technology-freequestions . . . . . . . . . . . . . . . . . . . . 177 6B Multiple-choicequestions . . . . . . . . . . . . . . . . . . . . 179 6C Extended-responsequestions . . . . . . . . . . . . . . . . . . 182 7 Principlesofcounting 190 7A Basiccountingmethods . . . . . . . . . . . . . . . . . . . . . 191 7B Factorialnotationandpermutations . . . . . . . . . . . . . . . 195 7C Permutationswithrestrictions . . . . . . . . . . . . . . . . . . 201 7D Permutationsoflikeobjects . . . . . . . . . . . . . . . . . . . 204 7E Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 7F Combinationswithrestrictions . . . . . . . . . . . . . . . . . . 212 7G Pascal’striangle . . . . . . . . . . . . . . . . . . . . . . . . . . 216 7H Thepigeonholeprinciple . . . . . . . . . . . . . . . . . . . . . 219 7I Theinclusion–exclusionprinciple . . . . . . . . . . . . . . . . . 223 ReviewofChapter7 . . . . . . . . . . . . . . . . . . . . . . . 228 Cambridge Senior Maths AC/VC E ISBN 978-1-107-56765-8 © Evans et al. 2016 Cambridge University Press Specialist Mathematics 1&2 Photocopying is restricted under law and this material must not be transferred to another party. Updated May 2021 Contents v 8 Numberandproof 232 8A Directproof . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 8B Proofbycontrapositive . . . . . . . . . . . . . . . . . . . . . . 238 8C Proofbycontradiction . . . . . . . . . . . . . . . . . . . . . . 242 8D Equivalentstatements . . . . . . . . . . . . . . . . . . . . . . 246 8E Disprovingstatements . . . . . . . . . . . . . . . . . . . . . . 249 8F Mathematicalinduction . . . . . . . . . . . . . . . . . . . . . 251 ReviewofChapter8 . . . . . . . . . . . . . . . . . . . . . . . 260 9 Geometryintheplaneandproof 265 9A Points,linesandangles . . . . . . . . . . . . . . . . . . . . . . 266 9B Trianglesandpolygons . . . . . . . . . . . . . . . . . . . . . . 272 9C Congruenceandproofs . . . . . . . . . . . . . . . . . . . . . 277 9D Pythagoras’theorem . . . . . . . . . . . . . . . . . . . . . . . 282 9E Ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 9F Anintroductiontosimilarity . . . . . . . . . . . . . . . . . . . 288 9G Proofsinvolvingsimilarity . . . . . . . . . . . . . . . . . . . . 295 9H Areas,volumesandsimilarity . . . . . . . . . . . . . . . . . . . 297 9I Thegoldenratio . . . . . . . . . . . . . . . . . . . . . . . . . 304 ReviewofChapter9 . . . . . . . . . . . . . . . . . . . . . . . 308 10 Circlegeometry 316 10A Anglepropertiesofthecircle . . . . . . . . . . . . . . . . . . . 317 10B Tangents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 10C Chordsincircles . . . . . . . . . . . . . . . . . . . . . . . . . 326 ReviewofChapter10 . . . . . . . . . . . . . . . . . . . . . . 329 11 RevisionofChapters7–10 334 11A Technology-freequestions . . . . . . . . . . . . . . . . . . . . 334 11B Multiple-choicequestions . . . . . . . . . . . . . . . . . . . . 337 11C Extended-responsequestions . . . . . . . . . . . . . . . . . . 342 12 Samplingandsamplingdistributions 347 12A Populationsandsamples . . . . . . . . . . . . . . . . . . . . . 348 12B Thedistributionofthesampleproportion . . . . . . . . . . . . 353 12C Investigatingthedistributionofthesampleproportion usingsimulation . . . . . . . . . . . . . . . . . . . . . . . . . 366 12D Investigatingthedistributionofthesamplemean usingsimulation . . . . . . . . . . . . . . . . . . . . . . . . . 373 ReviewofChapter12 . . . . . . . . . . . . . . . . . . . . . . 381 Cambridge Senior Maths AC/VC E ISBN 978-1-107-56765-8 © Evans et al. 2016 Cambridge University Press Specialist Mathematics 1&2 Photocopying is restricted under law and this material must not be transferred to another party. Updated May 2021 vi Contents 13 Trigonometricratiosandapplications 387 13A Reviewingtrigonometry . . . . . . . . . . . . . . . . . . . . . 388 13B Thesinerule . . . . . . . . . . . . . . . . . . . . . . . . . . . 393 13C Thecosinerule . . . . . . . . . . . . . . . . . . . . . . . . . . 397 13D Theareaofatriangle . . . . . . . . . . . . . . . . . . . . . . . 400 13E Circlemensuration . . . . . . . . . . . . . . . . . . . . . . . . 403 13F Anglesofelevation,anglesofdepressionandbearings . . . . . 408 13G Problemsinthreedimensions . . . . . . . . . . . . . . . . . . 412 13H Anglesbetweenplanesandmoredifficult3Dproblems . . . . . 416 ReviewofChapter13 . . . . . . . . . . . . . . . . . . . . . . 421 14 Furthertrigonometry 427 14A Symmetryproperties . . . . . . . . . . . . . . . . . . . . . . . 428 14B Thetangentfunction . . . . . . . . . . . . . . . . . . . . . . . 430 14C ReciprocalfunctionsandthePythagoreanidentity . . . . . . . 433 14D Additionformulasanddoubleangleformulas . . . . . . . . . . 438 14E Simplifyingacosx+bsinx . . . . . . . . . . . . . . . . . . . . 445 ReviewofChapter14 . . . . . . . . . . . . . . . . . . . . . . 448 15 Graphingtechniques 453 15A Reciprocalfunctions . . . . . . . . . . . . . . . . . . . . . . . 454 15B Locusofpoints . . . . . . . . . . . . . . . . . . . . . . . . . . 459 15C Parabolas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462 15D Ellipses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465 15E Hyperbolas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469 15F Parametricequations . . . . . . . . . . . . . . . . . . . . . . . 474 15G Polarcoordinates . . . . . . . . . . . . . . . . . . . . . . . . . 483 15H Graphingusingpolarcoordinates . . . . . . . . . . . . . . . . 485 15I Furthergraphingusingpolarcoordinates . . . . . . . . . . . . 488 ReviewofChapter15 . . . . . . . . . . . . . . . . . . . . . . 493 16 Complexnumbers 498 16A Startingtobuildthecomplexnumbers. . . . . . . . . . . . . . 499 16B Multiplicationanddivisionofcomplexnumbers . . . . . . . . . 503 16C Arganddiagrams . . . . . . . . . . . . . . . . . . . . . . . . . 509 16D Solvingequationsoverthecomplexnumbers . . . . . . . . . . 513 16E Polarformofacomplexnumber . . . . . . . . . . . . . . . . . 515 ReviewofChapter16 . . . . . . . . . . . . . . . . . . . . . . 520 Cambridge Senior Maths AC/VC E ISBN 978-1-107-56765-8 © Evans et al. 2016 Cambridge University Press Specialist Mathematics 1&2 Photocopying is restricted under law and this material must not be transferred to another party. Updated May 2021 Contents vii 17 RevisionofChapters13–16 524 17A Technology-freequestions . . . . . . . . . . . . . . . . . . . . 524 17B Multiple-choicequestions . . . . . . . . . . . . . . . . . . . . 526 17C Extended-responsequestions . . . . . . . . . . . . . . . . . . 531 18 Matrices 535 18A Matrixnotation . . . . . . . . . . . . . . . . . . . . . . . . . . 536 18B Addition,subtractionandmultiplicationbyarealnumber . . . 540 18C Multiplicationofmatrices . . . . . . . . . . . . . . . . . . . . 544 18D Identities,inversesanddeterminantsfor2×2matrices . . . . . 547 18E Solutionofsimultaneousequationsusingmatrices . . . . . . . 552 ReviewofChapter18 . . . . . . . . . . . . . . . . . . . . . . 555 19 Transformationsoftheplane 560 19A Lineartransformations . . . . . . . . . . . . . . . . . . . . . . 561 19B Geometrictransformations . . . . . . . . . . . . . . . . . . . . 565 19C Rotationsandgeneralreflections. . . . . . . . . . . . . . . . . 571 19D Compositionoftransformations . . . . . . . . . . . . . . . . . 574 19E Inversetransformations. . . . . . . . . . . . . . . . . . . . . . 577 19F Transformationsofstraightlinesandothergraphs . . . . . . . 581 19G Areaanddeterminant . . . . . . . . . . . . . . . . . . . . . . 585 19H Generaltransformations . . . . . . . . . . . . . . . . . . . . . 590 ReviewofChapter19 . . . . . . . . . . . . . . . . . . . . . . 593 20 Vectors 598 20A Introductiontovectors . . . . . . . . . . . . . . . . . . . . . . 599 20B Componentsofvectors . . . . . . . . . . . . . . . . . . . . . . 607 20C Scalarproductofvectors . . . . . . . . . . . . . . . . . . . . . 611 20D Vectorprojections. . . . . . . . . . . . . . . . . . . . . . . . . 614 20E Geometricproofs . . . . . . . . . . . . . . . . . . . . . . . . . 618 20F Vectorsinthreedimensions . . . . . . . . . . . . . . . . . . . 621 ReviewofChapter20 . . . . . . . . . . . . . . . . . . . . . . 624 21 RevisionofChapters18–20 629 21A Technology-freequestions . . . . . . . . . . . . . . . . . . . . 629 21B Multiple-choicequestions . . . . . . . . . . . . . . . . . . . . 631 21C Extended-responsequestions . . . . . . . . . . . . . . . . . . 635 Cambridge Senior Maths AC/VC E ISBN 978-1-107-56765-8 © Evans et al. 2016 Cambridge University Press Specialist Mathematics 1&2 Photocopying is restricted under law and this material must not be transferred to another party. Updated May 2021 viii Contents 22 Kinematics 640 22A Position,velocityandacceleration . . . . . . . . . . . . . . . . 641 22B Applicationsofantidifferentiationtokinematics . . . . . . . . . 646 22C Constantacceleration. . . . . . . . . . . . . . . . . . . . . . . 650 22D Velocity–timegraphs . . . . . . . . . . . . . . . . . . . . . . . 653 ReviewofChapter22 . . . . . . . . . . . . . . . . . . . . . . 659 23 Staticsofaparticle 666 23A Forcesandtriangleofforces . . . . . . . . . . . . . . . . . . . 667 23B Resolutionofforces. . . . . . . . . . . . . . . . . . . . . . . . 672 ReviewofChapter23 . . . . . . . . . . . . . . . . . . . . . . 676 24 RevisionofChapters22–23 679 24A Technology-freequestions . . . . . . . . . . . . . . . . . . . . 679 24B Multiple-choicequestions . . . . . . . . . . . . . . . . . . . . 681 24C Extended-responsequestions . . . . . . . . . . . . . . . . . . 683 Glossary 685 Answers 698 IncludedintheInteractiveTextbookandPDFtextbookonly Chapter25:Statistics 25A Summarisingunivariatedata 25B Displayingbivariatedata 25C Thecorrelationcoefficient 25D Linesonscatterplots 25E Theleastsquaresregressionline ReviewofChapter25 Chapter26:Logicandalgebra 26A Setsandcircuits 26B Booleanalgebra 26C Logicalconnectivesandtruthtables 26D Logiccircuits 26E Karnaughmaps ReviewofChapter26 Chapter27:Graphtheory 27A Graphsandadjacencymatrices 27B EulercircuitsandHamiltoncycles 27C Matrixpowersandwalks 27D Completegraphs,bipartitegraphsandtrees 27E Euler’sformulaandthePlatonicsolids 27F Appendix:Wheneveryvertexhasevendegree ReviewofChapter27 AppendixA:GuidetoTI-NspireCASCXwithOS4.0 AppendixB:GuidetoCasioClassPadII Cambridge Senior Maths AC/VC E ISBN 978-1-107-56765-8 © Evans et al. 2016 Cambridge University Press Specialist Mathematics 1&2 Photocopying is restricted under law and this material must not be transferred to another party. Updated May 2021 Introduction CambridgeSpecialistMathematicsAustralianCurriculum/VCEUnits1&2providesa completeteachingandlearningresourcefortheVCEStudyDesigntobeimplementedin 2016. Ithasbeenwrittenwithunderstandingasitschiefaimandwithamplepracticeoffered throughtheworkedexamplesandexercises. Alltheworkhasbeentrialledintheclassroom, andtheapproachesofferedarebasedonclassroomexperienceandtheresponsesofteachers toearlierversionsofthisbook. SpecialistMathematicsUnits1&2offersthematerialontopicsfromtheSpecialist MathematicsStudyDesign. Thetopicscoveredprovideexcellentbackgroundforastudent proceedingtoSpecialistMathematicsUnits3&4. Italsowouldbeveryusefulforastudent proceedingtoMathematicalMethodsUnits3&4. Thebookhasbeencarefullypreparedtoreflecttheprescribedcourse. Newmaterialhas beenincludedformanyofthetopicsincludinggeometry,proof,statistics,transformations, countingprinciplesandalgebra. Thebookcontainsfiverevisionchapters. Theseprovidetechnology-free,multiple-choiceand extended-responsequestions. TheTI-NspirecalculatorexamplesandinstructionshavebeencompletedbyRussellBrown andthosefortheCasioClassPadhavebeencompletedbyMariaSchaffner. Areas of Study ThechaptersinthisbookcoverthediversityoftopicsthatfeatureintheSpecialist MathematicsStudyDesign. TheyarecollectedintoAreasofStudy. TopicsfromGeneral MathematicsUnits1&2arealsoavailabletobeincorporatedintoaSpecialistMathematics course. ThetableoppositeshowshowcoursescanbeconstructedfromSpecialistMathematics topics(indicatedbySM,withprescribedtopicsmarkedassuch)andGeneralMathematics topics(indicatedbyGM). ‘ITBextra’referstoachapterthatisaccessedonlyinthe InteractiveTextbook. Cambridge Senior Maths AC/VC E ISBN 978-1-107-56765-8 © Evans et al. 2016 Cambridge University Press Specialist Mathematics 1&2 Photocopying is restricted under law and this material must not be transferred to another party. Updated May 2021

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.