JournalofFishBiology(2016)89,821–846 doi:10.1111/jfb.13033,availableonlineatwileyonlinelibrary.com Spatial patterns of distribution and the influence of seasonal and abiotic factors on demersal ichthyofauna in an estuarine tropical bay D. R. da Silva Jr.*†, R. Paranhos‡ and M. Vianna* *Federal University of Rio de Janeiro, Institute of Biology, Department of Marine Biology, Laboratory of Fisheries Biology and Technology, CCS, Bl. A, 21949-900, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, Brazil and ‡Federal University of Rio de Janeiro, Institute of Biology, Department of Marine Biology, Laboratory of Hydrobiology, CCS, Bl. A, 21949-900, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, Brazil This study focused on the influence of local-scale environmental factors on key metrics of fish communitystructureandfunctionatGuanabaraBay,anestuarinesystemthatdiffersfromallother south-western Atlantic estuaries due to the influence of an annual low-intensity upwelling event duringlatespringandsummer,betweenNovemberandMarch,whenawarmrainyclimateprevails. Thespatialpatternsofthebottomtemperatureandsalinityweremoreheterogeneousduringtherainy seasonthanthedryseason,beinglinkedtototalprecipitationandseasonaloceanographicevents.The studyidentified130speciesand45families,placingGuanabaraBayasoneofthemostspecies-rich tropicalestuarineecosystems,farexceeding22otherBrazilianestuaries.Theseresults,inadditionto characteristicssuchasarelativelywell-preservedmangroveforest,highproductivityandfavourable conditionsforthegrowthandreproductionofestuarinespecies,indicatethatGuanabaraBayplaysa centralroleinsupportinglargepopulationsoffishes,includingcommerciallyimportantspecies. ©2016TheFisheriesSocietyoftheBritishIsles Keywords:environmentaldrivers;estuarinefunctionalgroups;estuary;fishfaunalrichness. INTRODUCTION Estuariescomprisealmost13%ofallmarinecoastalenvironmentsandgiventheirpar- ticular attributes, including high primary and secondary productivity, warm shallow waters and key ecological resources including shelter and protection and food avail- ability,thesehighlydynamicecosystemssustainlargenumbersoffishspecies,(Thiel etal.,2003;McLusky&Elliott,2004;Elliottetal.,2007).Thesecharacteristicsgive estuariesafundamentalroleinregionalichthyofaunadynamics,functioningasgrowth sitesformanymarinespeciesandreproductionareasforestuarinespecies. Sinceestuariesexperiencemajorshiftsinenvironmentalconditionsovershortperi- ods, one of the classical hypotheses is that water variables are the principal drivers that shape the patterns of species distribution and composition (Maes etal., 2004). Therefore, determining how the ichthyofauna responds to these factors is among the †Author to whom correspondence should be addressed. Tel.: +55 21 2562 6332; email: demarques- [email protected] 821 ©2016TheFisheriesSocietyoftheBritishIsles 822 D. R. DA SILVA ET AL. centralgoalsofestuarinefishecology.Studiesonmanyofthesesystemshaveidenti- fiedtemperature,freshwaterinput,salinity,dissolvedoxygenandtransparencyasthe main environmental drivers (Thiel etal., 2003; Maes etal., 2004; Akin etal., 2005). Asestuariesarehighlydynamicecosystems,however,therelativeweightofthesefac- torsdifferstosomedegree,evenamongneighbouringestuaries,whichcreatestheneed forlocalcase-by-casestudiesoftherolesofabioticfactors(Blaber,2013). The available information on the ecology and dynamics of ichthyofaunal assem- blagesinSouthAmericanestuariesandmarineecosystemsisconcentratedinrelatively few coastal areas [e.g. Caeté, Goiana and Sepetiba Bay, tropical estuaries from the northern, north-east and south-east coasts of Brazil; Patos Lagoon, Guaratuba and Paranaguá, subtropical estuaries from the southern coast of Brazil; La Plata, a sub- tropicalestuaryfromthesouth-westAtlanticcoastofArgentina;Barlettaetal.(2010)], andafewstudieshavebeenconductedrecentlyinGuanabaraBay.Together,theycover thefollowingtopics:ichthyoplanktoncompositionandvariability(Kraus&Bonecker, 1994; Castro etal., 2005), fisheries (Jablonski etal., 2006) and ichthyofauna spatial andtemporaldynamics(Rodriguesetal.,2007;Silvaetal.,2007;Vasconcellosetal., 2007,2010,2011;Andrade-Tubinoetal.,2009;Silvaetal.,2013).Thereis,however, considerablelackofinformationaboutthefishfauna,includingbasicinformationsuch asspeciesoccurrence,patternsofoccupancy,andestuarineuse. Guanabara Bay is of immense ecological, social and economical importance for the south-eastern region of Brazil, strategically located adjacent to one of the most industrializedregionsofthecountryandundertheinfluenceofnumerousfishingand commercial port facilities, in addition to ship yards and oil refineries. Regardless of its history of environmental depletion as a result of diverse anthropogenic activities, thebaystillexhibitscharacteristicsofatypicaltropicalestuary,includingarelatively well-preserved mangrove forest, high productivity and favourable conditions for growth and reproduction of estuarine species (Blaber, 2000). Therefore, it continues tosustainimportantfisheriesandalargenumberoffishers(Jablonskietal.,2006). To improve the knowledge of the ichthyofaunal dynamics in Guanabara Bay, the present study adopted a narrow approach, focusing on the influence of local-scale environmental factors on key metrics of community structure and function, such as estuarineuse.Theobjectiveswereto(1)describethespatialdistributionoflocalfishes inthebay,particularlythedemersalichthyofauna,basedonimportantcommunitymet- ricsandecologicalfeaturessuchasfeeding-mode,habitatandestuarine-usefunctional group and (2) elucidate the influence of seasonal factors on the fish community of GuanabaraBay. MATERIALSANDMETHODS STUDY AREA GuanabaraBayisasemi-enclosedtropicalbaylocatedonthesouth-easterncoastofBrazil, inthecentreofadenselyurbanizedandindustrializedareaofthemetropolitanregionofRio deJaneiro(Baptista-Netoetal.,2006)(22∘41′–22∘03′S;043∘16′–043∘01′W)(Fig.1).Itis oneofthelargestestuarinesystemsontheBraziliancoast(381km2),surroundedby16cities, andthedrainagebasin(4081km2)containsatotalof91riversandcanals.Regionalclimateis humidtropical,with twomainseasons:warm rainy(DecembertoMarch)andcolddry(July toAugust) (Paranhos& Mayr,1993).Thesemi-diurnal tide fluctuates0·7m onaverage.The ©2016TheFisheriesSocietyoftheBritishIsles,JournalofFishBiology2016,89,821–846 ICHTHYOFAUNA OF ESTUARINE TROPICAL BAY 823 (a) (b) 680 000 685 000 690 000 695 000 700 000 0 680 000 685 000 690 000 695 000 700 000 0 0 0 0 0 Duque de Caxias Magé BG-24 490 Duque de Caxias Magé 490 7 7 BG-20 BG-22 Paquetá Island BG-31 BG-26 Paquetá Island 00 00 0 0 3 3 BG-29BG-28 Upper bay BG-17 7 48 Duque de Caxias 7 48 BG-16 GBoGv-e34rnador IBslGa-n1d0 BG-13BG-12BG-11 BG-15São Gonçalo 7 476 000 Governador Island Central CGharandnieml São Gonçalo 7 476 000 BG-09 Governador Island BG-07 00 00 0 0 9 9 C.PL.o Rwieor dbea yJaneiro - Praça Mauá 7 46 C.P. Rio de Janeiro - Praça Mauá 7 46 BG-04 BG-03 Niterói Niterói Rio de Janeiro BG-02 BG-01 00 Rio de Janeiro Entrance 00 0 0 2 2 Seaward end 7 46 Seaward end 7 46 N N 0 2·5 5 10 SAD 1969 UTM Zone 23S 0 2·5 5 10 SAD 1969 UTM Zone 23S km km Fig. 1. (a)Environmentalsamplingpointsand(b)ichthyofaunasamplingsitesinGuanabaraBay,RiodeJaneiro. Bottomwatervariablesweresampledevery15daysfor24months(July2005toJune2007). seaward end (lower bay, euryhaline) is narrow (1·6km) and has the strongest tidal currents, reaching1·6ms−1(SEMADS,2001).Inthissectionofthebay,theinfluenceofcoastalwaters ismaximumandtheeffects(highersalinityandlowertemperatures)extendthroughthelong centralchannel(18km;maximumdepthof50m)towardstheupperbay.Inthemiddleandupper bays(exceptthecentralchannel),areasdepthsare<10mandextensiveshallowmudbanksexist. Inthesesections,specificallythoseclosetoGovernadorIslandandthecitiesofDuquedeCaxias, MagéandSãoGonçalo,theinfluenceofcontinentaldrainageisgreater,imposingmesohaline topolyhalinecharacteristicsduringtherainyseasonandeuryhalineonesinthedryseason. Inadditiontothenaturalgradientfromoceanictocontinentalwaters,GuanabaraBayexhibits a water quality gradient, as pollution loads undergo different degrees of dilution (Paranhos etal.,1998).Thisconditionisessentiallyattributedtohighsedimentationratesassociatedwith landfills,whichhaveledtosevererestrictionofwatercirculationandincreasingwaterturnover time (Amador, 1980) in the middle and upper bays (except central channel). On the other hand, bathymetric profiles of the central channel show it contributes to a high water renewal promotedbytidalcycles.Theinnerpartsofthebayexhibitthepoorestwaterquality,especially thenorth-westernside,giventhehighlyurbanizedandindustrializeddrainagebasincomposed oftheSãoJoãodeMeritiRiverandtheSarapuíRiver(Baptista-Netoetal.,2006;Kalasetal., 2009). On the opposite shore, the north-eastern portion is better preserved because of the integrity of the drainage basin of the Guapimirim Environmental Protection Area (Ribeiro & Kjerfve,2002). Intherainyseason,GuanabaraBayisinfluencedbyanannuallow-intensityupwellingevent duringlatespringandsummer(NovembertoMarch).Thisperiodischaracterizedbyanincrease ofnorth-eastwindsthatbringSouthAtlanticCentralWater(SACW)tothesurface100kmnorth ofthebayentrance,establishingsubtropicalandtemperatecharacteristicsfortheRiodeJaneiro ∘ ∘ coast,withtemperaturesbetween10 and20 C(Matsuura,1986;Barlettaetal.,2010).Oceano- graphiccharacteristicsthatopposethetypicalinfluenceoftropicalwaters(temperature>20∘C andsalinity>36;Matsuura,1986)aredrivenbytheBrazilcurrentduringtherestoftheyear (Brandini,1990). ©2016TheFisheriesSocietyoftheBritishIsles,JournalofFishBiology2016,89,821–846 824 D. R. DA SILVA ET AL. ENVIRONMENTAL DRIVERS Precipitationandwatervariableswereassessedinordertoinvestigatethespatialandtemporal patternsofthedemersalichthyofauna.Precipitationwasevaluatedforeachmonth,basedontwo categories defined by Walter & Lieth (1967) indicating dry and rainy months based on mean temperatureandtotalprecipitation.DataforbothfactorswereobtainedfromtheC.P.Riode Janeiro,PraçaMauáweatherstation.Bottomwatervariablesweresampledevery15daysduring a24monthperiod,fromJuly2005toJune2007,at21pointsacrossGuanabaraBay[Fig.1(a)] andanalysedbystandardoceanographicmethods(Grasshoffetal.,1999).Watertemperature wasmeasuredwithagraduatedthermometer(∘C).Salinityanddissolvedoxygen(DO;mgl−1) wereevaluated,respectively,bythechlorinityandWinkler-azidemethods.Inorganicnutrients were also analysed: ammonium nitrogen by indophenol (𝜇M), and total phosphorus by acid digestiontophosphate(𝜇M). FISH SAMPLING Fish surveys were conducted under the authorisation of SISBio (Sistema de Autorização e InformaçãoemBiodiversidade,‘AuthorizationandInformationSystemonBiodiversity’)No. 055,5December2005.Thesameperiodicityofevery15dayswasadoptedforfishsampling during a 24month period (July 2005 to June 2007) in six areas [Fig. 1(b)]. Each sampling area was evaluated by means of two to four hauls made during the day, at a constant speed [2·8–3·7kmh−1 (1·5–2·0 knots)], for 30min, using a typical boat of the local artisanal fleet, andtheGPSco-ordinatesofthebeginningandtheendofsamplingwererecorded.Thetrawl netwas7mlong,witha14mgroundropeanda18mmmeshcodend.Allfisheswerecounted, identified, measured to the nearest 0·1cm (total length, L ) and weighed to the nearest 0·1g. T No sub-sampling method was employed. The catch per unit effort (CPUE) was used to esti- mate abundance (number of individuals=0·5h−1) for all analyses, given the consistency of thesamplinggearandfieldmethods.Threeotherunivariatemeasurementsregardingcommu- nitystructureweredetermined:speciesrichness(totalnumberofspecies,S);Shannondiversity index(H′)andPielouequitability(J)(Margalef,1974).Complementarybiologicalfeaturesof thefeeding-modefunctionalgroup,habitatandestuarine-usefunctionalgroupwereassessedfor eachspeciesthroughspecializedreferences(Cervigón&Fischer,1979;Menezes&Figueiredo, 1980; Randall, 1983; Marceniuk, 2005). The classification followed the definitions of Elliott etal.(2007). DATA ANALYSIS Environmentaldatawereanalysedasmeans±s.d.,minimumandmaximumvaluesforeach site.At-testwasusedtoverifythedifferenceofmeanprecipitationbetweenseasons.Fishmea- surements(eachhaulwastreatedasasample)weretestedfornormality(Kolmogorov–Smirnov test)andhomoscedasticity(Levene’stest)andthenevaluatedbytwo-wayANOVAwithoutdata transformation.ATukeyposthoctestwasusedtoassessthevariabilityofthesemeasurements (Zar, 1999), considering the spatial (areas: six levels, fixed) and seasonal patterns (precipita- tion: two levels, random). Next, fish patterns were explored using a correspondence analysis (CA),followedbyacanonicalcorrespondenceanalysis(CCA)inordertoscreenfortheenvi- ronmental variables that best explained the ichthyofauna distribution and seasonality. Not all speciescapturedwereemployedintheanalyses.Becauseofthetypeofsamplinggearusedin thisstudy,thosespeciesthatwereconsideredasbeingpelagicorstrictlyassociatedwithhard bottoms were removed from the analysis, focusing the investigation on the soft-bottom fish community.AnothercriterionspecificallyemployedintheCAandCCAwasthetotalindexof relative importance (I ) (Selleslagh & Amara, 2008). This analysis was carried out only for RI thedominantspeciesduringthestudyperiod,i.e.thosethatindividuallycontributed>0·1%of theI .Thisapproachremovesrarespeciesthatincreasenoise,andaffectsonlythetotalvari- RI ationexpressedbytheeigenvalueswithoutalteringtheinterpretationofresults.Analyseswere performed using the programmes Statistica 7.1 (StatSoft; www.statsoft.com) and PC-ORD 4 (McCune&Mefford,1999).Asignificancelevelof0·05wasusedinalltests. Additionally, Kriging and Co-Kriging geostatistical techniques (Matheron, 1971) were employedtoexplorethespatialorganizationoffishmetrics(abundance,richnessanddiversity) ©2016TheFisheriesSocietyoftheBritishIsles,JournalofFishBiology2016,89,821–846 ICHTHYOFAUNA OF ESTUARINE TROPICAL BAY 825 40 80 30 60 m) Temperature (° C) 20 No data available 40 al precipitation (m 10 20 Tot 0 0 July August September October November December January February March April May June July August September October November December January February March April May June 2005 2006 2007 Fig. 2. Climatediagram[temperature( )andtotalprecipitation( )]basedonthemethodologyofWalter &Lieth(1967).DataobtainedfromtheC.P.RiodeJaneiro–PraçaMauáweatherstationduringthestudy period(July2005toJune2007).Duetotechnicalproblems,itwasnotpossibletoobtainrainfalldatafor December2006andJanuary2007. acrossGuanabaraBay.Eachareawasevaluatedbyasetof28–64datapointsforeachfishmet- riccalculatedforalocationx,wherexisdefinedbylatitudeandlongitudeinatwo-dimensional space. All interpolation models were submitted to validation by the method of leave-one-out (Isaaks & Srivastava, 1989). Models were generated by the programme ArcMap 10.0 (ESRI, 2010). RESULTS CHARACTERIZATION OF ENVIRONMENTAL PATTERNS BasedontheclimatediagramofWalter&Lieth(1967),onlysevenofthe24months were considered as dry periods: August 2005, March 2006, July 2006, August 2006, March2007,April2007andJune2007(Fig.2).Itwasnotpossibletoobtainrainfall dataforDecember2006andJanuary2007duetotechnicalproblems,butthosemonths wereconsideredasrainyperiods(Paranhos&Mayr,1993;Kjerfveetal.,1997).During thesemonths,themeanprecipitationwas30·1±19·1mm,avaluestatisticallydifferent (P<0·05)fromtherainyperiod,whichhadameanprecipitationof112·4±44·1mm. Below,therainyanddryperiodsaretogethertermed‘seasons’,althoughtheydidnot correspondexactlytothenormalannualcycle. The environmental characterization of sampling sites is shown in Table I and indi- cates the spatial and seasonal heterogeneity of bottom water variables in Guanabara Bay.Thespatialpatternsoftemperatureandsalinityweremoreheterogeneousduring rainy months, periods when s.d. was consistently higher. The same period revealed ∘ greater amplitudes of minimum and maximum temperature (16–29 C) than in dry ∘ months(18–28 C;TableIandAppendixI).Lowesttemperatureswereobserveddur- ∘ ∘ ingrainyperiodsatEntrance(16 C),CentralChannel(17 C)andGovernadorIsland ∘ (17 C). On the other hand, the highest temperature was measured at Gradim during ©2016TheFisheriesSocietyoftheBritishIsles,JournalofFishBiology2016,89,821–846 826 D. R. DA SILVA ET AL. y, GuanabaraBa ance Rainy(17) 21·1±2·516·0–26·0±0·634·933·4–36·11·4±0·70·5–4·64·2±5·30·1–29·24·3±0·62·4–5·2 Island Rainy(17) 24·1±1·721·0–28·0±2·430·422·6–33·53·7±1·02·1–6·221·7±12·30·6–45·72·4±1·30·2–6·7 r á n nt et entheses)iJune2007 E Dry(7) 21·6±1·818·0–24·035·1±0·534·2–35·81·4±0·50·6–2·53·8±4·40·3–16·94·4±0·63·2–5·4 Paqu Dry(7) 23·9±2·320·0–28·032·8±0·931·1–34·13·3±0·82·0–4·716·9±14·00·4–51·53·2±1·31·3–5·1 parto 5 (numberofmonthsgiveninsolvedoxygen,fromJuly200 DuquedeCaxias Dry(7)Rainy(17) 23·8±2·523·5±1·520·0–28·021·0–27·032·8±0·931·1±1·630·8–33·927·5–33·43·9±1·44·6±1·32·0–7·62·7–9·542·1±50·231·3±16·47·4–198·12·2–82·43·0±2·82·0±1·51·3–12·30·0–6·2 Gradim Dry(7)Rainy(17) 23·6±2·224·2±2·220·0–27·020·0–29·032·1±1·329·3±3·129·7–33·718·8–33·63·2±0·83·8±2·41·5–4·61·1–16·27·8±8·09·1±9·00·2–21·40·2–33·03·1±2·22·7±1·40·2–8·00·5–5·6 ss inthedryandrainyperiodosphorus,ammoniumanddi CentralChannel Dry(7)Rainy(17) 21·9±2·021·5±2·318·0–25·017·0–25·034·8±0·634·6±0·533·8–35·733·4–35·82·1±0·62·2±1·71·3–3·60·9–11·29·9±6·28·1±7·40·3–20·20·2–41·53·4±0·83·3±0·62·1–4·91·1–4·3 GovernadorIsland Dry(7)Rainy(17) 23·4±1·723·0±2·220·0–27·017·0–28·033·6±0·932·4±1·432·2–35·629·1–34·43·9±0·63·7±1·23·0–4·91·3–6·89±12·729·3±19·924·5·2–51·41·7–102·62·1±1·22·5±1·40·7–3·90·7–7·0 dh ep samply,total mum mum mum mum mum mum mum mum mum mum achareae,salinit s.d.m–maxis.d.m–maxis.d.m–maxis.d.m–maxis.d.m–maxi s.d.m–maxis.d.m–maxis.d.m–maxis.d.m–maxis.d.m–maxi esofeperatur Mean±MinimuMean±MinimuMean±MinimuMean±MinimuMean±Minimu Mean±MinimuMean±MinimuMean±MinimuMean±MinimuMean±Minimu blm ae rit ag vn ) ) Environmentalincludi ∘re(C) 𝜇phorus(M) 𝜇m(M) −1oxygen(mgl ∘re(C) 𝜇phorus(M) 𝜇m(M) −1oxygen(mgl TableI. Area Season Temperatu Salinity Totalphos Ammoniu Dissolved Area Season Temperatu Salinity Totalphos Ammoniu Dissolved ©2016TheFisheriesSocietyoftheBritishIsles,JournalofFishBiology2016,89,821–846 ICHTHYOFAUNA OF ESTUARINE TROPICAL BAY 827 ∘ therainyperiod(29 C),followedbyPaquetáIsland(bothperiods),GovernadorIsland ∘ (rainyperiod)andDuquedeCaxias(dryperiod),allexhibitedthemaximumof28 C (TableIandAppendixI). Areasclosetotheseawardend(Entrance)andthoseunderthedirectinfluenceoftidal currents(CentralChannel)showedthehighestsalinityvalues,attainingamaximumof 36·1 at Entrance and 35·8 at Central Channel, both during rainy periods (Table I and AppendixII).GradimandPaquetáIslandshowedthelowestsalinityvalues(18·8and 22·6)duringrainymonths. Thepatternobservedfortotalphosphorouswassimilartosalinityandtemperature, with values more homogeneous along the bay during dry periods (range=0·6–7·6). LowestmeanvalueswereobtainedatEntranceandCentralChannelwithnocleardis- tinctionbetweenseasons(TableIandAppendixIII). Dissolved oxygen and ammonium revealed an inverse pattern and had more het- erogeneous values during the dry months. The lowest concentrations of dissolved oxygen were observed at Duque de Caxias and Gradim during the dry period (0·0 and0·2mgl−1)andatPaquetáIslandduringrainyperiod(0·2mgl−1).Coincidentally, DuquedeCaxiasandGradimhadhigherconcentrations,attaining12·3and8·0mgl−1 (Table I and Appendix IV). Lastly, the highest concentrations of ammonium were associated with the western portion of the Bay, including Duque de Caxias during thedryperiod(198·1𝜇M)andGovernadorIslandduringtherainyperiod(102·6𝜇M; TableIandAppendixV). COMMUNITY DESCRIPTORS A total of 74186 specimens were caught during the 2years of sampling, compris- ing 130 species and 45 families. The three most numerous species [Chilomycterus spinosus spinosus (L. 1758), Genidens genidens (Cuvier 1829) and Micropogonias furnieri(Desmarest1823)]accountedfor57·8%oftheabsoluteabundance.Sciaenidae wasthemostnumerousfamily,contributing27·5%ofthetotalcatch(AppendixVI). ANOVA indicated no interaction between environmental drivers (areas v. season) for any fish metric (Table II). Therefore, the influence of each of these drivers was examinedindividually.Changesinabundance,diversityandequitabilitywerestatisti- callyexplainedbythetwodriversindependently,andtheshiftsinrichnessvalueswere associatedonlywithspatialvariability(P<0·05). Abundancechangedmarkedlyduringthestudyperiod,asevidencedbythelarges.d. SamplingwasmosteffectiveintheDuquedeCaxiasarea,withc.250individualsper haul (0·5h) during dry months. Regardless of the season, the mean catch at Duque de Caxias was statistically dissimilar from those at the Entrance and Paquetá Island sites.Generally,largermeancatcheswereobtainedduringdrymonthsforallsampling locationsexceptDuquedeCaxias.OnlythecatchesfromGradimdivergedstatistically betweenseasons[TableIIandFig.3(a)]. Higher richness values were obtained at areas close to the seaward end. At the Entrance, a total of 87 species were collected, while 69 species were recorded from the Central Channel. The catches at Entrance showed the highest mean richness, in contrast to Paquetá Island, which showed the lowest values. Richness in both areas was statistically different from the others [Table II and Fig. 3(b)]. Rainy months usually showed higher levels, with the exception of Paquetá Island and Central Channel. ©2016TheFisheriesSocietyoftheBritishIsles,JournalofFishBiology2016,89,821–846 828 D. R. DA SILVA ET AL. TableII. Results of two-way ANOVA on fish metrics using area and season as orthogonal factors Sumof Mean Sourcesofvariation squares d.f. square F P CPUE Area 310672 5 62134 4·0388 <0·01 Season 61764 1 61764 4·0147 <0·05 Areav.season 58497 5 11699 0·7605 >0·05 Error 2030757 132 15385 – – Richness Area 1355·64 5 271·13 14·837 <0·001 Season 0·01 1 0·01 0·001 >0·05 Areav.season 163·75 5 32·75 1·792 >0·05 Error 2412·07 132 18·27 – – Diversity Area 9·1130 5 1·8226 9·899 <0·001 Season 1·5998 1 1·5998 8·689 <0·01 Areav.season 1·2460 5 0·2492 1·354 >0·05 Error 24·3028 132 0·1841 – – Equitability Area 0·60160 5 0·12032 6·492 <0·001 Season 0·23562 1 0·23562 12·713 <0·001 Areav.season 0·09526 5 0·01905 1·028 >0·05 Error 2·44643 132 0·01853 – – Boldvaluesindicatealpha=0.05. Diversity was higher during rainy months at all locations, with the exception of Duque de Caxias, where it was almost equal between seasons. Similar to richness, diversityshowedhighervaluesatEntrance[TableIIandFig.3(c)].Inaddition,equi- tabilitysuggestedthatdrymonthsshowedhigherdominancesofoneormorespecies [TableIIandFig.3(d)].ThelowestvalueswereobservedatDuquedeCaxias,Gradim andGovernadorIslandduringdrymonths. Geostatistical results visually demonstrated the same patterns as the ichthyofauna metrics,butgavemoreemphasistothedifferencesbetweenseasons.Thehigherspatial heterogeneityoftheCPUEatGuanabaraBayduringrainymonths,withanamplitude of c. 800 individuals 0·5h−1 while during dry periods, the CPUE was less spatially concentrated(amplitudeofc.200individuals0·5h−1)(Fig.3).Latitudinaldifferences in capture can also be observed in the model (Fig. 4). Richness (Fig. 5) and diver- sity (Fig. 6) models agree with the higher spatial heterogeneity associated with rainy months.Bothgradientsdisplayedhighervaluesinareasclosetotheseawardend,cor- roboratingtheresultsfromANOVA. The CA and CCA revealed that the longitudinal spatial gradient within Guanabara Bay is stronger than the seasonal gradient with respect to the patterns of occupancy of the demersal ichthyofauna (Figs 7 and 8). The results demonstrated that marine estuarine-opportunists [e.g. Orthopristis ruber (Cuvier 1830), Diplectrum formosum (L.1766),Cynoscionjamaicensis(Vaillant&Bocourt1883)andCtenosciaenagracili- cirrhus(Metzelaar1919)]wereassociatedwithlower-baylocations,wherethehigher dissolvedoxygencontentandsalinitymayberesponsibleforthesimilarityofthefish assemblagebetweentheEntranceandCentralChannelduringbothseasons.Incontrast, marine estuarine-dependent species, such as the catfishes G. genidens and Genidens barbus(Lacépède1803),wereassociatedwiththeupperbay.TheassemblageatDuque ©2016TheFisheriesSocietyoftheBritishIsles,JournalofFishBiology2016,89,821–846 ICHTHYOFAUNA OF ESTUARINE TROPICAL BAY 829 (a)450 (b) 30 400 –1Abundance (individuals 0.5h)112233050505000000 Richness 112205055 50 0 a; b a b 0 * * (c) 3·0 (d)0·80 0·75 2·5 H'Diversity (shannon index ) 0112····5050 J'Equitability (pielou index ) 000000······455667505050 0·40 a a * a; b a; c; d c; e; f e b; f d 0 0·35 Central Channel Entrance Gradim Central Channel Entrance Gradim Duque de Caxias Governador Island Paquetá Island Duque de CaxiasGovernador Island Paquetá Island Fig. 3. Spatialmean±s.e.variationinbothseasons( ,dry; ,rainy)of(a)abundance,(b)richness,(c)diversity and(d)equitability(d)ofsoft-bottomdemersalichthyofaunainGuanabaraBay,RiodeJaneiro,sampled fromJuly2005toJune2007.Lettersfrom‘a’to‘f’indicatethepairsofareaswhicharestatisticallydifferent basedonTukeypost-test(P<0·01); ,theareadiffersstatisticallyfromallotherareas(P<0·05); ,the pairsofseasonswhicharestatisticallydifferentbasedonTukeypost-test(P<0·01). deCaxiaswasassociatedwithhigherlevelsofammoniumandtotalphosphorus,aswell ashighertemperatures. DISCUSSION Estuariesexhibitbothhorizontalandverticalgradientsintheirwatervariables.Since thisstudyfocusedondemersalsoft-bottomspecies,interestwasinthehorizontalgradi- entofGuanabaraBay,whichistypicallystructuredbythebalancebetweencontinental drainage,influencedbyrainyanddryperiods,andcoastalcurrents(Mayretal.,1989; Valentin,1993,1999;Ribeiro&Kjerfve,2002).Continentaldrainageisanimportant factor,withmoreinfluenceontheinnerbayareasandduringtherainyseason,apattern thatinGuanabaraBayisespeciallypronouncedduetoitsextensivedrainagebasin.The proximityoftheSerradoMarmountainrange(c.20km)contributestoamuchlarger freshwaterinput,predominantlyfromDecembertoMarch,comparedtootherimpor- tantBrazilianestuarineecosystemssuchasthePatosLagoon(Garciaetal.,2012).At theoppositeendofthebay,theinfluenceofcoastalwaterswasanotherdriverforthe horizontal gradient, as the Central Channel as well as the bay mouth (Entrance) are stronglyinfluencedbytidalcurrents(Mayretal.,1989). Corresponding with the continental drainage, the influence of coastal waters on the spatial organization and composition of the ichthyofauna is seasonally structured ©2016TheFisheriesSocietyoftheBritishIsles,JournalofFishBiology2016,89,821–846 830 D. R. DA SILVA ET AL. (a) (b) 0 0 0 0 0 0 0 Magé Magé 0 49 Duque de Caxias Duque de Caxias 49 7 7 Paquetá Island Paquetá Island 0 0 0 0 0 0 3 3 8 8 4 4 7 7 0 0 00 Governador Island Governador Island 00 6 6 47 São Gonçalo São Gonçalo 47 7 7 0 0 0 0 0 0 9 9 6 6 4 4 7 Rio de Janeiro Rio de Janeiro 7 Niterói Niterói 0 0 0 0 0 0 2 2 6 6 4 4 7 N N 7 680 000 687 000 694 000 701 000 680 000 687 000 694 000 701 000 SAD 1969 UTM Zone 23S 0 2·5 5 10 km 85 – 152 218 – 285 352 – 418 485 – 552 618 – 685 752 – 818 152 – 218 285 – 352 418 – 485 552 – 618 685 – 752 818 – 885 Fig.4. Spatialpatternofcatchperunitofeffort(CPUE;numberofindividuals0·5h−1)ofthesoft-bottomdem- ersalichthyofaunasampledfromJuly2005toJune2007inGuanabaraBay,RiodeJaneiro,inthe(a)rainy and(b)drymonths. in Guanabara Bay. One of the principal oceanographic features of the south-eastern Brazilian coast is the prevalence of tropical waters carried by the Brazil Current during most of the year (Brandini, 1990). During late spring and summer, how- ever, the South Atlantic Central Water (SACW) surfaces 100km north of the bay entrance,establishingsubtropicalandtemperatecharacteristicsfortheRiodeJaneiro ∘ coast, with temperatures between 10 and 20 C (Matsuura, 1986; Barletta etal., 2010). This oceanographic phenomenon distinguishes Guanabara Bay from all other south-western Atlantic estuaries, as the only one under the influence of an annual low-intensity upwelling event. Due to the correspondence between rainy periods and theproximity oftheSACW totheshore, theeffectsof bothenvironmental processes were clearly observed in the geostatistical models. The results for rainy months showed higher heterogeneity than those for dry months, due to the concomitantly higher freshwater input of Duque de Caxias, Paquetá Island, Governador Island and Gradim and the effects of cold and saline intrusion of SACW along the bottom, creatingadensity-dependentverticalgradient,andimposingmesohalinetopolyhaline characteristicstoupper-bayareasduringtherainymonths(Valentin,1993). Considering all the limitations of an estuarine environmental quality assessment, combinedwiththeintrinsicallyhighvariabilityandtheadaptationoftheichthyofauna to these conditions, known as the ‘estuarine quality paradox’ (Elliott & Quintino, 2007), the results presented here support some inferences about the influence of ©2016TheFisheriesSocietyoftheBritishIsles,JournalofFishBiology2016,89,821–846
Description: