ebook img

Spatio-temporal variations in climate, primary productivity and efficiency of water and carbon use of the land cover types in Sudan and Ethiopia PDF

2018·5.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Spatio-temporal variations in climate, primary productivity and efficiency of water and carbon use of the land cover types in Sudan and Ethiopia

ScienceoftheTotalEnvironment624(2018)790–806 ContentslistsavailableatScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv Spatio-temporal variations in climate, primary productivity and efficiency of water and carbon use of the land cover types in Sudan and Ethiopia MuhammadKhalifaa,b,⁎,NadirAhmedElagiba,LarsRibbea,KarlSchneiderb aInstituteforTechnologyandResourcesManagementintheTropicsandSubtropics(ITT),TechnischeHochschuleKöln-CologneUniversityofAppliedSciences,Cologne50679,Germany bDepartmentofGeography,UniversityofCologne,Albertus-Magnus-Platz,D-50923Cologne,Germany H I G H L I G H T S G R A P H I C A L A B S T R A C T • Interactionbetweenclimateandvege- tationecosystemsiscomplexandstill unclear. • Correlatingclimatevariabilityandvege- tationproductivityprovidesusefulin- sights. • Spatio-temporalvariationsinclimate, NPP,WUEandCUEusingremotesens- ingdata • NPP,WUEandCUEvarywidelyamong landcoversindifferentclimatecondi- tions. • Thisvariationshouldbeconsideredin policy-making for water and food security. a r t i c l e i n f o a b s t r a c t Articlehistory: TheimpactofclimatevariabilityontheNetPrimaryProductivity(NPP)ofdifferentlandcovertypesandthere- Received9October2017 actionofNPPtodroughtconditionsarestillunclear,especiallyinSub-SaharanAfrica.Thisresearchutilizespub- Receivedinrevisedform7December2017 lic-domaindatafortheperiod2000through2013toanalyzetheseaspectsforseverallandcovertypesinSudan Accepted7December2017 andEthiopia,asexamplesofdata-scarcecountries.Spatio-temporalvariationinNPP,wateruseefficiency(WUE) Availableonline27December2017 andcarbonuseefficiency(CUE)forseverallandcoverswerecorrelatedwithvariationsinprecipitation,temper- atureanddroughtatdifferenttimescales,i.e.1,3,6and12monthsusingStandardizedPrecipitationEvapotrans- Editor:D.Barcelo pirationIndex(SPEI)datasets.WUEandCUEwereestimatedastheratiosofNPPtoactualevapotranspirationand Keywords: NPPtoGrossPrimaryProductivity(GPP),respectively.ResultsofthisstudyrevealedthatNPP,WUEandCUEof NetPrimaryProductivity thedifferentlandcovertypesinEthiopiahavehighermagnitudesthantheircounterpartsinSudan.Moreover, Remotesensing theyexhibithighersensitivitytodroughtandvariationinprecipitation.Whereassavannahrepresentsthe Climatevariability mostsensitivelandcovertodrought,croplandsandpermanentwetlandsaretheleastsensitiveones.The Wateruseefficiency inter-annualvariationinNPP,WUEandCUEinEthiopiaislikelytobedrivenbyadroughtoftimescaleof Carbonuseefficiency threemonths.NostatisticallysignificantcorrelationwasfoundforSudanbetweentheinter-annualvariations Drought intheseindicatorswithdroughtatanyofthetimescalesconsideredinthestudy.Ourfindingsareusefulfrom theviewpointofbothfoodsecurityforagrowingpopulationandmitigationtoclimatechangeasdiscussedin thepresentstudy. ©2017ElsevierB.V.Allrightsreserved. ⁎ Correspondingauthorat:InstituteforTechnologyandResourcesManagementintheTropicsandSubtropics(ITT),TechnischeHochschuleKöln-CologneUniversityofApplied Sciences,Cologne50679,Germany. E-mailaddress:[email protected](M.Khalifa). https://doi.org/10.1016/j.scitotenv.2017.12.090 0048-9697/©2017ElsevierB.V.Allrightsreserved. M.Khalifaetal./ScienceoftheTotalEnvironment624(2018)790–806 791 1.Introduction theAfricancontinent(Williamsetal.,2007).Monitoringthevariation invegetationproductivity,WUEandCUE,andcorrelatingthisvariation NetPrimaryProductivity(NPP)isdefinedastheamountofatmo- withclimatevariabilityforlargeareasisachallenge,particularlyagainst sphericcarbonthatiscapturedbyplantsandtransformedintobiomass thebackdropofthegivenlimitationsofgrounddata,especiallyinthe (ZhaoandRunning,2010).Thetotalamountcorrespondingtothepho- countriesofSub-SaharanAfrica,forinstance,wheregroundweather tosynthesisprocessiscalledGrossPrimaryProductivity(GPP).Thedif- stationsarefewandsparselydistributed. ferencebetweenNPPandGPPisreferredtoasrespiration(Ardö,2015), WUEandCUEareusefulindicatorsfortheassessmentofthepattern whichistheamountofcarbonpreviouslyassimilatedbytheplantand ofwateruseandcarbonsequestrationbyplants.WUEisdefinedas“The subsequentlyusedformaintenanceofthebiomassorforgrowth.Mon- rateofcarbonuptakeperunitofwaterlost”(Tangetal.,2014).Itcanbe itoringofthevariabilityinprimaryproductioniscriticalduetothefact calculatedbydifferentapproachesaccordingtothepurposeofinvesti- thatNPPprovidesvitalservicesforhumansurvival(Ardö,2015).Re- gation(ItoandInatomi,2012).Here,WUEisdefinedastheamountof ductioninNPPpotentiallyjeopardizesfoodsecurityandmayincrease waterevaporatedforeverygcarbon/m2ofNPPproduced,i.e.NPP/ET, a globalwarmingsinceareductioninNPPmightdecreasetheavailable where ET is theactual evapotranspiration (Kuglitschet al.,2008). a carbonsinks(ZhaoandRunning,2010).Whereasthespatialvariation CUEisdefinedasaratioofNPPtoGPP.Theearliestconceptionofthe of NPP depends on vegetation type, soil, climate conditions and CUE is that it ideally equals 0.5 (DeLucia et al., 2007; Zhang et al., humanactivities,thetemporalvariationofNPPdependsmostlyon 2009).However,CUEshouldnotbeconsideredasaconstantvalue thevariabilityofclimaticfactors(Lietal.,2016).Severalclimatefactors since the driving processes of photosynthesis and respiration are controltheNPP,suchastemperature,precipitationandshortwavesolar nonlinearlygovernedbydifferentenvironmentaldrivers;thus,the radiation(Lietal.,2016).Temperatureandprecipitationhavemorein- ratioofthesefluxesvaries.Photosynthesisandrespirationareprimarily fluenceonNPPinaridandsemi-aridareaswhereassolarradiationisthe governedbytheabsorbedphotosyntheticallyactiveradiation(APAR) main controllingfactorin humid andsemi-humid areas(Liu et al., and temperature, respectively. Several researchers noted that CUE 2015).TemperatureplaysaroleinraisingNPP(ZhaoandRunning, mightvarydependingonclimatefactors(e.g.precipitationandtemper- 2010).Althoughtheperiodfrom2000through2009wasthewarmest ature)andgeographicallocation(Zhangetal.,2009).Plantsareconsid- decadeintherecordssince1880(NOAA,2016),ZhaoandRunning eredcarbonsinks.ExaminingthevariabilityofCUEisthusimportantfor (2010)foundthatglobalNPPhasdeclinedby0.55petagramcarbon climatechangeandCO emissionsstudies(Chenetal.,2013).Also,a 2 (PgC)duringthesamedecade.Theysuggestedthatadryingtrendin betterunderstandingofWUEandCUEmayleadtoabettermanage- thesouthernhemispherewasthemaindriverforthisreduction.There mentofecosystems(Tangetal.,2014;Zhangetal.,2009). hasbeenadebateregardingthesefindingsastowhethertherewasa Variabilityinprimaryproductivityaffectsfoodavailabilityandfood decreaseinNPPorwhetherthisdecreasewasduetoartifactsfrom security.Atthesametime,themagnitudeofprimaryproductionstrong- theappliedmodel(Samantaetal.,2011;ZhaoandRunning,2011).If lyaffectsthecarboncycle(Zhaoetal.,2005).However,lackofcontinu- NPPisaffectedbyclimateassuggestedinthatmodel;then,NPPshould ousgroundobservationhindersthelong-termanalysisofthedynamics havedecreasedduringthisperiod(Medlyn,2011). ofvegetationdevelopment.Luckily,manyremotesensingormodel Ecosystemsdifferintheirresponsestoclimatevariability(Knapp basedpublic-domaindatasourcesnowadaysprovidecontinuousspatial andSmith,2001).Differentplantspeciesresponddifferentlytodrought climateobservationsandotherkeyenvironmentalvariables(e.g.LAI, conditionsbasedontheirphysiologicalandstructuralcharacteristicsin biomass,soilmoisture).Thegeneralavailabilityofthesepublic-domain ordertopreventlossofwater(VanDerMolenetal.,2011).Understand- datasourcesprovidesauniqueopportunityforexaminingtheclimate- inghowlandcovertypesrespondtodroughtandtoclimatevariability plantproductivityrelationship,whichisessentialforareproducible canpromotemoreefficientmanagementoftheselandcoversandcan, analysisoftheimpactofclimatevariationonprimaryproductivity. inturn,assistsignificantlyinsecuringwaterandfoodinthefuture. However,incomparisonwithclimaticvariables,onlyfewpublic-do- Manystudieshavebeenconductedonthismatter,yetmostofthem maindatabasesprovidedataonprimaryproductivity.MODISdata, havefocusedontheclimatedriveroftheNPPvariationonaglobalscale suchastheprimaryproductivity(MOD17)product,areoftenusedto (e.g.Huangetal.,2016;Liuetal.,2015).Recentanalysesshowedthat detectthevariabilityofprimaryproductivityaswellasanalyzingthe semi-aridareasareamaincontrolofglobalNPPvariations(Huanget WUEandCUEoflandcovertypesorentireecosystemsandtheirassoci- al.,2016;Ahlströmetal.,2015).However,itisimportanttoexamine ationwithclimateconditions.Forasummaryofthemostimportant whetherthesamepatternofNPPfoundbyZhaoandRunning(2010) studies,refertoTable1. onaglobalscalealsoappliesonregionalandlocalscales(Chenetal., Tothebestofourknowledge,apartfromthestudyofPengetal. 2013).Asthescalingoftherelevantprocessesistypicallynon-linear,dif- (2017)whostudiedtheimpactofdroughtonNPPonacountryscale ferentpatternsarelikelytoemergeattheregionalorlocalscale.Drought forthewholeglobe,nootherstudywasconductedtoanalyzethere- isexpectedtobemoresevereinthefuture(Aultetal.,2014).Therefore,it sponseofNPP,WUEandCUEofdifferentlandcovertypestodrought isimportanttoinvestigatetheeffectofdroughtonprimaryproductivity andclimate variability in Sub-SaharanAfricabasedupon generally andefficiencyofthelandcovertypesintermsofwaterandcarbonuse. availabledatasets.Inthisstudy,inter-annualvariationsinclimatecon- Analysisoftheseinteractionsatregionalandnationallevelsisuseful ditionsanddroughtondifferenttimescalesfortheperiodfrom2000 andprovidesessentialinformationforlandcovermanagementandcli- through 2013 were correlated with inter-annual variation in NPP, matepolicy-making(Pengetal.,2017;Liuetal.,2015).Recently,acoun- WUEandCUEinvariouslandcovertypesinSudanandEthiopia.The try-scaleanalysisoftherelationshipbetweenNPPanddroughtwas twoselectedcountriesareexamplesofSub-Saharancountrieswithse- publishedbyPengetal.(2017).ThedatausedintheirworkwereModer- veredata-scarcityandhighvulnerabilitytoclimatevariationandfood ateResolutionImagingSpectroradiometer(MODIS)NPPandthedrought insecurity. Understanding the spatio-temporal variability of NPP, StandardizedPrecipitationEvapotranspirationIndex(SPEI).Theyfound WUE,andCUEisessentialtoachieveabetterlandmanagementin thatcountriesshowdifferenttrendsinNPPfortheperiod2000to2014, thesecountriesandtoimprovefoodsecurity. andonly35countriesaccountedforN90%oftheglobalNPP. Onthecontinentalscale,AfricahaswitnessedanincreaseinNPP 2.Materialsanddata duringthesameperiod,i.e.from2000through2009,by0.189PgC. Thiswasmostlyduetoadecreaseinvaporpressuredeficit(Zhaoand 2.1.Studyareaanditsimportance Running,2010).Africanecosystemsproducearound20%ofthetotal globalNPP(Ciaisetal.,2011),andalargefractionoftheinter-annual EastAfricaisoneofthemostchallengingareasformanagingnatural variabilityintheglobalcarboncycleisduetoecologicalprocesseson resourcesduetomanyfactors.Itisaregionhighlyvulnerabletoclimate 792 M.Khalifaetal./ScienceoftheTotalEnvironment624(2018)790–806 Table1 ReviewofsomeresearchusingMOD17dataofNPPandGPP. Author(s) Scale Time Mainobjective(s) Mainfindings period Huanget Global 2000–2013 ToexaminetheimpactofdroughtonNPP NPPishighlycontrolledbydrought,andsemi-aridecosystemsplaythemost al.,2016 importantroleintheinter-annualvariabilityontheglobalscale. Lietal., Global 2000–2014 TostudytheclimatefactorsaffectingNPPvariabilityand NPPiscorrelatedpositivelywithETo,anditrespondsdifferentlyinthe 2016 feedbackofthisvariabilityonactualevapotranspiration northernandsouthernhemispheresaccordingtodominantclimatefactorsin (ETo). eachhemisphere. Ahlström Global Tofigureouttheroleofsemi-aridecosystemsinthe ThetrendandvariabilityofthegloballandCO2sinksarelargelyderivedby etal., trendandvariabilityoflandCO2sinks. variationintemperatureandprecipitationvariationoccurringoversemi-arid 2015 ecosystems. Ardö,2015 Africa 2000–2010 Tocompareprimaryproductiondatafromremote GPPestimationsderivedfromremotesensingdata(i.e.MOD17)arehigher sensinganddynamicvegetationmodels. thanthosederivedfromdynamicvegetationmodels,whileNPPestimations arelower.Whenvalidatedagainstground-baseddata,bothestimationsshow significantpositivecorrelation. Liuetal., China 2000–2011 ToassesstheWUEofecosystemsandtheirresponseto DroughthasanimpactonWUE,andtheresponseofWUEtodroughtvaries 2015 drought amongecosystemtypes,geographiclocationsandclimateconditions. Abdietal., Sahel 2000–2010 ToestimateandanalyzethesupplyanddemandofNPP ThedemandofNPPincreasedonanannualrateof2.2%,butwithanear 2014 region, intheSahelcountries. constantsupply.Themajorincreaseindemandisforfoodrequirement. Africa Tangetal., Global 2000–2013 ToinvestigatetheWUEofdifferentecosystemsandto WUEvariedgreatlyamongecosystemtypesandamongecosystemslocatedin 2014 studytheirvariationandtrends. differentclimatezones.Recentchangesinlandcoverledtodeclineinglobal WUE. Zhanget Lower 2000–2011 Toassesstheeffectofdroughtonvegetation Droughtswithvariedintensitieshavedifferentimpactsonecosystems,which al.,2014 Mekong productivity showvariationinresponsetodrought. Basin Chenetal., Global 1997–2009 ToanalyzetheimpactofdroughtonNPP NPPanddroughtarepositivelycorrelatedinaridregions,whereasboreal 2013 (sub-arctic)areasshownegativecorrelation,andsomeareasshowno correlation. Zhaoand Global 2000–2009 TodetectthetrendofNPPanditsrelationtodrought AglobaldecliningtrendintheaverageNPPisdetectedduringthe Running, investigationperiod.Themaindrivingforceofthisdeclineisdrought. 2010 Zhanget Global 2000–2003 ToinvestigatethepatternofCUE(GPP/NPP)indifferent CUEvariesconsiderablybasedonecosystemtype,geographicallocationand al.,2009 ecosystems,geographicallocationsandclimate climateconditions. conditions. Turneret Global 2000–2004 ToevaluatetheperformanceofMOD17productsacross MOD17productsprovidegooddatatodetectthegeneraltrendofprimary al.,2006 differentbiomesandcompareitto9Eddycovariance productivity,butshowsoverestimationsinlowproductivitylocationsandvice fluxtowersdata. versa. Fig.1.LocationmapofEastAfricashowingtheboundariesofthetwocasestudies(SudanandEthiopia)andthedifferentlandcovertypeslocatedintheregion.Landoverdatainthismap arethatofMCD12Q1product. M.Khalifaetal./ScienceoftheTotalEnvironment624(2018)790–806 793 changeimpacts(Abebe,2014).Moreover,mostofthecountriesinthis fromMODISsatellite.MODISisoneofthesensorsonNASA'sEarthOb- regionareconsideredamongtheleastdevelopedcountries,witha servingSystem(EOS)satellites.Itprovidescontinuousglobalmonitor- highandrapidlyrisingpopulation(UNECA,2016),consequentlyput- ingdataofprimaryproductivitywithaspatialresolutionof1kmand tingmorepressureonthenaturalresourcesinthefuture.Withatotal at a temporal resolution of 8-day, monthly and annual intervals. areaofabout3millionkm2,SudanandEthiopiaareagoodexampleof MOD17version055dataofannualestimatesofNPPandGPPwere landcovertypestypicalforthisregion(Fig.1).Thetwocountriesto- downloaded from the Numerical Terradynamic Simulation Group getherarecharacterizedbyagreatdiversityinlandcovers,includingsa- website.Invalidvalueswereremovedfromtherasterfiles;then,each vannah, permanent wetlands, croplands, shrublands, and forests. rasterfilewasmultipliedbyascalefactorof0.1torestoretheoriginal Accordingly,theyshowsignificantspatialvariationinclimatecondi- NPPandGPPvalues,asinstructedinthemetadatafileofthisdataset. tions,rangingfromhyper-aridinnorthernSudantothehumidcondi- Lastly,using“extractbymask”toolinArcGIS,separaterastertimeseries tionsinsomepartsoftheEthiopianhighlands.Thesefeaturesmake ofNPPandGPPwereproducedforeachofthetwocountries,i.e.Sudan thetwocountriesparticularlysuitableforourresearch.Mostofthe andEthiopia. area in Sudan is bare or sparsely vegetated land (62% of the total WithlimitedavailablegrounddataincomparisonwithMOD17data, area).Theseareasaremainlylocatedinthenorthernhalfofthecountry validationofMODISdataisachallenge(Zhaoetal.,2005).Numerous (Fig.2).InSudan,grasslandisthedominantlandcovertype,covering studieswereconductedtocomparetheMOD17datawithfieldmea- around20%ofthetotalarea.InEthiopia,openshrublandsrepresent surements.Adetailedoverviewoftheperformanceofthisproductisbe- thelargestlandcovertype,coveringapproximately27.6%ofthetotal yondthepurposeofthisresearch.Nevertheless,itisworthmentioning area.Woodysavannah,grasslandsandcroplandsalsorepresentimpor- forinstancethatTurneretal.(2006)usedEddyfluxtowerstovalidate tantlandcoversinEthiopiaintermsofarea(Fig.2). MOD17 dataandfound that MOD17datasetsshow no overall bias whencomparedwithtowersdata.Theyfound,however,thatMOD17 2.2.Dataandmethods datatendtooverestimateprimaryproductivityinthelowproductivity areasandunderestimateitinhighproductivityareas.Zhaoetal.(2005) Usingdataacquiredfrompublic-domainsourcesofferasolutionfor mademanyenhancementsinthemaininputsofthisdatasetandre- suchadata-scarceregion.Alongwithlandcoverdata,timeseriesofthe ported on correlation analyses between MOD17 and ground-based NPP,GPP,NormalizedDifferenceVegetationIndex(NDVI),precipita- data. Ardö (2015) compared MOD17 NPP with Aboveground NPP tion,evapotranspiration,temperatureandStandardizedPrecipitation (ANPP) data collected from ground measurements in 35 sites in EvapotranspirationIndex(SPEI),wereusedinthisanalysis(Table2). Sudan.Whiletheyfoundastrongcorrelationbetweenthemulti-year Allofthesedatawerederivedfromthepublic-domainsourcesfora averageMOD17NPPandtheANPP(r=0.80,RMSE=135g),they timeframeextendingfrom2000through2013.Mostoftheremote alsoreportedasystematicover-estimationofMOD17NPP,whichis sensingdatasetsusedinthisstudyarerecentproductsandavailable attributed to the fact that the ANPP only considers aboveground onlyfortheyearsafter2000,forinstance,theNPP,GPPandET from biomass. a MODIS.Theselectionoftheperiod(2000−2013)wasmainlycon- trolledbytheavailabilityofthedatafromdifferentsourcesforthe 2.2.2.NormalizedDifferenceVegetationIndex(NDVI) sametime period.Ontheotherhand,manystudiesdealtwiththe DataontheNDVIwereobtainedfromthewebsiteoftheFamine samesubjectswereconductedforsomehowthesimilarperiod.We EarlyWarningSystemsNetworks(FEWSNET).Thisdatasetwasdevel- choosetheperiodtobeconsistentwiththeseresearchesinordertofa- opedbytheU.S.GeologicalSurvey(USGS)EarthResourcesObservation cilitatethecomparisonofthefindings.Moreover,asmentionedearlier, andScience(EROS)Center.Thedatausedhereinwere10-daycompos- theperiodbetween2000–2009wasthehottestontheglobalrecord; itedatawithaspatialresolutionof250m.TherawNDVIimagespro- therefore,theseyearsareveryinterestingforstudyingtheNPPpatterns. cessinginvolved:(i)eliminatingtheinvalidvalues,(ii)convertingthe Inthisstudy,thedataprocessingwascarriedoutusingArcGIS10.3 digitalnumbers(DN)providedintherasterfilestoNDVIvalues,using software. theformulaNDVI=(DN−100)/100,asperinstructionoftheproduct documentation;(iii)using“extractbymask”tooltocreateseparate 2.2.1.Primaryproductivity NDVIdataforeachcountryfromtheoriginaltilesofEastAfrica;(iv)ag- Primary productivity data were obtained from MOD17 product gregating10-daycompositedataintomonthlytimesteps,usingmaxi- (Zhaoetal.,2005),whichprovidesNPPandGPPdata(ingcarbonm−2) mumvaluecomposite(MVC)method(Holben,1986),whichselects 1.4 Abbreviations 1.2 B Barren or sparsely vegetated MF Mixed forests CS Closed shrublands OS Open shrublands 2m) 1 C/NV Cropland/Natural vegetation mosaic PW Permanent wetlands k C Croplands S Savannas n 0.8 DBF Deciduous broadleaf forests W Water o milli EGBF GEvraesrgsrlaenedns broadleaf forests UWS UWroboadny savannas 0.6 ( a re 0.4 Ethiopia A Sudan 0.2 0 B CS C/NV C DBF EBF G MF OS PW S U W WS Fig.2.TotalareaofeachlandcoverinSudanandEthiopiaasappearintheMDC12Q1product. 794 M.Khalifaetal./ScienceoftheTotalEnvironment624(2018)790–806 themaximumvalueforeachpixelfromthethree10-daycompositeim- % d 28 dny an ages.IntegratedNDVI(INDVI)forthecultivationseasonwasusedasa Performance fiDatadifferfromeldmeasurementsby CHIRPScorrelationswithgriddedgrounNprecipitationdataiswithR0.75inmaareasoftheworldfiCorrelationcoefcientbetweenMOD16towerdatais0.86(Muetal.,2011) w22cwtdp1hi.09ar2phiiot19ts.iia3Ihxt55cnr.ayh))iaePntt..fishrrItsooteeeoeprncpawaimcarrptwauceciioshtcsarianreultcteihntmarninhoetlccsStnulslyutolustaalhtladattuuenteietdoedddimdynob,anaaadwniigsonoangemafturgaues0aar,ugos.sl0Cemsawd5dHt(amii°FnIotC.RaiganPle.PitrlmsiTSodooehfacnae(eettsFtehonsouasfe,nHnlite.n,oahkixng1zreteia9rotgNrtah9fidcDn5eapsta;lV-rr.Gbl,PeIeyr1g2rfcooi-ii00nopmur-1cnipJdt5eauaa(s)InatEnykienvlfoacrtde–noagorRoiGOmsdbleioca,opditw2tnnooa0PabsG21rfrieoetI.d4r0Ser-,,, oads/Global/CHIRPS%202.0 oads/East%20Africa/eMODIS%20NDVI ata.UDel_AirT_Precip.html#detail dis/modis_products_table/mcd12q1 wCbpmfi2(nrU.yHro2aoeaDm.Istn4AcRhegui.iPpeltoctTs)oSeiloeeUtirwmmmddapintnratppariioogtoseeteed.enlruprdiauBaarssdtcbtoSlteuueataitddrltnatriieuaisettidoycneatinepsnootsrgtGhgf,obirmiiteidesnrhdoeueciiudlnsmlocsesuvtgdeedodeiraddtcisiptneeeatafrivgslosgeseSeroescalutftitneopairp(apsovtiFrriitneenueolady.ycnngtUiiksw(opbeDUniyiesatneSattrdtliGtnShamaipuiSoletn.ra),danogU2tsatvfieo0nnoomit1drni,pavi5eSwssrne)susodr.whivdgsoiEiiaricndttitnhyhdsehdaiiaohiosnennfipdddgd-DihesaEmdeiv-,ttlqrehruoaoeulinwoousdatpupgalhaielihrttltadyyeast. wnl wnl d/d mo airtemperaturedatawithaspatialresolutionof0.5°forthewhole Downloadsite http://www.ntsg.umt.edu http://www.ntsg.umt.edu http://earlywarning.usgs.gov/fews/datado http://www.ntsg.umt.edu/project/mod16 http://earlywarning.usgs.gov/fews/datado http://www.esrl.noaa.gov/psd/data/gridde http://www.sac.csic.es/spei https://lpdaac.usgs.gov/dataset_discovery/ gfwipo2pujnerlv.riso2coe.roeemt.aaAb5Odcr.ttes.e.Iihntt1oAshMw(els9nycpeWretOi0rtfus(sdoe1hDittEalwavul1lTattmtidohe6dniapoy)veAoed2un.ast2tp0Fbpstitgm1.eolioiaimTsrl4rtcnoevhr-.ateabdideDphonmaoeuselMaslamerpotsespiaarinotavdriutedotaivsaarnhsutfeptpailaruoUsoyonrssonratDsideEuraoset(aeT,trnlsEanlecao2,T(terpsfm0deaVsspr0)tar4ooihpwt1ran.daira0)gsoestut.1gheirvscT)oretltithyesdnouugipefodtsdasertfydetahfodm,eeastdiadMrsatptoueaadeutbdOcosoraseseaDntbiedaattny1runasgcv6fecrnaooaetAtiuvturnNw2iadeaopAelaralnpuaSsatsesrtacAvvtouhdeah/wadsErtaepecuaeOtgodogapcrrSteuetheorfspnarrweua.oinrtrlnosroamesddoys--- Spatialresolution 1km 1km 5km 1km 0.25km 50km 50km 0.5km MdalagOyo,DrmiItShosnmatthedllyelivtaeenl.doTphaenedndubaaytlaMtceoummepteoarianl.l(ar2e10so0kl7mu)tisaopnnad.tTiiahmlisrpeprsoroovldeuduticobtnyuasMensudaeanttEa8Tl-. (2011) to calculate ET based on the Penman-Monteith equation Temporalresolution Annual Monthly 10-daycomposite Monthly 10-daycomposite Monthly Monthly – (uMseoMdnhOteeDirt1eh6i,n1p.9rTo6hv5iis)d.persoadsupcaetcoiavleprrcoodmuecstftohrethperoNbilleembaesnincowuhnitcehreisdthbeyotnhee Reference Zhaoetal.(2005) Zhaoetal.(2005) Funketal.(2015) Muetal.(2007);Muetal.(2011) – WillmottandMatsuura,2001 – trtcviheoamgelnuuesmelisadsaereajroMrnieerdsOderwDceeos1xets6croyelArsui2tcndergidemnaatgshtteaeiidnsnoevftrtohaisgrleoiiSdnfruaenvdlgoaEailtonTuncaeao.vsnnPadbrsluoiyEdcetereshersfiimsoonirpngomigvadi.toenhfsgeeMrtDthOsNe,D.wpS1ei6hxpAieca2lhrsariotasefwortnahdseeatseotearf inthisstudy. Source MOD17 MOD17 CHIRPS MOD16 e-MODISNDVI,FamineEarlyWarningSystemsNetwork(FEWSNET)UniversityofDelaware(UDel) StandardizedPrecipitationEvapotranspirationIndex(SPEI)MCD12Q1 wSSdcEemoootTaoeenumtaraonTttai.erhdhtznFalaireAosasdtertrnfips,rroeideroiTndncoarasadedrsnotccy,auafghoMnncctesetdchoyrOtewsevsM,DaatafRPleoOr1s.aemiu6(Dvamnn2ans1mu0dolc6ibn1edeaielEdn5anoatT)ect-wneeoarMf.dtdenoeTsoauseulhtlinanns.isemrti(tdnieget2rwagiena0tatchg1oneagyr4spoamoe)bloeEuydeuordsTndttsdiwuadasyeergdbsdelecrhyeaaEoeosntnTev2acwmadaMi–bnrde7eflyiOtdaaniustmlDnttalexhoc1vmbfeamt6oeeotrrtflEewpdawstTueluaeeexrrvearreean8tstmnmndooednawMeepgaraaaraecOhyssorhrusuDausae.rrmnn1reeIisnndd6---. d e mentsinnorthandnorthwestChina.Validationstudiesofthisproduct Table2fiSpecicationofthedataus Dataset NetPrimaryProductivity(NPP)GrossPrimaryProductivity(GPP)Precipitation(P) ActualEvapotranspi-ration)(ETaNormalizedDifferenceVegetationIndex(NDVI)Temperature(T) Droughtindex Landcover osfiSmo(eMuvveoreedlOvdrrraee-eDEnsdsa1uc.ts6aisTdmtelAhieAff2aefufwe)tyrleriaaceofm(taonpeuuaceornnrernbedasdgaetfbeiltroaohweetnnhsta.wctateAie,lrmeloposeZanavrnattoeyeaedtre)lhlurdtileehtcoeegtewg-tsibor,Gaoa(nlye.hsuae(zeinlt2igdr,ds0haMcE1)maIT6rOlEa)reeTDie,hagas1Msaatvu6vtimOaieroaleDuvanlmgtae1iSolso6eic.rdnnAhiDatt2mehtseemsimeadsptenhiMottdioneenOdneMtDcsdhoeOIueeSnfdDstotEir1hnbtTa6oge-al M.Khalifaetal./ScienceoftheTotalEnvironment624(2018)790–806 795 product,thisproductprovidesessentialknowledgeonthewatercycle respectively(SuliemanandElagib,2012;Elagib,2013).Forthetwo anditsinteractionwithenvironmentalchanges(Muetal.,2007).Itpro- years,10-daycompositeNDVIdataweresummedforthefivecultiva- videseasilyaccessibleinformationforareaswithlimitedsurfacedata tionmonths(June–October),andtheseasonalINDVIwasusedasa liketheregionofSub-SaharanAfrica. proxyofvegetationproductivityasexplainedbefore.Annualaverage WUEandCUEwerecalculatedforeachlandcovertypeastheratiosof 2.2.6.Droughtindexdata NPPtoET andNPPtoGPP,respectively.SAIsofWUEandCUEwere a Becausedroughtisaslowphenomenonthatdevelopsoveralong alsocalculatedforthepurposeofinvestigatingthelinkagebetween timewithoutprecipitation(Gillette,1950;WilhiteandGlantz,1985), themandSAIsoftheclimateelements. droughtindicesthattakedifferenttimescalesintoaccountareveryuse- fulfordroughtassessment.Incorporatingdifferenttimescalesintheas- 3.Results&discussion sessmentofdroughtimpactiswidelyused(Potopováetal.,2015).In the current investigation, we used the Standardized Precipitation 3.1.Climateconditionsduring2000–2013 EvapotranspirationIndex(SPEI)-developedbyVicente-Serranoetal. (2010)-withaspatialresolutionof0.5°andamonthlytimestep.SPEI Ingeneral,precipitationinSudanismuchlessthaninEthiopia.Tem- calculationrequiresprecipitationandtemperaturedatatoaccountfor porally,precipitationshowssomevariationfromyeartoyearinboth thedifferencebetweenprecipitationandpotentialevapotranspiration countries(Fig.4a).TheyearwiththelowestprecipitationinSudan (PET),i.e.asimplewaterbalance.SPEIisamulti-scalarindexthatallows was2004,recording180.3mm.Fortheperiod2000–2013,thearealav- comparisonofdroughtseverityoverdifferenttimescalesandacross eragetotalannualprecipitationis227.9mmandthecoefficientofvar- space.FortheSPEIscalerangesrefertoTable3.AsSPEIisastandardized iation(CV)is0.13forSudan.AsforEthiopiathecorrespondingvalues variable,itcanbecomparedwithotherSPEIvaluesovertimeandspace. are808.8mmand0.08(Fig.4a).Theresultsonaverageprecipitation Themostwidelyusedtimestepsare1,3,6,12and24months,denoted obtainedfromCHRIPSarecomparablewiththe1970–2000averages bySPEI01,SPEI03,SPEI06,SPEI12andSPEI24,respectively(Chenetal., (i.e.225.5mmand799.1mmforSudanandEthiopia,respectively,ases- 2013).Inthecurrentinvestigation,weusedSPEI01,SPEI03,SPEI06 timatedusingWorldClim(FickandHijmans,2017)).Mostlyvegetated andSPEI12. landsinSudanarefoundonaneast-westbeltlocatedinthesouthern partofthecountrywhereascharacterizedbyprecipitationamountsbe- 2.2.7.Landcover tween250andrarelyabove1000mm.Largeareasofthenorthernpart Inthecurrentresearch,MCD12Q1landcoverdataset(Friedletal., ofSudanreceiveb250mmperyear.AsforEthiopia,theannualprecip- 2010)providedbytheLandProcessesDistributedActiveArchiveCenter itationisonaverageN2000mm,withthehighestprecipitationoccur- (LPDAAC)wasused.Thisproductprovidesannuallandcoverdatafor ringinthewesternpartwhereasthelowestprecipitationisrecorded thewholeglobewithaspatialresolutionof1kmfortheperiodspan- inthenortheasternandsoutheasternportionsofthecountry. ning2001to2012.Thelatestlandcoverdata(version051)wasused Inthestudyarea,itisessentialtounderstandthetimingofprecipi- herein, with land cover classification scheme of the International tationasacrucialfactorinthevegetationdevelopment.SudanandEthi- Geosphere-BiosphereProgramme(IGBP).Thegloballandcoverlayer opia are relying mostly on rainfed agriculture for domestic food wasprocessedtogenerateseparatelayersoflandcoverclassesfor production.Therainyseasonandgrowingseasonarealmostidentical, eachcountry. andtheyextendfromJunetoOctober.InSudan,eventhetimingof themaingrowingseasonforirrigatedagriculturesynchronizesthe 2.2.8.Correlationofthevariablesandcalculationofwaterandcarbonuses rainyseason,especiallyinthelargeirrigatedschemes(e.g.Geziraand efficiency Rahad)becausethewatersupplyintheseschemesishighlydependent TheNPPandclimateelementswerefurtherstandardizedaccording ontheRiverNileflowwhichisinturnhighlyvariableduetotheseason- toKraus(1977)toanalyzetheinter-annualvariabilityoftheStandard- alvariabilityinprecipitation. izedAnomalyIndices(SAIs).Beforestandardization,thedataforallvar- Ontheaverage,mostofSudanshowsannualET ofb500mm.The a iablesweretestedfornormalityusingtheShapiro-Wilktest(Shapiro southernpartdisplaysET upto1500mm.Someoftheirrigatedagricul- a andWilk,1965;GhasemiandZahediasl,2012).Employinganonline turalschemes(e.g.Gezira)incentralSudanshowanaverageET be- a calculator(Dittami,2009),thedatawerefoundtobenormallydistribut- tween500mmand1000mm.Thecountry'sannualaverageofET is a ed. For each variable, the SAI was calculated as: {value − average 204.4inSudanand530.2mminEthiopia(Fig.4b).Spatialvariationin (2000–2013)}/standarddeviation(2000–2013).Theannualaverage ET takesthesamepatternasthatofprecipitation.ThehighestET a a ofeachclimatevariableforeachlandcoverclasswascalculatedusing valuesareforwaterbodies,e.g.LakeTanainEthiopia(Fig.4b). the functions of the GIS environment. Fig. 3 shows the procedure The14-yearannualaveragetemperatureis28.1°CinSudanand23.1 followedinthisstudytocorrelatethevariationintheannualNPPand °CinEthiopia.Duringthestudyperiod,thehighestaverageannualtem- climateindices.Thisprocedurewasusedforalllandcoverclassesand peraturedetectedforeachcountrywas29.0°CinSudanin2010and for each year using thenon-parametric Spearman's coefficients (ρ, 23.5°CinEthiopiain2009.Regionally,thecenterofSudanisthearea rho),withtheaidofXLSTATV.19.4software(Addinsoft,2017).Crop- characterizedbythehighesttemperature(Fig.4c). landsandgrasslandswereconsideredintheanalysisoftheimpactof Onamonthlytimescale,themostseveredroughtsintheregiondur- climatevariabilityonfoodproductiononamonthlytimestepfortwo ingthestudyperiodoccurredin2004,2005and2009(Fig.S1).During selectedyears(2007and2009)representingawetandadryyear, theseyears,Sudanwasaffectedbymoderatetoseveredroughtwhile moderate drought conditionsprevailed during only few monthsin these years in Ethiopia. Based on the annual data (Fig. 5a and b), Table3 CategoriesoftheSPEIscale. Sudanwasaffectedbyamoderatedroughtin2009whereastherest oftheyearswerenormal.Ethiopiaexperiencednormalmoisturecondi- Class SPEIvalue tionsduringthesameperiod. Extremelywet ≥2.00 Severelywet 1.5to1.99 3.2.NetPrimaryProductivityduring2000–2013 Moderatelywet 1.00to1.49 Normal 0.99to−0.99 Moderatelydrought −1.00to−1.49 Spatially,thehighestNPPvaluesinSudanarefoundalongthesouth- Severedrought −1.50to−1.99 easternandsouthwesternbordersofthecountrywheremostofthesa- Extremedrought ≤−2.00 vannaharelocated(Fig.6a).Themajorityofthenorthernpartsofthe 796 M.Khalifaetal./ScienceoftheTotalEnvironment624(2018)790–806 Fig.3.Flowchartofthemethodologicalprocedurefollowedinthisstudytocorrelatetheinter-annualvariabilityinNPP,CUEandWUEandtheirresponsetoclimatevariabilityanddrought conditions. countryarebarrenareaswithtoolowNPPratescomparedtothevege- thereasonbehindthisconsiderabledropinNPP.Incomparisonwith tatedareaswithinthecountry.InEthiopia,thehighestNPPvalueschar- Sudan,somelandcoversinEthiopiadisplayedpositiveNPPanomalies acterizethemiddlepartofthecountrythatiscoveredmostlybywoody duringthefirstyearsofthestudyperiod,mainlyduetothehighprecip- savannahandevergreenbroadleafforests(Fig.6b).Theareaswiththe itation.Theimpactofdroughtof2002insomelandcovertypes(e.g. lowestNPPratesarelocatedinthenortheasternpartofthecountry closedshrublands,croplandsmixedforestandsavannah)wasnotable which is mostly barren, sparsely vegetated or covered by open asNPPintheselandcoversshowednegativeanomalies. shrublands.TheannualaverageNPPis87.24and501.92gcarbonfor Asmentionedearlier,manydriversregulatetheinter-annualvari- SudanandEthiopia,respectively.Allof thelandcoversin Ethiopia abilityofNPP.Inaridandsemi-aridareas,suchasthestudyarea,pat- showhigherNPPthantheircorrespondentsinSudan.Thiscouldbeat- terns of precipitation and temperature are likely to be the most tributedtothehigherprecipitationandlargervegetatedlandsinEthio- importantclimaticfactors,buttheinteractionsoftheseclimaticfactors piacomparedtoSudan.Onaverage,evergreenbroadleafforestsand withvegetationactivitiesarecomplex(Lietal.,2016).Fromtheanaly- woodysavannahinEthiopiashowthehighestannualNPP,withNPP sis,itcanbenotedforEthiopiathatthevariabilityinNPPisinfluenced valuesof1279.5and845.3gCarbon/m2,respectively. directlybythevariabilityinprecipitation(Fig.7).Thisismanifestby the in-phase response of NPP to changes in precipitation and by 3.3. Variation of primary productivity and correlation with climate Spearman'sρ(Fig.S2).AmongalllandcovertypesinEthiopia,grass- variability landsrevealedthestrongestcorrelationρvalue(ρ=0.82,p=0.05). Thecorrelationwithclosedshrublands,croplands,deciduousbroadleaf Throughouttheperiodfrom2000to2013,theNPPdisplayedhigh forests,grasslandsandpermanentwetlandsweresignificantwhereas inter-annualvariabilityinbothcountries.InSudan,mostoftheland thecorrelationforevergreenbroadleafforests,mixedforests,open covertypesshowednegativeanomaliesduringtheyears2000–2008 shrublands,savannahandwoodysavannahwerestatisticallyinsignifi- (Fig.7a).Theyear2007wasanexception,probablybecauseitwasa cant.InSudan,thecorrelationwasstatisticallyinsignificantatp= yearwitharelativelyhighprecipitation.Thelastfiveyears(2009– 0.05(Fig.S3).Zhangetal.(2014)listedmanybioticandabioticfactors 2013)witnessedanincreaseinNPPofalllandcovertypes.NPPforthe (e.g.soilproperties,nutrient,availabilityandtemperature)tobere- year2002 wasassociatedwiththelargestdrop forall landcovers. sponsibleforthelackofimmediateresponseofNPPtothecurrent- Droughteffectintwosuccessiveyears(2001and2002)islikelytobe yearprecipitation.Spatially,thehighestcorrelationbetweenNPPand M.Khalifaetal./ScienceoftheTotalEnvironment624(2018)790–806 797 Fig.4.TemporalandspatialvariationinclimateelementsinSudanandEthiopia:(a)precipitation,(b)actualevapotranspirationand(c)temperature. precipitationisdetectedintheeasternandsouthernEthiopia(Fig.8). et al. (2017) for many countries (e.g. Indonesia, Philippines and TheSpearman'sρintheseareasisN0.6.Theseareasaredominatedby Malaysia). By correlating SPEI at different time scales (1, 3, 6, and croplands,grasslandsandsavannah.Onlysmallspotsinthecentral 12 months) with NPP anomalies, we found the highest correlation (GedarefandBlueNilestates)andwesternpartsofSudanexhibitedρ withtheannualNPPanomaliesforSPEI03inEthiopia.Thus,drought valuesN0.6.Theformerischaracterizedbyextensivecroplands(both eventsonatimescaleof3monthslargelycontrolNPPinthiscountry. irrigatedandrainfedagriculture).However,thecorrelationbetween Thishighdependencecanbedetectedspatially.LargeareasinEthiopia NPPandprecipitationintheseareaswerestatisticallyinsignificant.Sta- showedstatisticallysignificantcorrelationbetweenNPPandSPEI03 tisticalanalysisshowednosignificantcorrelationbetweentheinter-an- comparedtodroughtindicesatothertimesteps(Fig.8).Savannah nualvariationinmeanannualtemperatureandNPPforalllandcovers alsoshowedaverystrongpositivecorrelationbetweenNPPanomalies inbothcountries.Severallandcovertypesshowedinsignificantcorrela- andSPEIatatimestepofthreemonths(ρ=0.93,p=0.05).Open tionbetweentheinter-annualvariationintemperatureandNPP(Fig. shrublandsinEthiopiaseemtobemoresensitivetodroughtastheir 8).Lackofcorrelationbetweeninter-annualvariabilitiesintemperature NPPshowedstrongpositivecorrelationwithadroughtofonemonth andNPPinaridandsemi-aridregionsweredetectedinsomepartsof (SPEI01)(ρ=0.84,p=0.05).TheNPPforcroplandsandpermanent theworld,asreportedbyLiangetal.(2015)forChina.Thesefindings wetlandsdisplayedtheweakestrelationshipwithSPEI03(ρ=0.66 maysuggestthatthelandcovertypesinEthiopiaaremoresensitive and0.63respectively,p=0.05).Thisrelativelylowercorrelationsug- tovariationinprecipitationthanthosecharacterizingSudan.However, geststhatthesetwolandcoversarelesssensitivetodroughtthanthe sincethisanalysiswasconductedononlyanannualbasis,furtheranal- other land covers due to agricultural management (e.g. irrigation) ysis on the varying seasonal effects on vegetation development is and/orsufficientwatersupplyfromtributariesorgroundwater.Ever- deemedimperativetodrawamoresolidconclusion. greenbroadleafforestsseemtobequiteresistanttodroughtsince theirinter-annualNPPanomaliesshowedamoderatecorrelationwith 3.4.Droughtimpactonprimaryproductivity SPEI(ρ=0.54withSPEI01,p=0.05).Deeperrooting(Songetal., 2017) and access to larger water stores in soils and groundwater DroughtaffectstheannualNPPinthelandcoversofSudanandEthi- couldbeareason.AllofthelandcovertypesinSudanshowednostatis- opiadifferently.WhilealllandcovertypesinEthiopiashowapositive ticallysignificantcorrelationbetweentheirannualNPPanomaliesand significantcorrelation(p=0.05)betweenNPPanddroughtseverity, SPEIatanyofthetimescales. nostatisticallysignificantcorrelationwasdetectedforSudan.Lackof ThetotalNPPinthedryyear2009increasedby20.1%inSudanand correlationbetweenannualNPPandtheSPEIwasalsofoundbyPeng decreasedin Ethiopia by11.4%from the14-yearcountry'saverage 798 M.Khalifaetal./ScienceoftheTotalEnvironment624(2018)790–806 Fig.5.TimeseriesofSPEIforinthestudyareawithdifferenttimesteps1,3,6and12months,(a)Sudanand(b)Ethiopia. (2000–2013).TheincreaseofNPPindryyearsisreportedformany yield(Bussmannetal.2016;Elagib,2015;Elagib,2013)andNPP.In areasaroundtheworld,forexampleinNortheastChina(Liuetal., NortheastChina,autumndroughtwasfoundtoleadtolargerreduction 2015;Sunetal.,2016;Peietal.,2013).Generally,therearethreepoten- inNPPwhereasspringdroughthadinsignificantimpact(Liuetal., tialcausesofthisphenomenonasreportedbyYangetal.(2016),Liuet 2015).Frolking(1997)foundthatlatesummerdroughtincreasedNPP al.(2015)andPeietal.(2013).Thesecausesare(i)theassociationofin- by about 20% due to reduced respiration. The present analysis of creaseintemperaturewithdroughtconditions,(ii)thememoryeffect droughtcharacteristicsinSudanshowsastrongerintensitybutlesser ofthepreviousyeardroughtonthecurrentyearNPPand(iii)thechar- spatialextentofdroughtin2009comparedtoastrongerdroughtin acteristicsofdrought.Inthecaseofthedryyear2009inSudan,allthese otherdryyears(e.g.2002)duringthebeginningoftheseason(e.g. factorsseemtohaveplayedaroleinincreasingtheNPP.Itcanbeex- July).ThesedroughtcharacteristicsresultedinarelativelyhigherNPP plainedpartlybythenotableincreaseintheannualtemperaturein inmanylandcovers(e.g.croplandsandshrublands)inJulyin2009 thisyear(Fig.7),whichwasthehottestontherecordasreportedby whichislessby33%fromtheNPPofthesamemonthinthewetyear, SuliemanandElagib(2012)foreasternSudan.Temperatureplaysa 2007. keyroleintheplantrespirationprocess,thuscontributingtoincreasing NPP (Zhao and Running, 2010). In particular, mild drought when 3.5.Intra-annualvariabilityofprimaryproductivityanddrought coupledwithhightemperature,itmightoffsetthedecreaseofNPPin- ducedbywaterdeficit,i.e.leadingtoanincreaseintheNPP(Sunetal. Results of monthly GPP and NDVI for croplands and grasslands 2016;Liuetal.2015).Incontrast,temperatureduringthedryyearof showedthesametemporalpatternsin2007and2009.GPPandNDVI 2004wasbelowthemulti-yearaveragewhichmighthavecontributed starttoincreaseremarkablyatthebeginningoftherainyseason(i.e. tothedecreaseintheannualNPP.Additionally,thememoryeffectof June)asshowninFig.9.TheaverageNDVIshowedlowervaluesduring droughtalsoimpactstheNPP(Yangetal.,2016),likelydecreasingthe thedroughtyear2009inbothcountriesandforbothtypesofland NPPinthedryyearof2002duetocumulativedroughtoftheyears covers.AstrongcorrelationwasfoundbetweenthemonthlyNDVI 2001and2002.Contrarytothis,therelativelymilderdroughtcondition andmonthlyGPPforthetwolandcoversinbothcountries(Fig.S4). in2008probablyweakenedthedroughtimpactof2009onNPP.The Thedroughtconditionof2009reducedboththemonthlyNDVIand timingofdroughtduringtheyear,especiallythebeginningofthegrow- GPPduringtherainymonths.ThereductionintheNDVIwasmoreno- ingseason,isalsoanimportantfactordeterminingthelevelsofcrop ticeableinSudancomparedtoEthiopia.Accordingly,thedeclinein M.Khalifaetal./ScienceoftheTotalEnvironment624(2018)790–806 799 Fig.6.(a)SpatialvariationoftheaverageNPPinSudanandEthiopiaasmodeledbyMOD17.(b)Multiyearannualaverage(2000–2013)ofNPPforlandcovertypesinSudanandEthiopia. iNDVIforcroplandsandgrasslandsin2009comparedto2007were16.9 H O)asreportedbyLiuetal.(2015),andforthesouthernUnitedStates 2 and14.9%inSudanand7.1and16.1%inEthiopia,respectively.Statisti- (0.71gCkg−1H O)asindicatedbyTianetal.(2010),buthighervalues 2 calcorrelationbetweentheintra-annualvariationsinGPPandintra-an- fortheglobalaverage (0.92 gCkg−1H O),asreportedbyItoand 2 nualvariationsinprecipitation,temperatureandSPEIrevealedweak Inatomi(2012). correlationforcroplandsandshrublandsinbothcountries.Thehighest Variationsarenoticeableforthesamelandcovertypesunderdiffer- correlation between GPP and SPEI03 was detected for Sudan with entclimateconditionsinSudanandEthiopia.Evidenceoflargevaria- Spearman's ρ of 0.58 and 0.59 for croplands and shrublands, tionsinWUEwerealsopresentedbyotherresearchersfordifferent respectively. landcovertypesduetodifferencesincarbonuptakeandwatercon- sumption(Liuetal.,2015).Thisdissimilarityismainlyduetophysiolog- 3.6.Wateruseefficiency(WUE) icaldifferencesandclimateconditions(Tangetal.,2014).Generally,all ofthelandcovertypesinEthiopiashowhigherWUEthantheircounter- ThemagnitudeofWUEvariesdependingonthemagnitudesofNPP partsinSudan(Fig.10).Forinstance,thesavannahshowsanaverage andevapotranspiration.ThenationalmultiyearaverageWUEforSudan WUEof0.31gCkg−1H OinSudanbut0.75gCkg−1H OinEthiopia. 2 2 is lower (0.24 g C kg−1 H O) as compared to that for Ethiopia InEthiopia,theevergreenforestshavehigherWUEthanthedeciduous 2 (0.74gCkg−1H O)duetolowerNPPandhigherevapotranspiration forests.Thesefiguresareinagreementwithresultsreportedforforests 2 fortheformer.LiteratureshowscomparablevaluesfortheEthiopianav- insimilarlatitudes(Tangetal.,2014).Amongallthelandcovertypesin erageWUEandthenationalaverageWUEsforChina(0.79gCkg−1 theregion,evergreenbroadleafforestsandwoodysavannahexhibitthe

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.