ebook img

Special Topics in Structural Dynamics, Volume 6: Proceedings of the 35th IMAC, A Conference and Exposition on Structural Dynamics 2017 PDF

197 Pages·2017·15.055 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Special Topics in Structural Dynamics, Volume 6: Proceedings of the 35th IMAC, A Conference and Exposition on Structural Dynamics 2017

Conference Proceedings of the Society for Experimental Mechanics Series Nikolaos Dervilis Editor Special Topics in Structural Dynamics, Volume 6 Proceedings of the 35th IMAC, A Conference and Exposition on Structural Dynamics 2017 Conference Proceedings of the Society for Experimental Mechanics Series SeriesEditor Kristin B.Zimmerman,Ph.D. SocietyforExperimental Mechanics,Inc., Bethel,CT,USA Moreinformationaboutthisseriesathttp://www.springer.com/series/8922 Nikolaos Dervilis Editor Special Topics in Structural Dynamics, Volume 6 Proceedings of the 35th IMAC, A Conference and Exposition on Structural Dynamics 2017 123 Editor NikolaosDervilis UniversityofSheffield Sheffield,UK ISSN2191-5644 ISSN2191-5652 (electronic) ConferenceProceedingsoftheSocietyforExperimentalMechanicsSeries ISBN978-3-319-53840-2 ISBN978-3-319-53841-9 (eBook) DOI10.1007/978-3-319-53841-9 LibraryofCongressControlNumber:2017936948 ©TheSocietyforExperimentalMechanics,Inc.2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthematerialisconcerned,specificallytherights oftranslation,reprinting,reuseofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublicationdoesnotimply,evenintheabsenceofaspecific statement,thatsuchnamesareexemptfromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedate ofpublication.Neitherthepublishernortheauthorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorfor anyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutional affiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Special Topics in Structural Dynamics represents one of ten volumes of technical papers presented at the 35th IMAC, A Conference and Exposition on Structural Dynamics, organized by the Society for Experimental Mechanics, and held in GardenGrove,California,January30–February2,2017.ThefullproceedingsalsoincludevolumesonNonlinearDynamics; DynamicsofCivilStructures;ModelValidationandUncertaintyQuantification;DynamicsofCoupledStructures;Sensors andInstrumentation;StructuralHealthMonitoring&DamageDetection;RotatingMachinery,HybridTestMethods,Vibro- Acoustics and Laser Vibrometry; Shock & Vibration, Aircraft/Aerospace and Energy Harvesting, and Topics in Modal Analysis&Testing. Eachcollectionpresentsearlyfindingsfromexperimentalandcomputationalinvestigationsonanimportantareawithin Structural Dynamics. Special Topics in Structural Dynamics represents papers on enabling technologies for General DynamicsinbothModalAnalysisMeasurements,&SystemIdentification;andDamageDetection. Theorganizerswouldliketothanktheauthors,presenters,sessionorganizers,andsessionchairsfortheirparticipationin thistrack. Sheffield,UK NikolaosDervilis v Contents 1 HarmonicForcingofaTwo-SegmentEuler-BernoulliBeam....................................................... 1 ArnaldoJ.MazzeiandRichardA.Scott 2 A New Surrogate Modeling Method Associating Generalized Polynomial Chaos Expansion andKrigingforMechanicalSystemsSubjectedtoFriction-InducedVibration ................................. 17 E.Denimal,L.Nechak,J.-J.Sinou,andS.Nacivet 3 Multi-ObjectiveParametricOptimizationofanEquilibratorMechanism....................................... 25 ErginKurtulmus 4 DevelopmentofaNumericalModelforDynamicAnalysisofaBuilt-UpStructurebyaTwo-Step FEM-TestCorrelationApproach...................................................................................... 41 VigneshJayakumarandJayKim 5 TestingMethodsforVerificationofaMountedAccelerometerFrequencyResponse ........................... 53 MarineDumont,DavidKuntz,andThomasPetzsche 6 ExperimentalEvaluationandStatisticalAnalysisofSynchronousAveraging ................................... 67 V.Camerini,G.Coppotelli,andS.Bendisch 7 OptimizationofaZigzagShapedEnergyHarvesterforWirelessSensingApplications........................ 85 BrittanyC.Essink,RobertB.Owen,andDanielJ.Inman 8 FuzzyFiniteElementModelUpdatingUsingMetaheuristicOptimizationAlgorithms......................... 91 I.Boulkaibet,T.Marwala,M.I.Friswell,H.H.Khodaparast,andS.Adhikari 9 TheCombinationofTestingand1DModelingforBoomingNoisePredictionintheModelBased SystemTestingFramework............................................................................................. 103 FábioLuisMarquesdosSantos,TristanEnault,JanDeleener,TomVanHoucke, andHermanVanderAuweraer 10 StructuralCouplingAnalysesofExperimentalModelsinaVirtualShakerTestingEnvironment forNumericalPredictionofaSpacecraftVibrationTest ........................................................... 113 S.Waimer,S.Manzato,B.Peeters,M.Wagner,andP.Guillaume 11 EstablishmentofFull-Field,Full-OrderDynamicModelofCableVibrationbyVideoMotion Manipulations............................................................................................................ 127 LorenzoSanchez,HuiyingZhang,AlexanderRoeder,JohnBowlan,JaredCrochet,YongchaoYang, CharlesFarrar,andDavidMascareñas 12 AnalysesofTargetDefinitionProcessesforMIMORandomVibrationControlTests.......................... 135 UmbertoMusella,GiacomoD’Elia,SimoneManzato,BartPeeters,PatrickGuillaume, andFrancescoMarulo 13 MaterialCharacterizationofSelf-Sensing3DPrintedParts....................................................... 149 DeryaZ.Tansel,JenniferA.Yasui,BenjaminJ.Katko,AlexandriaN.Marchi,andAdamJ.Wachtor vii viii Contents 14 TrajectoryTrackingandActiveVibrationSuppressiononaFlexibleTowerCrane ............................ 159 O.A.Garcia-Perez,G.Silva-Navarro,andJ.F.Peza-Solis 15 OnaGreyBoxModellingFrameworkforNonlinearSystemIdentification ..................................... 167 T.J.Rogers,G.R.Holmes,E.J.Cross,andK.Worden 16 In-ProcessMonitoringofAutomatedCarbonFibreTapeLayupUsingUltrasonicGuidedWaves............ 179 R.Fuentes,E.J.Cross,N.Ray,N.Dervilis,T.Guo,andK.Worden 17 DevelopmentofaMathematicalModeltoDesigntheControlStrategyofaFullScaleRoller-Rig............ 189 FerruccioResta,EdoardoSabbioni,DavideTarsitano,DinoDeva,DanieleTermini,andAlvaroFumi Chapter 1 Harmonic Forcing of a Two-Segment Euler-Bernoulli Beam ArnaldoJ.MazzeiandRichardA.Scott Abstract Thisstudyisontheforcedmotionsofnon-homogeneouselasticbeams.Euler-Bernoullitheoryisemployedand applied to a two-segment configuration subject to harmonic forcing. The objective is to determine the frequency response functionforthesystem.Twodifferentsolutionstrategiesareused.Inthefirst,analyticsolutionsarederivedforthedifferential equationsforeachsegment.Theconstantsinvolvedaredeterminedusingboundaryandinterfacecontinuityconditions.The response,atagivenlocation,canbeobtainedasafunctionofforcingfrequency(FRF).Theprocedureisunwieldy.Moreover, determiningparticularintegralscanbedifficultforarbitraryspatialvariations.Analternativemethodisdevelopedwherein materialandgeometricdiscontinuitiesaremodeledbycontinuouslyvaryingfunctions(herelogisticfunctions).Thisresults inasingledifferentialequationwithvariablecoefficients,whichissolvednumerically,forspecificparametervalues,using MAPLE®. The numerical solutions are compared to the baseline analytical approach for constant spatial dependencies. Forvalidationpurposesanassumed-modessolutionisalsodeveloped.Forafree-fixedboundaryconditionsexamplegood agreementbetweenthenumericalmethodsandtheanalyticalapproachisfound,lendingassurancetothecontinuousvariation model.Fixed-fixedboundaryconditionsarealsotreatedandagaingoodagreementisfound. Keywords Beamswithlayeredcells • Layeredstructuresresonances Nomenclature A Areaofthebeamcrosssection(A,areaofi-cell) i B Constants i E Young’smodulus(E,Young’smodulusofi-cell) i F Externalforcing(spatialfunction,F,actingoni-cell) i f Externaltransverseforceperunitlengthactingonthebeam(f,actingoni-cell) i H(x) Logisticfunction I Areamomentofinertiaofthebeamcrosssection(I,momentofinertiaofi-cell) i L Lengthofthebeam(L,lengthofi-cell) i R Spatialfunction,(forassumedsolution,R oni-cell) i t Time w Beamtransversaldisplacement xyz Inertialreferencesystem(coordinatesx,y,z) Y Non-dimensionalbeamdisplacementinthey(transverse)direction (cid:2) Non-dimensionalfrequency((cid:2)D(cid:3)2) (cid:4) Massdensity((cid:4),densityofi-cell) i (cid:5) Non-dimensionalspatialcoordinate (cid:6) Non-dimensionaltime ! Frequencyofharmonicexcitation (cid:7) Referencefrequency 0 A.J.Mazzei((cid:2)) DepartmentofMechanicalEngineering,C.S.MottEngineeringandScienceCenter,KetteringUniversity, 1700UniversityAvenue,Flint,MI48504,USA e-mail:[email protected] R.A.Scott UniversityofMichigan,HerbertH.DowBuilding,2300Hayward,AnnArbor,MI48109,USA ©TheSocietyforExperimentalMechanics,Inc.2017 1 N.Dervilis(ed.),SpecialTopicsinStructuralDynamics,Volume6,ConferenceProceedings oftheSocietyforExperimentalMechanicsSeries,DOI10.1007/978-3-319-53841-9_1 2 A.J.MazzeiandR.A.Scott 1.1 Introduction This work is an extension of one given in reference [1] in which the determination of the bending natural frequencies of beams whose properties vary along the length was sought. Of interest were beams with different materials and varying cross-sections,whichwerelayeredincellsandcouldbeuniformornot. Inreference[1]anapproachwasdiscussed,inwhichthediscretecellpropertiesweremodeledbycontinuouslyvarying functions,specificallylogisticfunctions,whichhadtheconsiderableadvantageofworkingwithasingledifferentialequation (albeit one with variable coefficients). Natural frequencies could be calculated via a forced motion strategy by means of MAPLE®’sODE1solver. Thereareseveralreferencesonvibrationsoflayeredbeams.Forexamplereference[2],wherefreevibrationsofstepped Timoshenko beams were treated via a Lagrange multiplier formalism. Results compared well with values obtained using otheranalyticalmethods.Inreference[3]Euler-BernoullisteppedbeamswerestudiedviaexactandFEMapproaches.FEM resultsusingnon-integerpolynomialsshapefunctions[4]comparedwellwithexactsolutions.Generalstudiesonmediawith discretelayershavebeengiven,forexample,inreferences[5–8].Notethatfinitedifferenceapproachestothedynamicsof non-homogeneousmediacanbefoundinreference[9]. Here the objective is to determine the frequency response functions (FRF) of such beams. Euler-Bernoulli theory is used for a two-segment configuration under harmonic forcing. Analytic solutions can be obtained for each segment, for specificconditions,andtheresponsecalculatedatagivenlocation,thusprovidingtheFRFs.Buttheprocedureisunwieldy and particular solutions to the differential equations can be difficult to obtain for arbitrary spatial variations. The alternate approachutilizedinvolvesmodelingmaterialandgeometricdiscontinuitiesbycontinuouslyvaryingfunctions.Thisresults in a single differential equation with variable coefficients, which is solved numerically. These are compared to analytical solutionsforconstantspatialdependencies.Anassumed-modessolutionisalsodevelopedforvalidationpurposes. 1.2 BasicProblem InthisstudyEuler-Bernoullibeamtheoryisused.TheequationofmotionisgivenbelowandFig.1.1exhibitstheunderlying variables. (cid:2) (cid:3) @2 @2w.x;t/ @2w.x;t/ E.x/I.x/ C(cid:4).x/A.x/ Df .x;t/ (1.1) @x2 @x2 @t2 In the derivation of Eq. (1.1) no assumption was made in relation to the material type, therefore it can be either a homogeneousoranon-homogeneousmaterial. Fig.1.1 Beamelement 1www.maplesoft.com. 1 HarmonicForcingofaTwo-SegmentEuler-BernoulliBeam 3 The layered configuration discussed here is a two-cell beam. Strategies for obtaining the steady state response, due to harmonicforcing,areinvestigatedinthefollowing. 1.3 AnalyticalApproach Inthissectionanalyticsolutionsaresoughtusingstandardbeamtheory. ConsiderthebeamshowninFig.1.2whichiscomposedbytwocellsofdifferentmaterials. Thetransversaldisplacementequationofmotionforeachsegment(“i-th”segment)is: (cid:2) (cid:3) @2 @2w .x;t/ @2w .x;t/ E.x/I.x/ i C(cid:4).x/A.x/ i Df .x;t/;iD1;2::: (1.2) @x2 i i @x2 i i @t2 i wheref areexternaltransverseforcesperunitlength. i Forharmonicforcingwithfrequency!: f .x;t/DF.x/sin.!t/ (1.3) i i Assumingsolutionsoftheform: w .x;t/DR.x/sin.!t/ (1.4) i i leadsto (cid:2) (cid:3) d2 d2R.x/ EI i (cid:2)(cid:4)A!2R.x/DF.x/ (1.5) dx2 i i dx2 i i i i ForA,(cid:4),I andE constantineachsegment: i i i i d4R.x/ (cid:4)A F.x/ i (cid:2) i i!2R.x/D i (1.6) dx4 EI i EI i i i i Define(cid:8)4 D (cid:4)iAi!2andP.x/D Fi.x/,thenforeachsegment: i EiIi i EiIi d4R.x/ i (cid:2)(cid:8)4R.x/DP.x/ (1.7) dx4 i i i Generalsolutionstothelineardifferentialequation(1.7)canbewrittenas: R.x/DR .x/CR .x/ (1.8) i ih ip whereR (x)arethegeneralsolutionstothehomogeneousequationsandR (x)are“particularintegrals”. ih ip ForEq.(1.7), R1h.x/DB1cosh.(cid:8)1x/CB2sinh.(cid:8)1x/CB3cos.(cid:8)1x/CB4sin.(cid:8)1x/ (1.9) R2h.x/DB5cosh.(cid:8)2x/CB6sinh.(cid:8)2x/CB7cos.(cid:8)2x/CB8sin.(cid:8)2x/ (1.10) Fig.1.2 Layeredbeam

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.