e s c n a l a l a v y E W b n l o e e s e s a a p r h gl i T c L u d i M o y i v D a a K D S p e M c a i t a l h i e s t m a t i c 2 s & Ca 1 m b ts Senior ridge i M n at h e U A m ustr atic C alia s INCLUDES INTERACTIVE ur n TEXTBOOK POWERED BY ri c CAMBRIDGE HOTMATHS ul u m / V C E Cambridge Senior Maths AC/VC E ISBN 978-1-107-56765-8 © Evans et al. 2016 Cambridge University Press Specialist Mathematics 1&2 Photocopying is restricted under law and this material must not be transferred to another party. Updated May 2021 e s c n a l a l a v y E W b n l o e e s e s a a p r h gl i T c L u d i M o y i v D a a K D S p e M c a i t a l h i e s t m a t i c 2 s & Ca 1 m b ts Senior ridge i M n at h e U A m ustr atic C alia s INCLUDES INTERACTIVE ur n TEXTBOOK POWERED BY ri c CAMBRIDGE HOTMATHS ul u m / V C E Cambridge Senior Maths AC/VC E ISBN 978-1-107-56765-8 © Evans et al. 2016 Cambridge University Press Specialist Mathematics 1&2 Photocopying is restricted under law and this material must not be transferred to another party. Updated May 2021 UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre,NewDelhi–110025,India 103PenangRoad,#05–06/07,VisioncrestCommercial,Singapore238467 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learningandresearchatthehighestinternationallevelsofexcellence. www.cambridge.org ©MichaelEvans,DouglasWallace,KayLipson,DavidTreeby2016 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstprinted2016 20 19 18 17 16 15 14 13 12 11 10 9 8 7 CoverdesignedbyLoupeDesign TypesetbyJanePitkethlyanddiacriTech PrintedinChinabyC&COffsetPrintingCo.Ltd Acataloguerecordforthisbookisavailablefrom theNationalLibraryofAustraliaatwww.nla.gov.au ISBN978-1-107-56765-8Paperback Additionalresourcesforthispublicationatwww.cambridge.edu.au/GO Reproductionandcommunicationforeducationalpurposes TheAustralianCopyrightAct1968(theAct)allowsamaximumof onechapteror10%ofthepagesofthispublication,whicheveristhegreater, tobereproducedand/orcommunicatedbyanyeducationalinstitution foritseducationalpurposesprovidedthattheeducationalinstitution (orthebodythatadministersit)hasgivenaremunerationnoticeto CopyrightAgencyLimited(CAL)undertheAct. FordetailsoftheCALlicenceforeducationalinstitutionscontact: CopyrightAgencyLimited Level12,66GoulburnStreet SydneyNSW2000 Telephone:(02)93947600 Facsimile:(02)93947601 Email:[email protected] Reproductionandcommunicationforotherpurposes ExceptaspermittedundertheAct(forexampleafairdealingforthe purposesofstudy,research,criticismorreview)nopartofthispublication maybereproduced,storedinaretrievalsystem,communicatedor transmittedinanyformorbyanymeanswithoutpriorwrittenpermission. Allinquiriesshouldbemadetothepublisherattheaddressabove. CambridgeUniversityPresshasnoresponsibilityforthepersistenceor accuracyofURLSforexternalorthird-partyinternetwebsitesreferredtoin thispublication,anddoesnotguaranteethatanycontentonsuchwebsitesis, orwillremain,accurateorappropriate.Informationregardingprices,travel timetablesandotherfactualinformationgiveninthisworkiscorrectat thetimeoffirstprintingbutCambridgeUniversityPressdoesnotguarantee theaccuracyofsuchinformationthereafter. Cambridge Senior Maths AC/VC E ISBN 978-1-107-56765-8 © Evans et al. 2016 Cambridge University Press Specialist Mathematics 1&2 Photocopying is restricted under law and this material must not be transferred to another party. Updated May 2021 Contents Introduction ix Acknowledgements xi AnoverviewoftheCambridgecompleteteacherandlearningresource xii 1 AlgebraI 1 1A Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1B Standardform . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1C Solvinglinearequationsandsimultaneouslinearequations . . . 8 1D Solvingproblemswithlinearequations . . . . . . . . . . . . . 13 1E Solvingproblemswithsimultaneouslinearequations . . . . . . 17 1F Substitutionandtranspositionofformulas . . . . . . . . . . . . 19 1G Algebraicfractions . . . . . . . . . . . . . . . . . . . . . . . . 22 1H Literalequations . . . . . . . . . . . . . . . . . . . . . . . . . 25 1I UsingaCAScalculatorforalgebra . . . . . . . . . . . . . . . . 28 ReviewofChapter1 . . . . . . . . . . . . . . . . . . . . . . . 33 2 Numbersystemsandsets 39 2A Setnotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2B Setsofnumbers. . . . . . . . . . . . . . . . . . . . . . . . . . 43 2C Themodulusfunction . . . . . . . . . . . . . . . . . . . . . . 48 2D Surds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2E Naturalnumbers . . . . . . . . . . . . . . . . . . . . . . . . . 57 2F LinearDiophantineequations . . . . . . . . . . . . . . . . . . 62 2G TheEuclideanalgorithm . . . . . . . . . . . . . . . . . . . . . 66 2H Problemsinvolvingsets . . . . . . . . . . . . . . . . . . . . . . 70 ReviewofChapter2 . . . . . . . . . . . . . . . . . . . . . . . 74 Cambridge Senior Maths AC/VC E ISBN 978-1-107-56765-8 © Evans et al. 2016 Cambridge University Press Specialist Mathematics 1&2 Photocopying is restricted under law and this material must not be transferred to another party. Updated May 2021 iv Contents 3 Variation 82 3A Directvariation . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3B Inversevariation . . . . . . . . . . . . . . . . . . . . . . . . . 87 3C Fittingdata . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3D Jointvariation . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3E Partvariation . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 ReviewofChapter3 . . . . . . . . . . . . . . . . . . . . . . . 104 4 Sequencesandseries 110 4A Introductiontosequences . . . . . . . . . . . . . . . . . . . . 111 4B Arithmeticsequences . . . . . . . . . . . . . . . . . . . . . . . 118 4C Arithmeticseries . . . . . . . . . . . . . . . . . . . . . . . . . 122 4D Geometricsequences . . . . . . . . . . . . . . . . . . . . . . . 127 4E Geometricseries . . . . . . . . . . . . . . . . . . . . . . . . . 133 4F Zeno’sparadoxandinfinitegeometricseries. . . . . . . . . . . 137 ReviewofChapter4 . . . . . . . . . . . . . . . . . . . . . . . 140 5 AlgebraII 146 5A Polynomialidentities . . . . . . . . . . . . . . . . . . . . . . . 147 5B Quadraticequations . . . . . . . . . . . . . . . . . . . . . . . 151 5C Applyingquadraticequationstorateproblems . . . . . . . . . 157 5D Partialfractions . . . . . . . . . . . . . . . . . . . . . . . . . . 162 5E Simultaneousequations . . . . . . . . . . . . . . . . . . . . . 169 ReviewofChapter5 . . . . . . . . . . . . . . . . . . . . . . . 173 6 RevisionofChapters1–5 177 6A Technology-freequestions . . . . . . . . . . . . . . . . . . . . 177 6B Multiple-choicequestions . . . . . . . . . . . . . . . . . . . . 179 6C Extended-responsequestions . . . . . . . . . . . . . . . . . . 182 7 Principlesofcounting 190 7A Basiccountingmethods . . . . . . . . . . . . . . . . . . . . . 191 7B Factorialnotationandpermutations . . . . . . . . . . . . . . . 195 7C Permutationswithrestrictions . . . . . . . . . . . . . . . . . . 201 7D Permutationsoflikeobjects . . . . . . . . . . . . . . . . . . . 204 7E Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 7F Combinationswithrestrictions . . . . . . . . . . . . . . . . . . 212 7G Pascal’striangle . . . . . . . . . . . . . . . . . . . . . . . . . . 216 7H Thepigeonholeprinciple . . . . . . . . . . . . . . . . . . . . . 219 7I Theinclusion–exclusionprinciple . . . . . . . . . . . . . . . . . 223 ReviewofChapter7 . . . . . . . . . . . . . . . . . . . . . . . 228 Cambridge Senior Maths AC/VC E ISBN 978-1-107-56765-8 © Evans et al. 2016 Cambridge University Press Specialist Mathematics 1&2 Photocopying is restricted under law and this material must not be transferred to another party. Updated May 2021 Contents v 8 Numberandproof 232 8A Directproof . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 8B Proofbycontrapositive . . . . . . . . . . . . . . . . . . . . . . 238 8C Proofbycontradiction . . . . . . . . . . . . . . . . . . . . . . 242 8D Equivalentstatements . . . . . . . . . . . . . . . . . . . . . . 246 8E Disprovingstatements . . . . . . . . . . . . . . . . . . . . . . 249 8F Mathematicalinduction . . . . . . . . . . . . . . . . . . . . . 251 ReviewofChapter8 . . . . . . . . . . . . . . . . . . . . . . . 260 9 Geometryintheplaneandproof 265 9A Points,linesandangles . . . . . . . . . . . . . . . . . . . . . . 266 9B Trianglesandpolygons . . . . . . . . . . . . . . . . . . . . . . 272 9C Congruenceandproofs . . . . . . . . . . . . . . . . . . . . . 277 9D Pythagoras’theorem . . . . . . . . . . . . . . . . . . . . . . . 282 9E Ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 9F Anintroductiontosimilarity . . . . . . . . . . . . . . . . . . . 288 9G Proofsinvolvingsimilarity . . . . . . . . . . . . . . . . . . . . 295 9H Areas,volumesandsimilarity . . . . . . . . . . . . . . . . . . . 297 9I Thegoldenratio . . . . . . . . . . . . . . . . . . . . . . . . . 304 ReviewofChapter9 . . . . . . . . . . . . . . . . . . . . . . . 308 10 Circlegeometry 316 10A Anglepropertiesofthecircle . . . . . . . . . . . . . . . . . . . 317 10B Tangents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 10C Chordsincircles . . . . . . . . . . . . . . . . . . . . . . . . . 326 ReviewofChapter10 . . . . . . . . . . . . . . . . . . . . . . 329 11 RevisionofChapters7–10 334 11A Technology-freequestions . . . . . . . . . . . . . . . . . . . . 334 11B Multiple-choicequestions . . . . . . . . . . . . . . . . . . . . 337 11C Extended-responsequestions . . . . . . . . . . . . . . . . . . 342 12 Samplingandsamplingdistributions 347 12A Populationsandsamples . . . . . . . . . . . . . . . . . . . . . 348 12B Thedistributionofthesampleproportion . . . . . . . . . . . . 353 12C Investigatingthedistributionofthesampleproportion usingsimulation . . . . . . . . . . . . . . . . . . . . . . . . . 366 12D Investigatingthedistributionofthesamplemean usingsimulation . . . . . . . . . . . . . . . . . . . . . . . . . 373 ReviewofChapter12 . . . . . . . . . . . . . . . . . . . . . . 381 Cambridge Senior Maths AC/VC E ISBN 978-1-107-56765-8 © Evans et al. 2016 Cambridge University Press Specialist Mathematics 1&2 Photocopying is restricted under law and this material must not be transferred to another party. Updated May 2021 vi Contents 13 Trigonometricratiosandapplications 387 13A Reviewingtrigonometry . . . . . . . . . . . . . . . . . . . . . 388 13B Thesinerule . . . . . . . . . . . . . . . . . . . . . . . . . . . 393 13C Thecosinerule . . . . . . . . . . . . . . . . . . . . . . . . . . 397 13D Theareaofatriangle . . . . . . . . . . . . . . . . . . . . . . . 400 13E Circlemensuration . . . . . . . . . . . . . . . . . . . . . . . . 403 13F Anglesofelevation,anglesofdepressionandbearings . . . . . 408 13G Problemsinthreedimensions . . . . . . . . . . . . . . . . . . 412 13H Anglesbetweenplanesandmoredifficult3Dproblems . . . . . 416 ReviewofChapter13 . . . . . . . . . . . . . . . . . . . . . . 421 14 Furthertrigonometry 427 14A Symmetryproperties . . . . . . . . . . . . . . . . . . . . . . . 428 14B Thetangentfunction . . . . . . . . . . . . . . . . . . . . . . . 430 14C ReciprocalfunctionsandthePythagoreanidentity . . . . . . . 433 14D Additionformulasanddoubleangleformulas . . . . . . . . . . 438 14E Simplifyingacosx+bsinx . . . . . . . . . . . . . . . . . . . . 445 ReviewofChapter14 . . . . . . . . . . . . . . . . . . . . . . 448 15 Graphingtechniques 453 15A Reciprocalfunctions . . . . . . . . . . . . . . . . . . . . . . . 454 15B Locusofpoints . . . . . . . . . . . . . . . . . . . . . . . . . . 459 15C Parabolas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462 15D Ellipses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465 15E Hyperbolas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469 15F Parametricequations . . . . . . . . . . . . . . . . . . . . . . . 474 15G Polarcoordinates . . . . . . . . . . . . . . . . . . . . . . . . . 483 15H Graphingusingpolarcoordinates . . . . . . . . . . . . . . . . 485 15I Furthergraphingusingpolarcoordinates . . . . . . . . . . . . 488 ReviewofChapter15 . . . . . . . . . . . . . . . . . . . . . . 493 16 Complexnumbers 498 16A Startingtobuildthecomplexnumbers. . . . . . . . . . . . . . 499 16B Multiplicationanddivisionofcomplexnumbers . . . . . . . . . 503 16C Arganddiagrams . . . . . . . . . . . . . . . . . . . . . . . . . 509 16D Solvingequationsoverthecomplexnumbers . . . . . . . . . . 513 16E Polarformofacomplexnumber . . . . . . . . . . . . . . . . . 515 ReviewofChapter16 . . . . . . . . . . . . . . . . . . . . . . 520 Cambridge Senior Maths AC/VC E ISBN 978-1-107-56765-8 © Evans et al. 2016 Cambridge University Press Specialist Mathematics 1&2 Photocopying is restricted under law and this material must not be transferred to another party. Updated May 2021 Contents vii 17 RevisionofChapters13–16 524 17A Technology-freequestions . . . . . . . . . . . . . . . . . . . . 524 17B Multiple-choicequestions . . . . . . . . . . . . . . . . . . . . 526 17C Extended-responsequestions . . . . . . . . . . . . . . . . . . 531 18 Matrices 535 18A Matrixnotation . . . . . . . . . . . . . . . . . . . . . . . . . . 536 18B Addition,subtractionandmultiplicationbyarealnumber . . . 540 18C Multiplicationofmatrices . . . . . . . . . . . . . . . . . . . . 544 18D Identities,inversesanddeterminantsfor2×2matrices . . . . . 547 18E Solutionofsimultaneousequationsusingmatrices . . . . . . . 552 ReviewofChapter18 . . . . . . . . . . . . . . . . . . . . . . 555 19 Transformationsoftheplane 560 19A Lineartransformations . . . . . . . . . . . . . . . . . . . . . . 561 19B Geometrictransformations . . . . . . . . . . . . . . . . . . . . 565 19C Rotationsandgeneralreflections. . . . . . . . . . . . . . . . . 571 19D Compositionoftransformations . . . . . . . . . . . . . . . . . 574 19E Inversetransformations. . . . . . . . . . . . . . . . . . . . . . 577 19F Transformationsofstraightlinesandothergraphs . . . . . . . 581 19G Areaanddeterminant . . . . . . . . . . . . . . . . . . . . . . 585 19H Generaltransformations . . . . . . . . . . . . . . . . . . . . . 590 ReviewofChapter19 . . . . . . . . . . . . . . . . . . . . . . 593 20 Vectors 598 20A Introductiontovectors . . . . . . . . . . . . . . . . . . . . . . 599 20B Componentsofvectors . . . . . . . . . . . . . . . . . . . . . . 607 20C Scalarproductofvectors . . . . . . . . . . . . . . . . . . . . . 611 20D Vectorprojections. . . . . . . . . . . . . . . . . . . . . . . . . 614 20E Geometricproofs . . . . . . . . . . . . . . . . . . . . . . . . . 618 20F Vectorsinthreedimensions . . . . . . . . . . . . . . . . . . . 621 ReviewofChapter20 . . . . . . . . . . . . . . . . . . . . . . 624 21 RevisionofChapters18–20 629 21A Technology-freequestions . . . . . . . . . . . . . . . . . . . . 629 21B Multiple-choicequestions . . . . . . . . . . . . . . . . . . . . 631 21C Extended-responsequestions . . . . . . . . . . . . . . . . . . 635 Cambridge Senior Maths AC/VC E ISBN 978-1-107-56765-8 © Evans et al. 2016 Cambridge University Press Specialist Mathematics 1&2 Photocopying is restricted under law and this material must not be transferred to another party. Updated May 2021 viii Contents 22 Kinematics 640 22A Position,velocityandacceleration . . . . . . . . . . . . . . . . 641 22B Applicationsofantidifferentiationtokinematics . . . . . . . . . 646 22C Constantacceleration. . . . . . . . . . . . . . . . . . . . . . . 650 22D Velocity–timegraphs . . . . . . . . . . . . . . . . . . . . . . . 653 ReviewofChapter22 . . . . . . . . . . . . . . . . . . . . . . 659 23 Staticsofaparticle 666 23A Forcesandtriangleofforces . . . . . . . . . . . . . . . . . . . 667 23B Resolutionofforces. . . . . . . . . . . . . . . . . . . . . . . . 672 ReviewofChapter23 . . . . . . . . . . . . . . . . . . . . . . 676 24 RevisionofChapters22–23 679 24A Technology-freequestions . . . . . . . . . . . . . . . . . . . . 679 24B Multiple-choicequestions . . . . . . . . . . . . . . . . . . . . 681 24C Extended-responsequestions . . . . . . . . . . . . . . . . . . 683 Glossary 685 Answers 698 IncludedintheInteractiveTextbookandPDFtextbookonly Chapter25:Statistics 25A Summarisingunivariatedata 25B Displayingbivariatedata 25C Thecorrelationcoefficient 25D Linesonscatterplots 25E Theleastsquaresregressionline ReviewofChapter25 Chapter26:Logicandalgebra 26A Setsandcircuits 26B Booleanalgebra 26C Logicalconnectivesandtruthtables 26D Logiccircuits 26E Karnaughmaps ReviewofChapter26 Chapter27:Graphtheory 27A Graphsandadjacencymatrices 27B EulercircuitsandHamiltoncycles 27C Matrixpowersandwalks 27D Completegraphs,bipartitegraphsandtrees 27E Euler’sformulaandthePlatonicsolids 27F Appendix:Wheneveryvertexhasevendegree ReviewofChapter27 AppendixA:GuidetoTI-NspireCASCXwithOS4.0 AppendixB:GuidetoCasioClassPadII Cambridge Senior Maths AC/VC E ISBN 978-1-107-56765-8 © Evans et al. 2016 Cambridge University Press Specialist Mathematics 1&2 Photocopying is restricted under law and this material must not be transferred to another party. Updated May 2021 Introduction CambridgeSpecialistMathematicsAustralianCurriculum/VCEUnits1&2providesa completeteachingandlearningresourcefortheVCEStudyDesigntobeimplementedin 2016. Ithasbeenwrittenwithunderstandingasitschiefaimandwithamplepracticeoffered throughtheworkedexamplesandexercises. Alltheworkhasbeentrialledintheclassroom, andtheapproachesofferedarebasedonclassroomexperienceandtheresponsesofteachers toearlierversionsofthisbook. SpecialistMathematicsUnits1&2offersthematerialontopicsfromtheSpecialist MathematicsStudyDesign. Thetopicscoveredprovideexcellentbackgroundforastudent proceedingtoSpecialistMathematicsUnits3&4. Italsowouldbeveryusefulforastudent proceedingtoMathematicalMethodsUnits3&4. Thebookhasbeencarefullypreparedtoreflecttheprescribedcourse. Newmaterialhas beenincludedformanyofthetopicsincludinggeometry,proof,statistics,transformations, countingprinciplesandalgebra. Thebookcontainsfiverevisionchapters. Theseprovidetechnology-free,multiple-choiceand extended-responsequestions. TheTI-NspirecalculatorexamplesandinstructionshavebeencompletedbyRussellBrown andthosefortheCasioClassPadhavebeencompletedbyMariaSchaffner. Areas of Study ThechaptersinthisbookcoverthediversityoftopicsthatfeatureintheSpecialist MathematicsStudyDesign. TheyarecollectedintoAreasofStudy. TopicsfromGeneral MathematicsUnits1&2arealsoavailabletobeincorporatedintoaSpecialistMathematics course. ThetableoppositeshowshowcoursescanbeconstructedfromSpecialistMathematics topics(indicatedbySM,withprescribedtopicsmarkedassuch)andGeneralMathematics topics(indicatedbyGM). ‘ITBextra’referstoachapterthatisaccessedonlyinthe InteractiveTextbook. Cambridge Senior Maths AC/VC E ISBN 978-1-107-56765-8 © Evans et al. 2016 Cambridge University Press Specialist Mathematics 1&2 Photocopying is restricted under law and this material must not be transferred to another party. Updated May 2021