ebook img

Special Smarandache Curves in R PDF

2016·0.33 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Special Smarandache Curves in R

Commun. Fac. Sci. Univ. Ank. SØr. A1 Math. Stat. Volume 65,Number 2,Pages 143(cid:150)160 (2016) DOI:10.1501/Commua1_0000000766 ISSN 1303(cid:150)5991 SPECIAL SMARANDACHE CURVES IN R31 NURTEN (BAYRAK) G(cid:220)RSES,(cid:214)ZCAN BEKTAS‚,AND SALIM Y(cid:220)CE Abstract. Inthisstudy,wedetermineTN-Smarandachecurveswhoseposi- tion vector is composed by Frenet frame vectors of another regular curve in Minkowski 3-space R31. Then, we present some characterisations of Smaran- dache curves and calculate Frenet invariants of these curves. Moreover, we classifyTN;TB;NBandTNB-Smarandachecurvesofaregularcurvepara- metrizedbyarclength(cid:11)bypresentingabrieftablewithrespecttothecausal characterof(cid:11). Also,we willgive some examples related to results. 1. Introduction In di⁄erential geometry, there are many important consequences and properties of curves studied by some authors [1, 2, 3]. Researchers always introduce some new curves by using the existing studies. Special Smarandache curves are one of them. Smarandache curve is de(cid:133)ned as a regular curve whose position vector is composedbyFrenetframevectorsofanotherregularcurveinMinkowskispacetime in [4]. Special Smarandache curves have been studied by some authors [4, 5, 6]. M. Turgut and S. Y‹lmaz have identi(cid:133)ed a special case of such curves and called themTB2-SmarandachecurvesinthespaceR41 [4]. Theyhavedealtwithaspecial Smarandache curve which is de(cid:133)ned by the tangent and second binormal vector (cid:133)elds. Besides, they have computed formulae of this kind of curves by the method expressed in [4]. A. T. Ali has introduced some special Smarandache curves in the Euclidean space [5]. Special Smarandache curves such as TN , TN , N N 1 2 1 2 and TN N -Smarandache curves according to Bishop frame in Euclidean 3-space 1 2 have been investigated by ˙etin and Tun(cid:231)er [6]. Furthermore, they have studied di⁄erential geometric properties of these special curves and they have calculated the(cid:133)rstandsecondcurvature(naturalcurvatures)ofthesecurves. Also,theyhave found the centres of the curvature spheres and osculating spheres of Smarandache curves. Received by the editors:March 28,2016,Accepted: May 24,2016. 2010 Mathematics Subject Classi(cid:133)cation. 53A35,51B20. Key words and phrases. Minkowskispace,Frenet invariants,Smarandache curves. c2016 Ankara University Communications de la FacultØ des Sciences de l(cid:146)UniversitØ d(cid:146)Ankara. SØries A1. Ma(cid:13)thematics and Statistics. 143 144 NURTEN (BAYRAK) G(cid:220)RSES,(cid:214)ZCAN BEKTAS‚,AND SALIM Y(cid:220)CE In addition, special Smarandache curves according to Darboux frame in Euclid- ean 3-space have been introduced in [7]. They have investigated special Smaran- dachecurvessuchasTg;Tn;gnandTgn-Smarandachecurves. Furthermore,they havefoundsomepropertiesofthesespecialcurvesandcalculatednormalcurvature, geodesic curvature and geodesic torsion of these curves. In this study, we (cid:133)rstly mention the fundamental properties and Frenet invari- ants of curves in R31. Then, we give the de(cid:133)nition of TN;TB;NB and TNB- Smarandache curves of a regular curve parametrized by arc length (cid:11) in R31. In sections 2-4, we investigate and calculate Frenet invariants of TN-Smarandache curves of a timelike, spacelike and null curves in R31. In section 5, we obtain the characterisationsofTN;TB;NBandTNB-Smarandachecurvesofaregularcurve parametrizedbyarclength(cid:11)bypresentingabrieftable. Weclassifygeneralresults of these Smarandache curves with respect to the causal character of (cid:11). Also, we present some examples. 2. Preliminaries The Minkowski 3-space R31 is the real vector space provided with the standard (cid:135)at metric given by <;>= dx2+dx2+dx2; (cid:0) 1 2 3 where (x1;x2;x3) is a rectangular coordinate system of R31. An arbitrary vector v=(v1;v2;v3) in R31 can have one of three Lorentzian causal characters; it can be spacelikeif v;v >0orv=0; timelikeif v;v <0andnull(lightlike)if v;v = h i h i h i 0 and v=0. Similarly, an arbitrary curve (cid:11) = (cid:11)(s) can be locally spacelike, 6 timelike or null (lightlike) if all of its velocity vectors (cid:11) (s) are spacelike, timelike 0 or null (lightlike), respectively. We say that a timelike vector is future pointing or pastpointingifthe(cid:133)rstcomponentofthevectorispositiveornegative,respectively. Also, the vector product of any vectors x=(x1;x2;x3) and y=(y1;y2;y3) in R31 is de(cid:133)ned by e e e 1 2 3 (cid:0) (cid:0) (cid:12) (cid:12) x y=(cid:12) x1 x2 x3 (cid:12)=(x2y3 x3y2;x1y3 x3y1;x2y1 x1y2); (cid:2) (cid:12) (cid:12) (cid:0) (cid:0) (cid:0) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) y1 y2 y3 (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) where (cid:12) (cid:12) (cid:12) (cid:12) e e = e ; e e =e ; e e = e : 1 2 3 2 3 1 3 1 2 (cid:2) (cid:0) (cid:2) (cid:2) (cid:0) Let(cid:11)=(cid:11)(s)bearegularcurveparametrizedbyarclengthinR31andfT;N;B;(cid:20);(cid:28)g be its Frenet invariants, where T;N;B ;(cid:20) and (cid:28) are moving Frenet frame, cur- f g vature and torsion of (cid:11)(s), respectively. The Frenet formulae of (cid:11) = (cid:11)(s) are described with respect to the causal character of (cid:11) (s). For an arbitrary timelike 0 SPECIAL SMARANDACHE CURVES IN R31 145 curve (cid:11)(s) in the Minkowski space R31, the following Frenet formulae are given as follows ([8]): T0=(cid:20)N N0=(cid:20)T+(cid:28)B (2.1) 8 < B0= (cid:28)N; (cid:0) where T;T = 1; N;N = B;B = 1; T;N = T;B = N;B = 0. h i (cid:0) h i :h i h i h i h i Then, we write Frenet invariants in this way: T(s) = (cid:11)(s), (cid:20)(s) = T(s) , 0 0 jj jj N(s)=T0(s)=(cid:20)(s), B(s)=T(s) N(s) and (cid:28)(s)= N(s)0, B(s) . (cid:2) h i For an arbitrary spacelike curve (cid:11)(s) in the space R31, the Frenet formulae are given as below ([8]): T0=(cid:20)N N0= "(cid:20)T+(cid:28)B (2.2) 8 (cid:0) < B0=(cid:28)N; where " = 1. If " = 1, then (cid:11)(s) is a spacelike curve with spacelike principal (cid:6) : normal N and timelike binormal B. Also, T;T = N;N = 1; B;B = 1 and h i h i h i (cid:0) T;N = T;B = N;B = 0. If " = 1 , then (cid:11)(s) is a spacelike curve with h i h i h i (cid:0) timelikeprincipalnormalNandspacelikebinormalB. Besides, T;T = B;B = h i h i 1; N;N = 1 and T;N = T;B = N;B = 0. We de(cid:133)ne Frenet invariants h i (cid:0) h i h i h i for spacelike curves in this way: T(s)=(cid:11)(s);(cid:20)(s)= "<T(s);T(s)>;N(s)= 0 0 0 T(s)=(cid:20)(s);B(s)=T(s) N(s) and (cid:28)(s)= "<N(s);B(s)>. 0 0 (cid:2) (cid:0) p In addition, the Frenet formulae for a null curve parametrized by distinguished parameter (cid:11)(s) in R31, are given as follows: T0=(cid:20)B N0= (cid:28)B (2.3) 8 (cid:0) < B0= (cid:28)T+(cid:20)N; (cid:0) where T;T = N;N = T;B = N;B = 0; B;B = 1; T;N = 1 and : h i h i h i h i h i h i T B= T, T N= B;B N= N. In this state, T and N are null vectors (cid:2) (cid:0) (cid:2) (cid:0) (cid:2) (cid:0) and B is a spacelike vector. We describe Frenet invariants T(s) = (cid:11)(s); (cid:20)(s) = 0 T(s) ;N(s) = ((1=(cid:20))((cid:28)T+(1=(cid:20))T +(1=(cid:20))T ))(s);B(s) = ((1=(cid:20))T)(s) and 0 0 0 00 0 jj jj (cid:28)(s)=(1=2)[(1=(cid:20)3) T 2 ((1=(cid:20)))2(cid:20)](s) ([9]). 00 0 jj jj (cid:0) De(cid:133)nition 2.1 ([4]). Let (cid:11)=(cid:11)(s) be a regular curve parametrized by arc length in R31 with its Frenet frame fT;N;Bg. Then, TN;TB;NB and TNB-Smarandache curves of (cid:11) are de(cid:133)ned, respectively, as follows: 1 (cid:12) = (T+N); TN p2 1 (cid:12) = (T+B); TB p2 1 (cid:12) = (N+B); NB p2 146 NURTEN (BAYRAK) G(cid:220)RSES,(cid:214)ZCAN BEKTAS‚,AND SALIM Y(cid:220)CE 1 (cid:12) = (T+N+B): TNB p3 In the following sections, we investigate special TN-Smarandache curves for a given regular curve (cid:11) in R31. We consider Frenet invariants fT;N;B;(cid:20);(cid:28)g and T ;N ;B ;(cid:20) ;(cid:28) for (cid:11) and its TN-Smarandache curve (cid:12) , respectively. f (cid:3) (cid:3) (cid:3) (cid:3) (cid:3)g TN 3. TN-Smarandache curves of a timelike curve in R31 De(cid:133)nition 3.1. Let the curve (cid:11) = (cid:11)(s) be a timelike curve parametrized by arc length in R31. Then, TN-Smarandache curves of (cid:11) can be determined by the Frenet vectors of (cid:11) such as: 1 (cid:12) = (T+N); (3.1) TN p2 where T is timelike, N and B are spacelike. Let us investigate the causal character of TN-Smarandache curve (cid:12) : By dif- TN ferentiating Equation (3.1) with respect to s and using Equation (2.1), we get d(cid:12) 1 (cid:12)0 = TN = ((cid:20)T+(cid:20)N+(cid:28)B); (3.2) TN ds p2 and (cid:28)2 (cid:12)0 ;(cid:12)0 = : h TN TNi 2 Therefore, there are two possibilities for the causal character of (cid:12) under the TN conditions (cid:28) =0 and (cid:28) =0. Because of the fact that (cid:28)2 =1 for at least one (cid:28) R, 6 2 6 2 we know that s is not arc-length of (cid:12) . Assume that s is arc-length of (cid:12) : TN (cid:3) TN Case 3.1. If (cid:28) =0; then TN-Smarandache curve (cid:12) is a spacelike curve. 6 TN If we rearrange Equation (3.2), we obtain the tangent vector of (cid:12) as below: TN 1 T = ((cid:20)T+(cid:20)N+(cid:28)B); (3.3) (cid:3) (cid:28) j j where ds (cid:28) (cid:3) = j j: (3.4) ds p2 i) Let (cid:12) be a spacelike curve with timelike binormal. TN If we di⁄erentiate Equation (3.3) with respect to s, we obtain dT ds 1 (cid:3) (cid:3) = ((cid:0) T+(cid:0) N+(cid:0) B); (3.5) ds ds (cid:28)2 1 2 3 (cid:3) where (cid:0)1 = (cid:20)0(cid:28)0 (cid:20)2(cid:28)0 (cid:0) (cid:0) 8< (cid:0)(cid:0)23 ==(cid:0)(cid:20)(cid:20)2(cid:28)(cid:28)(cid:28)00(cid:0)(cid:20)(cid:28)00(cid:28)2:0 +(cid:28)2(cid:28)0 (cid:0) (cid:0) : SPECIAL SMARANDACHE CURVES IN R31 147 Substituting Equation (3.4) with Equation (3.5), we gain p2 T_ = ((cid:0) T+(cid:0) N+(cid:0) B): (cid:3) (cid:28)3 1 2 3 j j Accordingtothede(cid:133)nitionoftheFrenetinvariantsofaspacelikecurvewithtimelike binormal, we can calculate the curvature and principal normal vector (cid:133)elds of (cid:12) TN such as: p2 (cid:20) = ( (cid:0)2+(cid:0)2+(cid:0)2) (cid:3) (cid:28)3 (cid:0) 1 2 3 j jq and 1 N = ((cid:0) T+(cid:0) N+(cid:0) B); (cid:3) 1 2 3 (cid:0)2+(cid:0)2+(cid:0)2 (cid:0) 1 2 3 respectively. Furthermore,pwe have T N B (cid:0) (cid:0) (cid:12) (cid:12) (cid:12) (cid:12) 1 (cid:12) (cid:12) B(cid:3) =T(cid:3) N(cid:3) = (cid:12) (cid:20) (cid:20) (cid:28) (cid:12): (cid:2) (cid:28) (cid:0)2+(cid:0)2+(cid:0)2 (cid:12) (cid:12) j j (cid:0) 1 2 3 (cid:12) (cid:12) (cid:12) (cid:12) p (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:0)1 (cid:0)2 (cid:0)3 (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) Based upon this calculation, the binormal vector o(cid:12)f (cid:12) is (cid:12) (cid:12) TN (cid:12) 1 B = ((cid:22) T+(cid:22) N+(cid:22) B); (cid:3) (cid:28) (cid:0)2+(cid:0)2+(cid:0)2 1 2 3 j j (cid:0) 1 2 3 where p (cid:22) =(cid:20)(cid:0) (cid:28)(cid:0) 1 3(cid:0) 2 (cid:22) = (cid:28)(cid:0) +(cid:20)(cid:0) 8 2 (cid:0) 1 3 (cid:22) = (cid:20)(cid:0) +(cid:20)(cid:0) < 3 (cid:0) 2 1: So, the torsion of (cid:12) is given as below: TN : (cid:0)(cid:20)(cid:0)31(cid:22)2+(cid:0)32((cid:20)(cid:22)1+(cid:22)3(cid:28))(cid:0)(cid:0)23((cid:28)(cid:0)3(cid:22)2+(cid:22)1(cid:0)01+(cid:22)2(cid:0)02) (cid:0)(cid:0)2(cid:0)3((cid:0)3((cid:20)(cid:22)1(cid:0)(cid:22)3(cid:28))+(cid:22)3(cid:0)02+(cid:22)2(cid:0)03) (cid:0)(cid:0)22((cid:28)(cid:0)3(cid:22)2+(cid:22)1(cid:0)01+(cid:22)3(cid:0)03)+(cid:0)21((cid:28)(cid:0)3(cid:22)2+(cid:0)2((cid:20)(cid:22)1(cid:0)(cid:22)3(cid:28))(cid:0)(cid:22)2(cid:0)02(cid:0)(cid:22)3(cid:0)03) (cid:28) = +(cid:0)1((cid:20)(cid:0)22(cid:22)2+(cid:0)2((cid:22)2(cid:0)01+(cid:22)1(cid:0)02+(cid:0)3((cid:20)(cid:0)3(cid:22)2+(cid:22)3(cid:0)01+(cid:22)1(cid:0)03)) : (cid:3) (cid:28) ( (cid:0)2+(cid:0)2+(cid:0)2)2 j j (cid:0) 1 2 3 ii) Let (cid:12) be a spacelike curve with timelike principal normal, then the TN Frenet invariants of (cid:12) are given as below: TN 148 NURTEN (BAYRAK) G(cid:220)RSES,(cid:214)ZCAN BEKTAS‚,AND SALIM Y(cid:220)CE 1 T = ((cid:20)T+(cid:20)N+(cid:28)B); (cid:3) (cid:28) j j 1 N = ((cid:0) T+(cid:0) N+(cid:0) B); (cid:3) 1 2 3 (cid:0)2 (cid:0)2 (cid:0)2 1(cid:0) 2(cid:0) 3 1 B = p ((cid:22) T+(cid:22) N+(cid:22) B); (cid:3) (cid:28) (cid:0)2 (cid:0)2 (cid:0)2 1 2 3 j j 1(cid:0) 2(cid:0) 3 (cid:20) = p2p ( (cid:0)2+(cid:0)2+(cid:0)2); (cid:3) (cid:28)3 (cid:0) 1 2 3 j jq (cid:20)(cid:0)31(cid:22)2+(cid:0)32((cid:20)(cid:22)1(cid:0)(cid:22)3(cid:28))+(cid:0)23((cid:28)(cid:0)3(cid:22)2+(cid:22)1(cid:0)01+(cid:22)2(cid:0)02) +(cid:0) (cid:0) ((cid:0) ((cid:20)(cid:22) (cid:22) (cid:28)) 2 3 3 1(cid:0) 3 +(cid:22)3(cid:0)02+(cid:22)2(cid:0)03)+(cid:0)22((cid:28)(cid:0)3(cid:22)2+(cid:22)1(cid:0)01(cid:0)(cid:22)3(cid:0)03) +(cid:0)21((cid:0)(cid:28)(cid:0)3(cid:22)2+(cid:0)2((cid:0)(cid:20)(cid:22)1(cid:0)(cid:22)3(cid:28))+(cid:22)2(cid:0)02(cid:0)(cid:22)3(cid:0)03)(cid:0) (cid:28) = (cid:0)1((cid:20)(cid:0)22(cid:22)2+(cid:0)2((cid:22)2(cid:0)01+(cid:22)1(cid:0)02+(cid:0)3((cid:20)(cid:0)3(cid:22)2+(cid:22)3(cid:0)01+(cid:22)1(cid:0)03)) : (cid:3) (cid:28) ( (cid:0)2+(cid:0)2+(cid:0)2)2 j j (cid:0) 1 2 3 Case 3.2. If (cid:28) =0, then TN-Smarandache curve (cid:12) is a null curve. TN If we di⁄erentiate Equation (3.1) with respect to s, the tangent vector of (cid:12) TN can be written namely: 1 ds T = (cid:20)(T+N): (3.6) (cid:3) p2ds (cid:3) By di⁄erentiating Equation (3.6), we obtain 1 T_ = (cid:0) (T+N); (cid:3) p2 (cid:3) where d2s ds 2 (cid:0) = (cid:20)+ (cid:20) +(cid:20)2 : (cid:3) ds(cid:3)2 (cid:18)ds(cid:3)(cid:19) 0 ! (cid:0) (cid:1) FromthecalculationsofFrenetinvariantsofanullcurve,we(cid:133)ndthatthecurvature (cid:20) of (cid:12) is equal to zero. So, there is no calculation for N and B in this case. (cid:3) TN (cid:3) (cid:3) 4. TN-Smarandache curves of a spacelike curve in R31 4.1. TN-Smarandachecurvesofaspacelikecurvewithtimelikebinormal. De(cid:133)nition 4.1. Let the curve (cid:11) = (cid:11)(s) be a spacelike curve parametrized by arc length with timelike binormal in R31. Then, TN-Smarandache curves of (cid:11) can be de(cid:133)ned by the frame vectors of (cid:11) such as: 1 (cid:12) = (T+N); (4.1) TN p2 where B is timelike, N and T are spacelike. SPECIAL SMARANDACHE CURVES IN R31 149 Let us analyze the causal character of (cid:12) : By di⁄erentiating Equation (4.1) TN with respect to s, we have 1 (cid:12)0 = ( (cid:20)T+(cid:20)N+(cid:28)B); TN p2 (cid:0) and 2(cid:20)2 (cid:28)2 (cid:12)0 ;(cid:12)0 = (cid:0) : h TN TNi 2 In this situation, there are three possibilities for the causal character of (cid:12) under TN the circumstances 2(cid:20)2 (cid:28)2 <0; 2(cid:20)2 (cid:28)2 >0 and p2(cid:20) = (cid:28) . Because of the fact (cid:0) (cid:0) j j j j that 2(cid:20)2 (cid:28)2 = 1 for at least one (cid:20) or (cid:28), we know that s is not arc-length of (cid:12) : 2(cid:0) 6 TN Suppose that s is arc-length of (cid:12) . (cid:3) TN Case 4.1. If 2(cid:20)2 (cid:28)2 <0; then TN-Smarandache curve (cid:12) is a timelike curve. (cid:0) TN Ifwedi⁄erentiateEquation(4.1)withrespecttos,weobtainthetangentvector of (cid:12) as given below: TN 1 T = ( (cid:20)T+(cid:20)N+(cid:28)B); (4.2) (cid:3) 2(cid:20)2 (cid:28)2 (cid:0) j (cid:0) j where p ds 2(cid:20)2 (cid:28)2 (cid:3) = j (cid:0) j: (4.3) ds p2 p By di⁄erentiating Equation (4.2) with respect to s, we have dT ds 1 (cid:3) (cid:3) = ((cid:3) T+(cid:3) N+(cid:3) B); (4.4) ds(cid:3) ds 2(cid:20)2 (cid:28)2 3 1 2 3 j (cid:0) j q where (cid:3) = 4(cid:20)2(cid:20) +2(cid:20)(cid:28)(cid:28) 2(cid:20)2 (cid:28)2 ((cid:20)2+(cid:20)) 1 0 0 0 (cid:0) (cid:0) (cid:0) (cid:3) =4(cid:20)2(cid:20) 2(cid:20)(cid:28)(cid:28) 2(cid:20)2 (cid:28)2 ((cid:20)2+(cid:20) +(cid:28)2) 8 2 0(cid:0) 0(cid:0) (cid:12) (cid:0) (cid:12) 0 (cid:3) =4(cid:20)(cid:20)(cid:28) 2(cid:28)2(cid:28) 2(cid:12)(cid:20)2 (cid:28)2 ((cid:12)(cid:20)(cid:28) +(cid:28) ): < 3 0 (cid:0) 0(cid:0)(cid:12) (cid:0) (cid:12) 0 Substituting Equation (4.3) with Equatio(cid:12)n (4.4), w(cid:12)e gain : (cid:12) (cid:12) (cid:12) (cid:12) p2 T_ = ((cid:3) T+(cid:3) N+(cid:3) B): (cid:3) (2(cid:20)2 (cid:28)2)2 1 2 3 (cid:0) By using the de(cid:133)nition of Frenet invariants of a timelike curve, the curvature and principal normal vector (cid:133)elds of (cid:12) are TN p2 (cid:20) = T_ = ((cid:3)2+(cid:3)2 (cid:3)2) (cid:3) (cid:3) (2(cid:20)2 (cid:28)2)2 1 2(cid:0) 3 (cid:13) (cid:13) (cid:0) q and (cid:13) (cid:13) (cid:13) (cid:13) 1 N = ((cid:3) T+(cid:3) N+(cid:3) B); (cid:3) 1 2 3 (cid:3)2+(cid:3)2 (cid:3)2 1 2(cid:0) 3 p 150 NURTEN (BAYRAK) G(cid:220)RSES,(cid:214)ZCAN BEKTAS‚,AND SALIM Y(cid:220)CE respectively. Additionally, we gain T N B (cid:0) (cid:0) (cid:12) (cid:12) (cid:12) (cid:12) p2 (cid:12) (cid:12) B(cid:3) =T(cid:3) N(cid:3) = (cid:12) (cid:20) (cid:20) (cid:28) (cid:12): (cid:2) 2(cid:20)2 (cid:28)2 (cid:3)2+(cid:3)2 (cid:3)2 (cid:12) (cid:0) (cid:12) j (cid:0) j 1 2(cid:0) 3 (cid:12) (cid:12) (cid:12) (cid:12) p p (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:3)1 (cid:3)2 (cid:3)3 (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) From this calculation, the binormal vector of (cid:12)TN is (cid:12) (cid:12) (cid:12) (cid:12) p2 B = ((cid:17) T+(cid:17) N+(cid:17) B); (cid:3) 2(cid:20)2 (cid:28)2 (cid:3)2+(cid:3)2 (cid:3)2 1 2 3 j (cid:0) j 1 2(cid:0) 3 where p p (cid:17) =(cid:20)(cid:3) (cid:28)(cid:3) 1 3(cid:0) 2 (cid:17) = (cid:20)(cid:3) (cid:28)(cid:3) 3 1 8 2 (cid:0) (cid:0) (cid:17) =(cid:20)((cid:3) +(cid:3) ): < 3 1 2 So, the torsion of (cid:12) is given by: TN : (cid:0)(cid:20)(cid:3)31(cid:17)2+(cid:3)32((cid:0)(cid:20)(cid:17)1+(cid:17)3(cid:28))(cid:0)(cid:3)23((cid:28)(cid:3)3(cid:17)2+(cid:17)1(cid:3)01+(cid:17)2(cid:3)02(cid:0)3(cid:17)3(cid:3)03) +(cid:3)2 (cid:3)3((cid:3)3((cid:20)(cid:17)1+(cid:17)3(cid:28))(cid:0)2(cid:17)3(cid:3)02(cid:0)2(cid:17)2(cid:3)03) (cid:0)(cid:3)22((cid:28)(cid:3)3(cid:17)2+(cid:17)1(cid:3)01(cid:0)(cid:17)3(cid:3)03+2(cid:17)2(cid:3)02)+(cid:3)21((cid:28)(cid:3)3(cid:17)2 +(cid:3)2((cid:0)(cid:20)(cid:17)1+(cid:17)3(cid:28))+(cid:17)2(cid:3)02+(cid:17)1(cid:3)01) (cid:28) = +(cid:3)1((cid:20)(cid:3)22(cid:17)2(cid:0)(cid:20)(cid:3)23(cid:17)2+2(cid:17)2(cid:3)01+2(cid:3)2(cid:17)1(cid:17)02(cid:0)(cid:3)3((cid:17)3(cid:3)01+2(cid:17)1(cid:3)03)) : (cid:3) 2(cid:20)2 (cid:28)2 ((cid:3)2+(cid:3)2 (cid:3)2)2 j (cid:0) j 1 2(cid:0) 3 Case 4.2. If 2(cid:20)2 (cid:28)2 >0; then TN-Smarandache curve (cid:12) is a spacelike curve. (cid:0) TN i) Let (cid:12) be a spacelike curve with timelike binormal, then the Frenet in- TN variants of (cid:12) are given as below: TN T = 1 ( (cid:20)T+(cid:20)N+(cid:28)B), (cid:3) p2(cid:20)2 (cid:28)2 (cid:0) N = (cid:0)1 ((cid:3) T+(cid:3) N+(cid:3) B), (cid:3) p(cid:3)2+(cid:3)2 (cid:3)2 1 2 3 1 2(cid:0) 3 B = p2 ((cid:17) T+(cid:17) N+(cid:17) B), (cid:3) p2(cid:20)2 (cid:28)2p(cid:3)2+(cid:3)2 (cid:3)2 1 2 3 (cid:0) 1 2(cid:0) 3 (cid:20) = p2 ((cid:3)2+(cid:3)2 (cid:3)2), (cid:3) (2(cid:20)2 (cid:28)2)2 1 2(cid:0) 3 (cid:0) (cid:0)(cid:20)(cid:3)31(cid:17)p2+(cid:3)32((cid:0)(cid:20)(cid:17)1+(cid:17)3(cid:28))(cid:0)(cid:3)23((cid:28)(cid:3)3(cid:17)2+(cid:17)1(cid:3)01+(cid:17)2(cid:3)02(cid:0)3(cid:17)3(cid:3)03) +(cid:3)2 (cid:3)3((cid:3)3((cid:20)(cid:17)1+(cid:17)3(cid:28))(cid:0)2(cid:17)3(cid:3)02(cid:0)2(cid:17)2(cid:3)03)(cid:0) (cid:3)22((cid:28)(cid:3)3(cid:17)2+(cid:17)1(cid:3)01(cid:0)(cid:17)3(cid:3)03+2(cid:17)2(cid:3)02)+(cid:3)21((cid:28)(cid:3)3(cid:17)2 +(cid:3)2((cid:0)(cid:20)(cid:17)1+(cid:17)3(cid:28))+(cid:17)2(cid:3)02+(cid:17)1(cid:3)01) (cid:28) = +(cid:3)1((cid:20)(cid:3)22(cid:17)2(cid:0)(cid:20)(cid:3)23(cid:17)2+2(cid:17)2(cid:3)01+2(cid:3)2(cid:17)1(cid:17)02(cid:0)(cid:3)3((cid:17)3(cid:3)01+2(cid:17)1(cid:3)03)) : (cid:3) (cid:0) 2(cid:20)2 (cid:28)2((cid:3)2+(cid:3)2 (cid:3)2)2 j (cid:0) j 1 2(cid:0) 3 ii) Let (cid:12) be a spacelike curve with timelike principal normal, then the TN Frenet invariants of (cid:12) are namely: TN SPECIAL SMARANDACHE CURVES IN R31 151 T = 1 ( (cid:20)T+(cid:20)N+(cid:28)B), (cid:3) p2(cid:20)2 (cid:28)2 (cid:0) N = (cid:0)1 ((cid:3) T+(cid:3) N+(cid:3) B), (cid:3) p (cid:3)2 (cid:3)2+(cid:3)2 1 2 3 (cid:0) 1(cid:0) 2 3 B = p2 ((cid:17) T+(cid:17) N+(cid:17) B), (cid:3) p2(cid:20)2 (cid:28)2p (cid:3)2 (cid:3)2+(cid:3)2 1 2 3 (cid:0) (cid:0) 1(cid:0) 2 3 (cid:20) = p2 ( (cid:3)2 (cid:3)2+(cid:3)2), (cid:3) (2(cid:20)2 (cid:28)2)2 (cid:0) 1(cid:0) 2 3 (cid:0) (cid:0)(cid:20)(cid:3)31(cid:17)2+p(cid:3)32((cid:0)(cid:20)(cid:17)1+(cid:17)3(cid:28))(cid:0)(cid:3)23((cid:28)(cid:3)3(cid:17)2+(cid:17)1(cid:3)01+(cid:17)2(cid:3)02(cid:0)3(cid:17)3(cid:3)03) +(cid:3)2 (cid:3)3((cid:3)3((cid:20)(cid:17)1+(cid:17)3(cid:28))(cid:0)2(cid:17)3(cid:3)02(cid:0)2(cid:17)2(cid:3)03)(cid:0) (cid:3)22((cid:28)(cid:3)3(cid:17)2+(cid:17)1(cid:3)01(cid:0)(cid:17)3(cid:3)03+2(cid:17)2(cid:3)02)+(cid:3)21((cid:28)(cid:3)3(cid:17)2 +(cid:3)2((cid:0)(cid:20)(cid:17)1+(cid:17)3(cid:28))+(cid:17)2(cid:3)02+(cid:17)1(cid:3)01) (cid:28) = +(cid:3)1((cid:20)(cid:3)22(cid:17)2(cid:0)(cid:20)(cid:3)23(cid:17)2+2(cid:17)2(cid:3)01+2(cid:3)2(cid:17)1(cid:17)02(cid:0)(cid:3)3((cid:17)3(cid:3)01+2(cid:17)1(cid:3)03)) : (cid:3) 2(cid:20)2 (cid:28)2((cid:3)2+(cid:3)2 (cid:3)2)2 j (cid:0) j 1 2(cid:0) 3 Case 4.3. If p2(cid:20) = (cid:28) , then TN-Smarandache curve (cid:12) is a null curve. j j j j TN The tangent vector of (cid:12) and its derivative with respect to s are obtained, TN (cid:3) respectively, T = 1 ds ( (cid:20)T+(cid:20)N+(cid:28)B) (cid:3) p2ds(cid:3) (cid:0) 8 T_ = 1 ((cid:3) T+(cid:3) N+(cid:3) B); >>< (cid:3) p2 (cid:3)1 (cid:3)2 (cid:3)3 where >>:(cid:3) = d2s ( (cid:20))+ ds 2 (cid:20) (cid:20)2 (cid:3)1 ds(cid:3)2 (cid:0) ds(cid:3) (cid:0) 0(cid:0) 8 (cid:0) (cid:1) (cid:0) (cid:1) >>>>>< (cid:3)(cid:3)2 = dds2(cid:3)s2((cid:20))+ ddss(cid:3) 2 (cid:20)0(cid:0)(cid:20)2+(cid:28)2 (cid:0) (cid:1) (cid:0) (cid:1) (cid:3) = d2s ((cid:28))+ ds 2((cid:28) +(cid:20)(cid:28)): Based upon these ca>>>>>:lcula(cid:3)3tionsd,s(cid:3)th2e Fren(cid:0)edts(cid:3)in(cid:1)varia0nts of (cid:12)TN are namely: (((cid:3)(cid:3)3)(cid:0)2[+(cid:3)(cid:3)12(cid:3)(cid:3)(cid:3)3(cid:3)1((cid:3)(cid:3)(cid:3)2(cid:3)3))(0(cid:0)+p(2(cid:3)(cid:20)(cid:3)1(cid:28))2dd(s(cid:3)s(cid:3)(cid:3)2+)0(cid:17)+(cid:3)1)((cid:3)(cid:3)1)0(cid:3)(cid:3)2(cid:3)(cid:3)1])T +(((cid:3)(cid:0)(cid:3)3)[(cid:3)2(cid:3)2+(cid:3)2(cid:3)3(cid:3)((cid:3)(cid:3)1(cid:3)(cid:3)3)(cid:3)20)+(p(2(cid:3)(cid:20)(cid:3)1(cid:28))0d(ds(cid:3)s(cid:3)(cid:3)2+)2(cid:17)+(cid:3)2)((cid:3)(cid:3)2)0(cid:3)(cid:3)2(cid:3)(cid:3)1)])N N(cid:3) = +(((cid:3)(cid:0)(cid:3)3[)(2(cid:3)+(cid:3)3)22((cid:3)(cid:3)(cid:3)1(cid:3)3(cid:3))0(cid:3)2+)(p((cid:3)2(cid:3)1(cid:28))20(cid:3)ddss(cid:3)2(cid:3)++(cid:3)(cid:17)3(cid:3)3(cid:3)3(cid:3))(cid:3)2(cid:3)(cid:3)1+(cid:3)(cid:3)3])B ; (((cid:3)(cid:3)3)2+2(cid:3)(cid:3)1(cid:3)(cid:3)2)2 B = 1 (cid:3) T+(cid:3) N+(cid:3) B; (cid:3) p((cid:3)(cid:3)3)2+2(cid:3)(cid:3)1(cid:3)(cid:3)2 (cid:3)1 (cid:3)2 (cid:3)3 (cid:20) = 1 ((cid:3) )2+2(cid:3) (cid:3) ; (cid:3) p2 (cid:3)3 (cid:3)1 (cid:3)2 p (cid:28)(cid:3) = (((cid:3)(cid:3)3)2+2(cid:3)(cid:3)1(cid:3)(cid:3)2)3((cid:17)(cid:3)3+2(cid:17)(cid:3)1(cid:17)(cid:3)2)(cid:0)4((cid:3)(cid:3)3((cid:3)(cid:3)3)03+(cid:3)(cid:3)1((cid:3)(cid:3)2)0+((cid:3)(cid:3)1)0(cid:3)(cid:3)2)2: 8p2(((cid:3)(cid:3)1)2+2(cid:3)(cid:3)1(cid:3)(cid:3)2)2 152 NURTEN (BAYRAK) G(cid:220)RSES,(cid:214)ZCAN BEKTAS‚,AND SALIM Y(cid:220)CE 4.2. TN-Smarandache curves of a spacelike curve with timelike principal normal. De(cid:133)nition 4.2. Let the curve (cid:11) = (cid:11)(s) be a spacelike curve parametrized by arc length with timelike principal normal in R31. Then, TN-Smarandache curves of (cid:11) can be de(cid:133)ned by the Frenet vectors of (cid:11) such as: 1 (cid:12) = (T+N); (4.5) TN p2 where N is timelike, T and B are spacelike. Letussearchthecausalcharacterof(cid:12) :Ifwedi⁄erentiateEquation(4.5)with TN respect to s, we get 1 (cid:12) = ((cid:20)T+(cid:20)N+(cid:28)B): 0TN p2 Then, we can obtain (cid:28)2 (cid:12) ;(cid:12) = : h 0TN 0TNi 2 Hence, there are two possibilities for the causal character of (cid:12) under the condi- TN tions (cid:28) = 0 and (cid:28) = 0. Because of the fact that (cid:28)2 = 1 for at least one (cid:28) R, we 6 2 6 2 suppose that s is arc-length of (cid:12) . (cid:3) TN Case 4.4. If (cid:28) =0, then TN-Smarandache curve (cid:12) is a spacelike curve. 6 TN i) Let (cid:12) be a spacelike curve with timelike binormal, then the Frenet TN invariants of (cid:12) are given as follows: TN 1 T = ((cid:20)T+(cid:20)N+(cid:28)B); (cid:3) (cid:28) j j 1 N = ((cid:21) T+(cid:21) N+(cid:21) B); (cid:3) 1 2 3 (cid:21)2 (cid:21)2+(cid:21)2 1(cid:0) 2 3 q p2 B = (! T+! N+! B); (cid:3) 1 2 3 (cid:28) (cid:21)2 (cid:21)2+(cid:21)2 j j 1(cid:0) 2 3 p2q (cid:20) = (cid:21)2 (cid:21)2+(cid:21)2 ; (cid:3) (cid:28)3 1(cid:0) 2 3 j jq (cid:20)(cid:21)3(cid:0)(cid:22) +(cid:21)3((cid:20)! +(cid:1)(cid:22) (cid:28))+(cid:21)2((cid:28)(cid:21) ! ! (cid:21)0 +! (cid:21)0) (cid:0) 1 2 2 1 3 3 3 2(cid:0) 1 1 2 2 (cid:21) (cid:21) ((cid:21) ((cid:20)! +! (cid:28))+! (cid:21)0 +! (cid:21)0)+ (cid:0) 2 3 3 1 3 3 2 2 3 (cid:21)2( (cid:28)(cid:21) ! +! (cid:21)0 +! (cid:21)0)+(cid:21)2( (cid:28)(cid:21) ! 2 (cid:0) 3 2 1 1 3 3 1 (cid:0) 3 2 +(cid:21) ((cid:20)! +! (cid:28)) ! (cid:21)0 +! (cid:21)0) 2 1 3 (cid:0) 2 2 3 3 +(cid:21) ( (cid:20)(cid:21)2(cid:22) +(cid:21) ((cid:22) (cid:21)0 ! (cid:21)0 +(cid:21) ((cid:20)(cid:21) ! ! (cid:21)0 +! (cid:21)0)) (cid:28) = 1 (cid:0) 2 2 2 2 1(cid:0) 1 2 3 3 2(cid:0) 3 1 1 3 ; (cid:3) (cid:0) (cid:28) (cid:21)2 (cid:21)2+(cid:21)2 2 j j 1(cid:0) 2 3 (cid:0) (cid:1)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.