ebook img

Special Topics in Accelerator Physics PDF

725 Pages·2022·32.724 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Special Topics in Accelerator Physics

1122775577__99778899881111225533449922__TTPP..iinndddd 11 1155//1111//2211 66::0000 PPMM B1948 Governing Asia TTTThhhhiiiissss ppppaaaaggggeeee iiiinnnntttteeeennnnttttiiiioooonnnnaaaallllllllyyyy lllleeeefffftttt bbbbllllaaaannnnkkkk BB11994488__11--AAookkii..iinndddd 66 99//2222//22001144 44::2244::5577 PPMM World Scientifi c 1122775577__99778899881111225533449922__TTPP..iinndddd 22 1155//1111//2211 66::0000 PPMM Published by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE Library of Congress Cataloging-in-Publication Data Names: Chao, Alexander Wu, author. Title: Special topics in accelerator physics / Alexander Wu Chao, SLAC National Accelerator Laboratory, USA. Description: New Jersey : World Scientific Publishing Co., [2022] | Includes bibliographical references and index. Identifiers: LCCN 2021056666 | ISBN 9789811253492 (hardcover) | ISBN 9789811253508 (ebook for institutions) | ISBN 9789811253515 (ebook for individuals) Subjects: LCSH: Particle accelerators. Classification: LCC QC787.P3 C476 2022 | DDC 539.7/3--dc23/eng/20220120 LC record available at https://lccn.loc.gov/2021056666 British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. Copyright © 2022 by World Scientific Publishing Co. Pte. Ltd. All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher. For any available supplementary material, please visit https://www.worldscientific.com/worldscibooks/10.1142/12757#t=suppl Printed in Singapore KKiimm -- 1122775577 -- SSppeecciiaall TTooppiiccss iinn AAcccceelleerraattoorr PPhhyyssiiccss..iinndddd 11 2211//11//22002222 1100::5588::5566 aamm March7,2022 14:23 report-9x6 12757-main pagev v Preface Accelerators as research and industrial tools are increasingly becoming a key driver of the advances of a modern society. As accelerator science evolves to meet the ever-demanding needs of the society, the field of accelerator physics has grown and deepened over the past few decades, and many of its branches havedevelopedintospecialtopicsofresearchbytheirownrights. Asresearches in these topics mature, it is appropriate to start documenting this hard-earned expertise by the accelerator community for readers inspired to venture into this rich field of science. With this view, a selection of special topics is presented in this volume, Special Topics in Accelerator Physics. Thisvolumeisdedicatedtoarelativelysmallselectionofthesespecialtopics. The choice of these topics is somewhat arbitrary, no doubt influenced by the interest and experience of the author, but they are believed to present the accelerator physics as a diversified and exciting field. Eight special topics are included in this volume with no intention to pretend the list to be exhaustive. Manymorespecialtopicscanreadilybeaddedtotheoneshappentobechosen. The topics are not arranged in any particular order. The material on each topic has been intended to be self-contained. Individual chapters have varying lengths and assume different levels of basic knowledge of the readers. However, thereaderisassumedtobeknowledgeableofbasicacceleratorphysicstoputthe materialinsomecontext. Thebookispresentedasatextbook, withhomework at the end of each section. The contents were derived from lectures delivered at various schools and universities. The style will be emphasizing the physical principles of the various subjects. Iwouldliketothankthestudentsfortheirinterestandtheirmanyinquisitive questions, from which I learned. Warm and heart-felt thanks go to many of my colleagues, with whom the learning has been such a joy over the years. Special thanks also go to Karl Bane, Gennady Stupakov, Xiujie Deng, Linda Spentzouris, Eberhard Keil, Kohji Hirata, Yukihide Kamiya, Miguel Furman, and Rudiger Schmidt, who generously allowed me to use their illustrations. Alexander Chao Stanford, January 2022 B1948 Governing Asia TTTThhhhiiiissss ppppaaaaggggeeee iiiinnnntttteeeennnnttttiiiioooonnnnaaaallllllllyyyy lllleeeefffftttt bbbbllllaaaannnnkkkk BB11994488__11--AAookkii..iinndddd 66 99//2222//22001144 44::2244::5577 PPMM March7,2022 14:23 report-9x6 12757-main pagevii vii Contents Preface v 1 THE FOKKER–PLANCK EQUATION 1 1.1 Vlasov equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Potential well distortion . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Fokker–Planck equation . . . . . . . . . . . . . . . . . . . . . . . 24 1.4 Linear coupled system . . . . . . . . . . . . . . . . . . . . . . . . 39 1.5 Transient beam distribution . . . . . . . . . . . . . . . . . . . . . 54 1.6 Quantum lifetime . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 1.7 Fokker–Planck normal modes . . . . . . . . . . . . . . . . . . . . 79 2 SYMPLECTIFICATION OF MAPS 84 2.1 Phase space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 2.2 Symplecticity condition . . . . . . . . . . . . . . . . . . . . . . . 85 2.3 Symplectification of a linear map . . . . . . . . . . . . . . . . . . 91 2.4 Higher order integrator. . . . . . . . . . . . . . . . . . . . . . . . 98 2.5 Canonical integrator . . . . . . . . . . . . . . . . . . . . . . . . . 105 3 TRUNCATED POWER SERIES ALGEBRA 115 3.1 Introducing TPSA . . . . . . . . . . . . . . . . . . . . . . . . . . 115 3.2 TPSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 3.3 Higher order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 3.4 Special functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 3.5 Multiple inputs and outputs . . . . . . . . . . . . . . . . . . . . . 130 3.6 TPSA tool. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 4 LIE ALGEBRA 134 4.1 Symplecticity and Poisson bracket . . . . . . . . . . . . . . . . . 134 4.2 Taylor and Lie map representations . . . . . . . . . . . . . . . . . 142 4.3 Algebra of operator . . . . . . . . . . . . . . . . . . . . . . . . . . 151 4.4 Baker–Campbell–Hausdorff formula. . . . . . . . . . . . . . . . . 187 4.5 Localized radio-frequency cavity . . . . . . . . . . . . . . . . . . 214 4.6 Single sextupole. . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 4.7 Distribution of multipole . . . . . . . . . . . . . . . . . . . . . . . 240 4.8 Normal form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 4.9 Application away from resonance . . . . . . . . . . . . . . . . . . 278 4.10 Isolated resonance . . . . . . . . . . . . . . . . . . . . . . . . . . 294 March7,2022 14:23 report-9x6 12757-main pageviii viii Contents 5 SPIN DYNAMICS OF PROTON 328 5.1 Thomas–BMT equation . . . . . . . . . . . . . . . . . . . . . . . 329 5.2 Spin motion in an accelerator . . . . . . . . . . . . . . . . . . . . 333 5.3 Spinor algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 5.4 Depolarization resonance. . . . . . . . . . . . . . . . . . . . . . . 345 5.5 Spinor matrix formalism . . . . . . . . . . . . . . . . . . . . . . . 359 5.6 Siberian snake . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380 6 SPIN DYNAMICS OF ELECTRON 395 6.1 Some quantum aspects of synchrotron radiation . . . . . . . . . . 396 6.2 Spin precession — A recap . . . . . . . . . . . . . . . . . . . . . 403 6.3 Semiclassical description of spin effect on synchrotron radiation . 406 6.4 Radiative polarization . . . . . . . . . . . . . . . . . . . . . . . . 418 6.5 Polarization in a storage ring . . . . . . . . . . . . . . . . . . . . 425 6.6 Derbenev–Kondratenko formula . . . . . . . . . . . . . . . . . . . 438 6.7 SLIM formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . 445 6.8 Spin transparency . . . . . . . . . . . . . . . . . . . . . . . . . . 471 7 ECHO 479 7.1 Echoes are everywhere . . . . . . . . . . . . . . . . . . . . . . . . 479 7.2 Transverse echo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482 7.3 Longitudinal echo. . . . . . . . . . . . . . . . . . . . . . . . . . . 506 7.4.3Echo-enabled harmonic generation . . . . . . . . . . . . . . . . . 518 7.5 Spin echo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531 8 BEAM-BEAM INTERACTION 541 8.1 The luminosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542 8.2 Beam-beam perturbation . . . . . . . . . . . . . . . . . . . . . . 548 8.3 Linear thin-lens model . . . . . . . . . . . . . . . . . . . . . . . . 555 8.4 Weak-strong nonlinear beam-beam effect . . . . . . . . . . . . . . 584 8.5 Coherent beam-beam effect . . . . . . . . . . . . . . . . . . . . . 643 8.6 Quadrupole mode. . . . . . . . . . . . . . . . . . . . . . . . . . . 671 8.7 Synchrobetatron mode . . . . . . . . . . . . . . . . . . . . . . . . 687 8.8 Higher order mode . . . . . . . . . . . . . . . . . . . . . . . . . . 691 Subject Index 709 March7,2022 14:23 report-9x6 12757-main page1 1 Chapter 1 The Fokker–Planck Equation The description of the motion of charged-particle beams in an accelerator pro- ceeds in steps of increasing complexity. The first step is to consider a single- particlepictureinwhichthebeamisrepresentedasacollectionofnoninteracting single-particlesmovinginanenvironmentofprescribedexternalelectromagnetic fields. The electromagnetic fields generated and carried by the particles are ig- nored. Knowing the external fields, it is then possible to calculate the beam motion to a high accuracy by repeating the calculation for each and every one of the single-particles in the beam. The actual beam consists of a large number, perhaps 1011, of particles. Although possible in principle, it is clearly not practical to treat the actual beam behavior using this single-particle approach. This is even more the case if one includes the effects of the electromagnetic fields the beam generates, as would be necessary if one wants to deal with the collective instability effects of an intense beam. One way to approach this problem is to supplement the single-particle pic- ture by another qualitatively different picture. The commonly used tools in accelerator physics for this purpose are the Vlasov equation1 and the Fokker– Planck equation.2 These equations assume a continuum of beam distribution and are strictly valid in the limit of infinite number of microparticles, each car- rying an infinitesimal charge. The hope is that by studying the two extremes, the single-particle picture and the continuum picture, we gain a handle of the behavior of our 1011-particle beam, at least approximately. Asmentioned,themostnotableuseofthecontinuumpictureisthestudyof collective beam effects. However, the purpose of this chapter is not to address 1A.A.Vlasov,J.Phys.USSR9,25(1945). 2A.D. Fokker, Ann. Phys. 348, 810 (1914); M. Planck, Sitzungsberichte der Preussischen AkademiederWissenschaftenzuBerlin,24,324(1917);S.Chandrasekhar,Rev.Mod.Phys. 15,1(1943).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.