ebook img

Spatio-Temporal Analysis of Meteorological Elements in the North China District of China during ... PDF

19 Pages·2017·6.83 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Spatio-Temporal Analysis of Meteorological Elements in the North China District of China during ...

water Article Spatio-Temporal Analysis of Meteorological Elements in the North China District of China during 1960–2015 JinsongTi1,2,YuhaoYang1,2,XiaogangYin1,2,JingLiang3,LiangliangPu1,2,YulinJiang1,2, XinyaWen1,2andFuChen1,2,* 1 CollegeofAgronomyandBiotechnology,ChinaAgriculturalUniversity,Yuan-Ming-YuanWestRoad2, Haidian,Beijing100193,China;[email protected](J.T.);[email protected](Y.Y.); [email protected](X.Y.);[email protected](L.P.);[email protected](Y.J.);[email protected](X.W.) 2 KeyLaboratoryofFarmingsystem,MinistryofAgricultureandRuralAffairsofthePeople’sRepublicof China,Yuan-Ming-YuanWestRoad2,Haidian,Beijing100193,China 3 DepartmentofEnvironmentalSciences,UniversityofCalifornia,900UniversityAve, Riverside,CA92521,USA;[email protected] * Correspondence:[email protected];Tel.:+86-10-6273-3316 (cid:1)(cid:2)(cid:3)(cid:1)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:1) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7) Received:24May2018;Accepted:11June2018;Published:15June2018 Abstract: The North China District (NCD) is one of the main grain production regions in China. Thedoublecroppingsystemofirrigationhasbeenleadingtothegroundwatertabledeclineatthe speedof1–2mperyear. ClimatechangeleadstouncertaintysurroundingthefutureoftheNCD agriculturalsystem,whichwillhavegreateffectsoncropyieldsandcropwaterdemands. Inthis research,theMeteorologicaldatasetfrom54weatherstationsitesovertheperiod1960–2015were collectedtoquantifythelong-termspatialandtemporaltrendsofmeteorologicaldata,including daily minimum temperature (T ), maximum temperature (T ), precipitation, solar radiation, min max reference evapotranspiration (ET ), and aridity index (AI). The results show that the long-term 0 wheat and maize growing season and annual average air temperatures (T and T ) showed min max strongnorthtosouthincreasingtrendsthroughouttheNCD.Theaverageannualprecipitationwas 632.9mmacrosstheNCD,morethan70%ofwhichwasconcentratedinthemaizegrowingseason. The regional average annual ET was 1026.1 mm, which was 531.2 and 497.4 mm for the wheat 0 andmaizegrowingseason, respectively. Theregionalprecipitationdecreasedfromnorthwestto southeastineachgrowingseasonandannualtimescale. Thefunnelareashavelowerprecipitation andhigherET thantheregionalaverage,whichmayleadtotheminingofthegroundwaterfunnel 0 area. TheregionalaverageannualAIis0.63,whichliesinthehumidclass. Fortemporalanalysis, theregionalaveragetrendsinannualT ,T ,solarradiation,ET ,precipitation,andAIwere min max 0 0.37◦C/10a,0.15◦C/10a,−0.28MJ/day/m2/10a,−2.98mm/10a,−12.04mm/10a,and0.005/10a, respectively. Theincreasingtrendoftemperatureandthedecreasingtrendofsolarradiationmay haveanegativeeffectontheregionalfoodsecurity.ThefunnelareaAIshowedasignificantincreasing trendforthewinterwheatgrowingseasonandadecreasingtrendformaize,whichindicatedthat moreirrigationwillbeneededforthemaizegrowingseasonandthewinterfallowpolicymaylead totheincreasingtrendprecipitationbeingwasted. Analyzingthegrowingseasonandtheannual meteorologicalelementsofthespatiotemporaltrendscanhelpusbetterunderstandtheinfluenceof climatechangeonthenaturalresourcesandagriculturaldevelopmentinboththepastandthefuture, andwillprovideuswithinvaluableinformationforthemodificationofcroppingpatternstoprotect theregionalandnationalwaterandfoodsecurity. Keywords: climatechange;trendanalysis;climatevariables;watersecurity;NorthChinaDistrict Water2018,10,789;doi:10.3390/w10060789 www.mdpi.com/journal/water Water2018,10,789 2of19 1. Introduction Globalwarming,becomingarealandpressingproblem,isacceptedwidelyasthemainfeature ofclimatechange. TheFifthAssessmentReportoftheUnitedNationsIntergovernmentalPanelon Climate Change [1] showed that the period of 1983–2012 was the warmest 30 years over the last 800yearsfortheaverageannualNorthernHemispheretemperatures. Climatechangehasagreat effectonthewaterdemandofplantsandcrops,thewaterconsumption,andthegrainyielddueto increasedtemperaturesandvariablerainfall,especiallyinpooradaptabilityareas[2,3].Climatechange isexpectedtoincreasinglyaffectcropyields[4–8]andcropwaterrequirements[9];whichimpacton theregionalandglobalfoodsecurityandwatersecurity. TheNorthChinaDistrict(NCD)isoneofthemostimportantgrainproducingareasinChina. Itproduces7.31×107tonofwheatand5.73×107tonofmaizewith1.17×107haand10.00×107ha area,whichwas56.7%ofthenation’swheatyieldsand26.1%ofitsmaizeyields[10]. Thus,NCDplays animportantpartinensuringChina’sfoodsecurity.Thewinterwheat-summermaizecroppingsystem isthemaincroppingsystemintheNorthChinaDistrict. Thisdoublecroppingsystemneedsabout 800–1100mmwatereveryyear[11],whiletheaverageannualprecipitationisaround500–600mmat thesametime[12],thus,irrigationisneededinordertomeettheoptimalyield. However,thewater resourcesarelimitedinthisareaandmostoftheirrigationwaterwasfromundergroundwater,which causesadramaticdeclineofthewatertable. Inaddition,irrigationisrelatedtothedistributionof theprecipitationcropwaterrequirement. Thus,assessingthespatiotemporalchangesofthedatais beneficialforoptimizingirrigationduringthewheat-maizecroppingsystemandregionalfoodand watersecurity. Inthecontextofglobalwarming, thetrendofthetemperaturewasfoundtohaveincreasedfor mostoftheworld[13–15]. Whilethesolarradiation[16],precipitation[17,18],ET0[19],andAI[20,21] werefoundtohaveincreasedordecreasedindifferentregionsoftheworld.Earlierregionalstudiesthat performedatrendanalysisofthemeteorologicalelementsaremorefocusedononeclimateelementin anannualtimescale.However,cropsareaffecteddifferentlybythemeteorologicalelementsindifferent growingseasons. Therefore,assessingmeteorologicalelementtrendsbothspatiallyandtemporallyin differentgrowingseasonsandwithanannualtimescalemayhelpusbetterunderstandhowclimate changeimpactsregionalfoodandwatersecurity. Theaimsofthepresentstudyare: (1)toanalyzethe spatialmeteorologicalelementsindifferentgrowingseasonsandwithannualtimescale;(2)tocalculatethe meteorologicalelementtrendsindifferentgrowingseasonsandwithanannualtimescale;(3)todiscuss thepossibleimpactsofclimatechangeontheregionalwaterandfoodsecurityofNCD. 2. MaterialsandMethods 2.1. StudyAreaDescription Thisstudyareaconsistsoffiveprovincesandcities(Beijing,Tianjin,Hebei,Shandong,Henan), whichisagenerallysimilarareatotheNorthChinaPlain(Figure1). Theregionislocatedbetweenthe longitudeof31and43◦Nanditisamonsoonclimatewithmediumlatitudes. Theannualprecipitation isaroundanaveragevalueof500to600mm[22].Inthisstudy,eachyearwasdividedintotwoperiods, comprising the winter wheat growing season and the summer maize growing season. Generally, thewinterwheatgrowingseasonisfromOctobertoJuneandthesummermaizegrowingseasonis fromJulytoSeptember. Water2018,10,789 3of19 Figure1.LocationofNorthChinaDistrictandtheweatherstationsite. 2.2. InputDataSources Thedailymeteorologicaldatafrom54weatherstationsitesacrosstheNCDcontainsthemaximum airtemperature,minimumairtemperature,averagerelativehumidity,precipitation,brightsunshine hours,andwindspeed,whichwereobtainedfromtheChinaMeteorologicalDataSharingService System. Most selected weather stations possess data from 1960 to 2015. The Mengjin, Qingdao, and Changdao weather stations possess data from 1961 to 2015, and the Weihai station, from 1940 to 2015 (Figure 1). The groundwater contiguous groundwater funnel area is collected from theAnnouncementofOutlawsArea,RestrictedArea,andProhibitedAreaofeachprovince. 2.3. CalculationofET andAridityIndex 0 Referencecropevapotranspiration(ET )expressestheevaporatingpoweroftheatmosphereata 0 specificlocationandperiod. ET isaclimateparameterandisonlyaffectedbyclimateparameters. 0 There are many equations to estimate ET , such as the Hargreaves Equation [23], Priestley-Taylor 0 Equation[24], Penman-MonteithEquation[25], andFAOPenman-MonteithEquation[26]. Inthis study,weusetheFAOPenman-MonteithEquation,whichwasmostwidelyusedtoestimatetheET 0 aroundtheworld. TheFAOPenman-MonteithEquationcanbeexpressedas: 0.408(cid:52)(R −G)+γ 900 µ (e −e ) ET = n T+273 2 s a (1) 0 (cid:52)+γ(1+0.34µ ) 2 whereRnisthenetradiationatthecropsurface(MJ/m2/day),whichwascalculatedfromthesunshine hoursusingtheequationdevelopedbyRietveld[27]; Gisthesoilheatfluxdensity(MJ/day/m2); T is the air temperature at a 2 m height (◦C); µ is the wind speed at a 2 m height (m/s); e is the 2 s saturationvaporpressure(kPa);e istheactualvaporpressure(kPa);∆istheslopeofthesaturation a vaporpressure-temperaturecurve(kPa/◦C);andγisthepsychometricconstant(kPa/◦C).TheET 0 wascalculatedbytheSIMETAWmodel,whichwasdevelopedbasedontheFAOPenman-Monteith equation[28],andhaswidelyusedinNCD[29–32]. Aridity Index (AI) is an index for assessing drought risk in the crop growing period, whichconsidersthetotalprecipitationandevapotranspiration. Therearemanymethodstoevaluate Water2018,10,789 4of19 anAI.Inthisresearch,theAIwascalculatedaccordingtotheUNESCO[33]method,whichcanbe computedas P Aridityindex(AI) = (2) ET 0 wherePistheprecipitation(mm)thatisobtainedfromeachweatherstationsite.TheannualPandET 0 ofthewinter-wheatandsummer-maizegrowingseasonisobtainedbysummingthedailyET rasters. 0 Anysitecanbeclassifiedintothefivecategoriesofhyper-arid,arid,semi-arid,dry-subhumid,andhumid accordingtothemagnitudeoftheAI,whichisclassifiedbythenumeric0.03,0.2,0.5and0.65. 2.4. Mann-KendallTrendTestandSlopEstimator TheMann-Kendall(M-K)isoneofthewidelyusednon-parametrictestsfordetectingsignificant trends and slope in time series [34,35]. There are many methods to detect the significant trend of theconsideredmeteorologicalelementsintimeseriesoftheselectedstations,theMann-Kendalland Spearman’sRhotestaremostwidelyused. Manytheseshavediscussedthedifferencebetweenthe Mann-Kendall and Spearman’s Rho test [36–38], the results show a similar performance of these twomethods. InthisstudyweusedtheM-KmethodtodetectthesignificanttrendandSen’smethod todetecttrendmagnitudes,whichweresuggestedbytheWorldMeteorologicalOrganization[39]. TheadvantageoftheMann-Kendalltrendtestisthatitisnotcontaminatedbyasmallnumberof outliersandthesampledoesnotneedtorankwithinacertaindistribution,soitiswidelyusedto estimatestreamflow,precipitation,andtemperaturetrend. TheM-KteststatisticSiscalculatedas S=∑n−1∑n sgn(x −x) (3) i=1 j=i+1 j i where n is the number of data points, x and x are the data values in the time series i and j (j > i), i j respectively,andsgn(x −x)isthesignfunctionas j i   +1, ifxj−xi >0 (cid:0) (cid:1) sgn x −x = 0, ifx −x =0 (4) j i j i  −1, ifx −x >0 j i Thevarianceiscomputedas n(n−1)(2n+5)−∑m t(t −1)(2t +5) Var(S)= i=1 i i i (5) 18 wherenisthenumberofdatapoints,misthenumberoftiedgroups,andt denotesthenumberofties i ofextenti. Atiedgroupisasetofsampledatahavingthesamevalue. Incaseswherethesamplesize n>10,thestandardnormalteststatisticZ iscomputedas S  √S−1 , ifS>0  Var(S) Z = 0, ifS=0 (6) S  √S−1 , ifS<0 Var(S) PositivevaluesofZ indicateincreasingtrendswhilenegativeZ valuesshowdecreasingtrends. S S The testing trends are done at the specific α significance level. When |ZS| > Z(1−α⁄2), the null hypothesisisrejectedandasignificanttrendexistsinthetimeseries. Z(1−α⁄2) isobtainedfromthe standardnormaldistributiontable. Inthisstudy,asignificancelevelofα=0.05wasused. Atthe5% significancelevel,thenullhypothesisofnotrendisrejectedif|Z |>1.96. S Water2018,10,789 5of19 Sen’s slope estimator [40] can be used for estimating time series data trend magnitudes. Theadvantageofthismethodisthatitlimitstheinfluenceoftheoutliersontheslopeincomparison withlinearregression. ThisestimateisgivenbytheTheil-SenEstimatoras (cid:18)x −x (cid:19) j z b=Median (7) j−1 wherex andx arethedatavaluesattimesjandz(j>z),respectively;bdenotestheannualincrement j z underthehypothesisofalineartrend. bprovidestherealslopeofthetendencyandcanvaryslightly fromtheslopeobtainedfromlinearregression. Sen’sslopeestimatoriswidelyusedtoestimatethe magnitudesoftrendsintheclimaticfactors. Inthisstudy,theM-Ktestisusedtoanalyzethetrendsofairtemperature,dailytemperature range,solarradiation,precipitation,ET ,andAIintheNCD.TheM-Ktrendtestandslopestimatorof 0 eachweatherstationsiteiscalculatedbyMATLABR2017b. 3. Results 3.1. SpatialandTemporalVariationofTemperature 3.1.1. SpatialAnalysis The temperature significantly influences crop yields and crop water use. Global warming has increasedtheinstabilityofagricultureandthefluctuationofcropyields.Theincreaseintemperaturehas delayedautumnfrostsandledtolatersowingandearlierharvestingofthewinter-wheatgrowingseason intheNorthChinaDistrict[41].Moreover,higherdailymaximtemperatureshavealsocausedheatand droughtstressduringthewheatandmaizegrowingseason,whichhighlynegativelyaffectedthecrop yields[2,42–44].Ontheotherhand,higherdailyminimumtemperatureshaveacceleratedtherespiration ofcrops,whichthus,havecausedyieldloss.Furthermore,temperatureisoneoftheimportantinputdata formanyhydrologyandcropmodels.Thus,itisnecessarytoevaluatetheregionaltemperaturetrend bothspatiallyandtemporally. During1960–2015,theaveragedailyminimumtemperature(T )waslowerinthenorthcompared min tothesouththroughthewheatandmaizegrowingseason(Figure2a–c). Thefigureindicatesthatthe averagedailyT ofthemaizegrowingseasonishigherthanwheat,whichwasabovezerooverthe min studyarea. ThewheatandmaizegrowingseasonT rangedfrom−9.0to6.6◦Candfrom10.3to min 22.1 ◦C; and from −2.6 to 11.8 ◦C when averaged annually. The average daily T of the Henan min provinceisthehighest,whichis4.6,20.3,and9.8◦Cforwheat,themaizegrowingseason,andannually; theHebeiprovincewasthelowest(Table1). SimilartoT ,theHebeiandHenanprovincesarethe min highestandlowestT forthethreeperiods.Theaveragedailymaximumairtemperature(T )ofthe max max studyregionhasasouth-to-northdecreasingtrendforthewheatgrowingseasonandannually,ranging from−2.6to11.5◦Cand3.7to16.2◦C.Unlikethewheatgrowingstage,theT formaizehasshowna max middle-surrounddecreasingtrendintheNPD,whichrangedfrom22.3to30.6◦C. Table1.Theprovince-wide,funnelareaandregionalstatisticsforwheat,maize,andtheannualtemperature. Beijing Tianjin Hebei Henan Shandong FunnelArea Regional T min Wheatgrowingseason 1.3 2.7 −1.2 4.6 2.8 2.4 1.9 Maizegrowingseason 19.3 20.9 17.4 20.3 19.3 19.9 19.0 Annual 7.3 8.8 5.0 9.8 8.3 8.2 7.6 Tmax Wheatgrowingseason 12.3 11.8 10.8 15.1 11.8 13.5 12.5 Maizegrowingseason 29.4 28.9 28.2 29.9 27.3 29.9 28.6 Annual 18.0 17.5 16.6 20.1 17.0 18.9 17.8 Water2018,10,789 6of19 Figure2. Thespatialdistributionof(a–c)long-termaverageminimumairtemperature(T )and min (d–f)maximumairtemperature(Tmax)onthewinter-wheatgrowingseason,summer-maizegrowing season,andannualbasis. 3.1.2. TemporalAnalysis Thetrendsinthewinter-wheat, summer-maizegrowingseason, andtheannualtimescalefrom 1961to2015forT ,andT areshowninFigure3. Themapsalsoshowthestatisticalsignificance min max oftheweatherstationtrendsduringtheresearchperiod. Thedifferentcolorcirclesindicatethevalue ofthetemporaltrendsandthepositiveandnegativenumbersrepresenttheincreasinganddecreasing trend. The black points in the maps indicate that the trend quantified for the weather station was statisticallysignificantatα=0.05,whiletheredrosepointrepresentsthesignificanceoftheincreasing trends,whichdistinguishesthemfromthestationwithinsignificanttrendsthatareassignedwithawhite point.Table2showsthetrendstatisticsforthegrowingseasonsandtheannualtimescaleT andT min min onaprovince-wide,funnel,andregionalbasis. Figure3a–cshowthatmostofthestudyregionsshow significantincreasingtrendsinthewheatandmaizegrowingseasonsandtheannualT . Onlyone min weatherstationshowsadecreasingtrendinthewinter-wheatgrowingseasonandtheannualtimescale. Itwashigherinthewheatgrowingseasonthaninthemaizegrowingseason,withthehighestT trend min provincebeingBeijinginthewheatgrowingseason(Table2).Theregionalaverageincreasingtrendsin thewheatandmaizegrowingseasonsandtheannualT were0.44,0.24,and0.37◦C/10a,respectively. min LikeT , thetrendsforboththewinter-wheatgrowingseasonandtheannualtimescaleT were min max positive,whilethecentralpartsoftheNCDshownon-significantincreasingtrendsforthewheatgrowing seasonandtheannualtimescale(Figure3d–f).Ontheotherhand,themainpartsoftheHenanprovince showdecreasingtrendsforthemaizegrowingseason,whichwasdifferenttotheT . Table2shows min thattheaverageT intheHenanprovinceforthemaizegrowingseasonistheonlydecreasinggrowing max seasonT ,province-wide,whichwas−0.08◦C/10a. max Water2018,10,789 7of19 Table2. Theprovince-wide, funnelarea, andregionalstatisticsforthewheat, maize, andannual temperaturetrends. Beijing Tianjin Hebei Henan Shandong FunnelArea Regional T (◦C/10a) min Wheatgrowingseason 0.68* 0.26* 0.53* 0.37* 0.41* 0.53* 0.44 Maizegrowingseason 0.53* 0.14* 0.32* 0.17* 0.21* 0.28* 0.24 Annual 0.64* 0.22* 0.46* 0.30* 0.34* 0.42* 0.37 Tmax(◦C/10a) Wheatgrowingseason 0.25* 0.36* 0.23* 0.23* 0.24* 0.20* 0.23 Maizegrowingseason 0.19* 0.23* 0.12* −0.08 0.08 0.02 0.04 Annual 0.25* 0.32* 0.17* 0.10* 0.18* 0.11* 0.15 *Indicatesthatthetemporaltrendissignificant(p<0.05). Figure3.Thespatialdistributionandstatisticalsignificanceofthetrendsin(a–c)Tminand(d–f)Tmax onthewinter-wheatgrowing-season,thesummer-maizegrowing-season,andtheannualbasis. 3.2. SpatialandTemporalVariationofSolarRadiation 3.2.1. SpatialAnalysis Solarradiationisthemostimportantsourceofrenewableandenvironmentalenergyontheplanet. Becauseofitsabundance,solarenergycanplayaprominentroleinourfutureenergyandreducethe dependencyonfossilfuel. Inaddition,manyresearchershavediscoveredtheimportanceandpositive effectofsolarradiationoncropyield[45,46].During1960to2015,theaveragedailysolarradiationwas higherinthenorthcomparedtothesouthforthewheatandmaizegrowingseasonsandtheannual timescale.Itvariedbetween12.5and14.9MJ/day/m2inthewheatgrowingseason(Figure4a),whichwas lowerthanthemaizegrowingseason(Figure4b).Table3showsthedescriptivestatisticsfortheaverage dailysolarradiation.TheShandongprovincehadthehighestsolarradiationforthewheatgrowingseason fromthefiveprovinces.While,formaizegrowingseason,theTianjinandHebeiprovinceswerethehighest. Therewaslittledifferenceinthefunnelareaandregionalaveragedailysolarradiation. Water2018,10,789 8of19 Figure4.Thespatialdistributionofthelong-termaveragedailysolarradiation(R)for(a)thewinter-wheat growingseason;(b)thesummer-maizegrowingseasonand(c)theannualbasis. Table3. Theprovince-wide, funnelarea, andregionalstatisticsforwheat, maize, andtheannual averagedailysolarradiation. R(MJ/day/m2) Beijing Tianjin Hebei Henan Shandong FunnelArea Regional Wheatgrowingseason 13.6 13.4 13.6 12.9 14.0 13.4 13.5 Maizegrowingseason 18.0 18.2 18.2 17.1 18.1 17.7 17.8 Annual 15.5 15.5 15.6 14.7 15.8 15.3 15.4 3.2.2. TemporalAnalysis MostoftheNCDdailysolarradiationshowsasignificantdecreasingtrendforthewheatgrowing season,exceptforthewestpartoftheHenanprovincewheretheQinlingMountainsexist(Figure5a). Allweatherstationsolarradiationshowedsignificantdecreasingtrendsforthemaizegrowingseason, which varied between −0.87 and −0.16 MJ/day/m2/10a (Figure 5b). All provincial solar radiation showedsignificantdecreasingtrendsforthewheatandmaizegrowingseasonsandtheannualtimescale. Thetendencyofthemaizegrowingseasonwashigherthanthatofthewheatgrowingseasonandthe funnelareawashigherthantheregionalscaleforboththewheatandmaizegrowingseasons(Table4). Theannualsolarradiationdecreasedduring1960to2015atarateof−0.35and−0.28MJ/day/m2/10ain thefunnelareaandtheregionalbasis,respectively. Figure5.Thespatialdistributionandstatisticalsignificanceofthetrendsinthedailysolarradiation(R) on(a)thewinter-wheatgrowingseason;(b)thesummer-maizegrowingseasonand(c)annualbasis. Table4.Theprovince-wide,funnelarea,andregionalstatisticsforthewheat,maize,andannualdaily solarradiationaveragetrends. R(MJ/day/m2/10a) Beijing Tianjin Hebei Henan Shandong FunnelArea Regional Wheatgrowingseason −0.18* −0.28* −0.19* −0.20* −0.20* −0.25* −0.20* Maizegrowingseason −0.54* −0.65* −0.42* −0.58* −0.4* −0.56* −0.48* Annual −0.30* −0.43* −0.26* −0.33* −0.26* −0.35* −0.28* *Indicatesthatthetemporaltrendissignificant(p<0.05). Water2018,10,789 9of19 3.3. SpatialandTemporalVariationofPrecipitation 3.3.1. SpatialAnalysis The quantification of the precipitation spatiotemporal variability in any region is important to enhance the capacity and level of the agriculture drought monitoring, prediction, and impact assessment, especially in arid and semi-arid regions such as NCD where the groundwater table declinesby1–2mperyear[47]. Duringtheperiodof1960–2015,theaverageprecipitationdecreased fromthenorthwesttothesoutheastineachofthegrowingseasonsandtheannualtimescale(Figure6). Thedescriptivestatisticsofthewinter-wheatandsummer-maizegrowingseasonsandtheannual precipitation for the province-wide area are presented in Table 5. Regionally, the wheat growing season precipitation varies from 83.2 to 461.6 mm, which, for the maize growing season and the annual timescale, was from 297.2 to 609.0 mm and 380.6 to 1070.0 mm, respectively. Averaged by province,thevalleywheatandmaizegrowingseasonprecipitationswereobservedinBeijingand Hebei,respectively,whilethemaximumvalueswereobservedinHenanandShandong. Theminimum valueannualprecipitationwasobservedinHebeitoo,whichwas520.7mm,whilethepeakannual precipitationwasobservedintheHenanprovince. Theregionalmeanprecipitationwas632.9mm, whileforthefunnelarea,itwas570.4mm. Figure6.Thespatialdistributionofthelong-termaverageprecipitation(P)for(a)thewinter-wheat growingseason;(b)thesummer-maizegrowingseasonand(c)theannualbasis. Table5. Theprovince-wide, funnelarea, andregionalstatisticsforthewheat, maize, andannual averageprecipitations. P(mm) Beijing Tianjin Hebei Henan Shandong FunnelArea Regional Wheatgrowingseason 99.7 109.8 108.3 260.8 185.6 138.7 176.4 Maizegrowingseason 445.3 441.4 412.5 470.7 507.4 431.7 458.0 Annual 545.0 551.2 520.7 730.8 688.1 570.4 632.9 3.3.2. TemporalAnalysis Thetrendsinthewinter-wheatandsummer-maizegrowingseasonsandtheannualprecipitation havebeencomputedfortheperiod1960–2015usinganon-parametrictest(Figure7).Thewinter-wheat growingseasonprecipitationtrendsarepositiveforthestudyareaandmorethan44.4%oftheweather stationshowedasignificantincrease. AsshowninFigure7a,thetrendoftheprecipitationwashigher intheeastoftheNCDthanthewest. Unlikethewheatgrowingseasonprecipitationtrends,themaize growing season precipitation trends show negative trends in the majority of the NCD and there wereonly9weatherstationsshowingsignificantdecreasingprecipitationtrends. Itisnoteworthy thatFigure7bshowsthatmostincreasedweatherstationwasconcentrationintheHenanprovince. Figure7cshowsthenatureandsignificanceoftheannualprecipitationtrendsoverthestudyarea. There were 31 weather stations showing negative trends in annual precipitation, which is a total Water2018,10,789 10of19 proportionof57.4%. Mostoftheweatherstationprecipitationsshowednon-significanttrendsinthe studyregion, withonlyoneweatherstationshowingdominantpositivetrends, andtwoshowing dominantnegativetrends. Thedescriptivestatisticsfortheprecipitationtrendwhenaveragedfor province-wide,funnelarea,andregionalarelistedinTable6. Themagnitudeofthewheatgrowing seasonprecipitationtrendswascalculatedas6.94mmperdecadeonthefunnelareaaveragebasis, whichwashigherthanthestudyregion. Additionally,theprecipitationtrendwaslowerinthefunnel areathanintheregionalbasisforthemaizegrowingseason,whichwere−14.72and−9.63mm/10a, respectively. Alltheprovincesshowedapositivetrendforthewheatgrowingseasonandanegative trend for the maize growing season, with the Henan province being the only one out of the five provinces to show a positive trend for the annual precipitation. Table 6 shows that the annual precipitationdecreasedduringtheperiodof1960–2015atarateof−5.69and−2.98mm/10ainthe funnelareaandtheregionalbasis,respectively. Figure7.Thespatialdistributionandstatisticalsignificanceofthetrendsintheprecipitation(P)ofthe (a)winter-wheatgrowingseason;(b)thesummer-maizegrowingseasonand(c)theannualbasis. Table6. Theprovince-wide, funnelarea, andregionalstatisticsforthewheat, maize, andannual precipitationaveragetrend. P(mm/10a) Beijing Tianjin Hebei Henan Shandong FunnelArea Regional Wheatgrowingseason 12.16* 8.46* 6.84* 4.01 6.69 6.94* 6.85* Maizegrowingseason −19.38 −20.53* −17.32* −2.43 −17.65 −14.72* −9.63* Annual −4.95 −12.59 −6.93 6.05 −9.68 −5.69 −2.98 *Indicatesthatthetemporaltrendissignificant(p<0.05). 3.4. SpatialandTemporalVariationofReferenceEvapotranspiration 3.4.1. SpatialAnalysis ET isanimportantpartofthehydrologicalcycleandoccupiesamoreimportantproportion 0 intheregionalwaterresourcebalance. Differentfromtheprecipitationeffectsoftheregionalwater resourcesupply,theET mainlyaffectsconsumption,especiallythecropwaterrequirement.Theresults 0 showthatthemeanwinter-wheatgrowingseasonET overa56-yearperiodvariedfrom420.3mm 0 to670.0mmacrosstheNCD(Figure8a). Averagedbyprovince, thevalleywheatgrowingseason ET wasobservedintheHebeiprovince,whichwas508.6mm(Table7),whilethemaximumvalues 0 wereobservedinBeijing. ThefunnelareaandregionalET were545.9and531.2mmforthewheat 0 growingseason.Figure8bshowsthatthecentralpartoftheNCDET washigherthanthesurrounding 0 parts for the maize growing season. The average funnel area and regional maize growing season ET were513.8and497.4mm,respectively,whichwaslowerthanthatofthewheatgrowingseason. 0 TheJinanweatherstationhadthemaximumannualET ,whichwas1240.9mm. TheannualET from 0 0 thelowesttothehighest,province-wide,areasfollows: Hebei,Henan,Shandong,Beijing,andTianjin.

Description:
[CrossRef]. 26. Frere, M.; Popov, G.F. Agrometeorological Crop Monitoring and Forecasting; FAO: Rome, Italy, 1979 53. Rodell, M.; Velicogna, I.; Famiglietti, J.S. Satellite-Based Estimates of Groundwater Depletion in India. Nature.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.