©EntomologicaFennica. 21 March2013 Spatial distribution and sampling of Corythucha ciliata (Hemiptera: Tingidae) in London plane trees He—PingWei, FengWang* &Rui-TingJu Wei,H.-P.,Wang,F. &Ju,R.-T.2013: SpatialdistributionandsamplingofCo— rythuchaciliata(Hemiptera: Tingidae)inLondonplanetrees.—Entomol. Fen- nica24: 43—52. Taylor’spowerlawandIwao’spatchiness regressionwereusedto describethe dispersion patterns for overwintering and wandering stages of Corythucha ciliata ontheLondonplanetrees,Platanus >< acerifolia (Ait.)Willd. BothTay- lor’s and Iwao’s tests fit the distribution data for the overwintering stage. The overwinteringadultswerespatiallyaggregated.Inthewanderingstage,Taylor’s powerlawconsistently fitthedata, whereasthefitofIwao’spatchinessregres- sionwaserratic. BothIwao’sandTaylor’sindicesindicatedaclumpeddistribu- tionpatternforeggs,nymphs,andwanderingadults. Trunkwasidentifiedasthe bestsamplingtargetfortheoverwinteringstagewhereastwigwasthebestforthe wanderingstage.Inordertodeterminethesamplesizeforevaluatingwhetherthe populationhasreachedthecontrolthreshold,thesamplingof35and7trunksfor theoverwinteringstageand32and8twigspertreeforthewanderingstagewould provide0.5- and0.25-precisionlevels, respectively. H.—P. Wei, SchoolofLifeSciences, Anqing Teachers College, Anqing246011, Anhui, P. R. China F. Wang>’< & R.—T. Ju, Department ofPlant Protection, Shanghai Institute of LandscapeGardeningScience,No. 899LongwuRoad,thuiDistrict,Shanghai 200232, P. R. China; >"Correspondingauthor’se—mail.‘ [email protected] Received9July2012, accepted5November2012 1. Introduction Anhui, Jiangsu, Guizhou, Sichuan, Chongqing, Hunan, Hubei, Henan, and Shandong) over the Thesycamorelacebug, Corythuchaciliata(Say) last decade (Ju et al. 2009, Ju & Li 2010). It (Hemiptera: Tingidae), is a relatively recent, in- causes serious damage inthe Yangtze Riverba- vasive, and exotic pest ofPlatanas trees (Plata— sin, and particularly in Shanghai, Jiangsu and naceae) inChina(Ju&Li2010). This herbivore Hubeiwherealmost70%ofthehosttreesarecur- originated from North America (Halbert & rentlyinfested(Juetal. 2009). Meeker 1998)andisnowwidelyspreadinmany Corythuchaciliatahasashortlifecycleandit countries throughout Europe (Maceljski 1986, is oligophagous. Its hosts, Platanas spp., are Mutun2009), SouthandNorthAmerica(Halbert widely distributed in China, because they are & Meeker 1998), Australia, andAsia (Chung et commonly planted along city streets (Ju et al. al. 1996, Juetal. 2009, Ju&Li2010). InChina, 2010a,2011a). Theinsectcompletesfivegenera- C. ciliatawas firstreportedin2002 inChangsha tionsperyearinWuhanandShanghai, withfive ofHunan Province (Streito 2006), and was re- immatureinstarspergeneration(Xiaetal. 2007, portedin11otherprovinces(Shanghai,Zhejiang, Xiaoetal. 2010,Juetal. 2011a).Itspiercingand 44 Weietal. ° ENTOMOL. FENNICAVol. 24 Table 1. Locationswith plotnumbers,approximatetreeages(years)and monthsofin- vestigation in2010ofCon/thuchaciliata. Plot Location in Shanghai Tree age Month 1 Zhaojiabang Road, thui District 50 February 2 People Square, Huangpu District 50 March 3 Renmin Park, Huangpu District 50 February 4 WestYan’an Road, Changning District 50 March 5 Dongfang Road, Pudong District 45 March 6 Longwu Road, thui District 50 July 7 West Longhua Road, thui District 50 August 8 Qiujing Road, Songjiang District 50 August suckingfeedinghabitsinitiallycausewhitestipp- ofthispaperwere: (1) to determinethe distribu- lingontheleaves,whichreducesphotosynthesis tionpatternofvarious stagesofC. ciliata among and respiration and also reduces the aesthetic andwithin Londonplane trees, and(2) to deter- value ofthe trees (Ju etal. 2010b). The stippled mine the optimal sampling units for estimating foliagethenbecomes chlorotic andbronzed, and C. ciliatapopulationdensities. theaffectedtreesexperienceprematureleafdrop (Halbert&Meeker1998).Severalyearsofsevere damagebyC. ciliatacombinedwiththeeffectsof 2. Material and methods other environmental stresses may kill the host trees (Halbert&Meeker 1998). 2.1.Location andinvestigationperiods Because of serious damage caused by C. ciliata in many parts ofthe world, the pest has Corythucha ciliata populations were examined beenfrequentlystudied. Researchershaveinves- on London plane trees, Platanus >< acerifolia tigatedits geographical spread(észi etal. 2005, (Ait.)Willd., ateightlocations orplots(Table 1) Chung etal. 1996, Mizuno etal. 2004, Li etal. inShanghai,China(31.2°N, 121.5°E)duringtwo 2008), population dynamics (észi et al. 2005), periods in 2010: February—March (adults were biological characteristics (Battisti et al.1985, overwintering) and July—August (adults and Cheol & Kwang 2000, Xia etal. 2007, Ju etal. nymphsofthesecondandthirdgenerationswere 2010a),thermaltolerance(Juetal.20100,2011b, intheirwandering stage). Eachoftheeightplots 0), natural enemies (Balarin & Maceljski, contained 100—120 trees. 1986a,b), and control (Jasinka & Bozsits 1977, Jasinka 1981, Wicki 1984, Reiderné & Ripka 1990,Cheol&Kwang2000).ManagementofC. 2.2.Distributionpatterns ciliata includes repeated applications of ofoverwintering adults organophosphorous,syntheticpyrethroid,imida— cloprid, thiamethoxam, or acetamiprid insecti- Adult C. ciliata overwinters under the bark of cides(Juetal. 2009,Xiaoetal. 2010,Chenetal. theirhost(Xiaetal. 2007). To explorethepopu- 2011). Basic information concerning C. ciliata lation distribution pattern for overwintering ecology, however, remains insufficient. Because adults, trees in five plots (plots 1—5 in Table 1) efficientpestcontrolrequiresbasicecologicalin- weresampled.Thetreesintheseplotswereabout formation,morestudiesonC. ciliataecologyare 8—10mtall,about20—25cmindiameteratbreast needed. height, and were not treated with pesticide or The spatial distribution ofapestis one ofits prunedduring the samplingperiod. Ineachplot, most important ecological properties (Taylor eighttreeswererandomly selected, and samples 1984), andinformationconcerning spatialdistri- werecollectedseparatelyfromthetrunkandfrom bution is essential for pest management in the the branches ofeach tree. The adults were col- field(Bechinski &Pedigo 1981). Theobjectives lectedby removing all ofthebarks onthe trunk ENTOMOL. FENNICAVol. 24 ° DistributionandsamplingofC. ciliata 45 fromthesoilsurfacetothefirstbranchandbyre- eggs, nymphs, andthewandering stageofadults moving all thebarks from all the branches for a was based on the means and variances of the distanceof50cmfromthetrunk.Theadultswere numberspertree,pertwig,andperleafTwoclas- countedseparatelyfortrunkandbranches. sicaldispersionmodels, i.e., Taylor’spowerlaw Means and variances of C. ciliata numbers (Taylor 1961) and Iwao’s regression (Iwao werecalculatedfromtree-specificnumbersof40 1968),wereusedtoevaluatethedistributionofC. trees, based onbug numbers ontrunks andtheir ciliata amongthedifferentparts ofthetree. numbersonbranches.Themeanswerecompared with a t—test (P < 0.05).The analyses were per- TheformulaforTaylor’spowerlawis: formed with the statistical package SPSS NLN, 13.0 (SPSS 2006). S2= amb (1) whereS2 is thevariance ofinsectnumbers inthe 2.3.Distributionpatterns foreggs, nymphs, sampling unit, m is the mean number ofthe in- 0rwanderingstageadults sectsinthesamplingunit,aisthesamplingfactor thatchangeswiththe samplingunit, andb is the Toexplorethepopulationdistributionpatternfor dispersionindexofacertainspecies.Thepopula- eggs, nymphs, and wandering adults, trees in tionhasarandomorPoissondistributionwhenS2 threeplots (plots 6—8 in Table 1) were sampled. = m, auniformdistributionwhenS2 <m, andan Thesetreeswereabout8—10mtall, about20—25 aggregateddistributionwhenS2>m(Yamamura cm in diameter at breast height, and they were 2000). The coefficients a and b were estimated also not treatedwith pesticide or pruned during fromthefollowing equation(Southwood 1978): the sampling period. From each plot, 10 trees wererandomly selected, andthe canopy ofeach Logsz= Loga+ b(L0gm) (2) treewasdividedintoanupperlayer(thatreceived substantial sunlight) andalowerlayer(thatwas Iwao’s patchiness regression was simulated by shaded).Bothlayersweredividedintofourdirec- thefollowingequation(Iwao 1968): tions (east, west, south, and north). Four twigs werecutoutfromeverydirection.Eachtwigbore M*=a+[3m (3) tenleaves.Thenumbersoftheeggs,nymphs,and adultswerecountedperleaf, pertwig,perlayer, whereM* isthemeancrowding,onistheindexof andpertree (basedon 8 twigs and80 leavesper basic contagion and B is density-contagiousness layer and 16 twigs and 160 leaves per tree). coefficient.Whenon=0,asingleindividualisthe Adults and nymphs were observed directly and basic componentofthedistribution, andwhenon eggsweredetectedwithadissectingmicroscope. >0oron< 0,thereisapositiveornegativeassoci- Thetwigswereplacedintoaplasticbagforbring- ation between individuals. The density-conta- ing to the laboratory. They were stored at 5 °C giousness coefficient(B) indicateshowthebasic andexaminedwithintwo days. componentsaredistributedinspace.When[3< 1, Statistical analyses were the same as de- the distribution is regular; when [3 = 1, thebasic scribed in the previous section, but the means componentsarerandomlydistributedandwhen[3 were comparedwith the Tukey’s test (P <0.05) >1, the basic components are distributed conta- (SPSS 2006). giously(Iwao 1968). The mean crowding M* was derived from Lloyd’s formula(Lloyd 1967): 2.4.Analysis ofspatialdistribution M* =m+SZ/m—l (4) Analysis of the spatial distribution of over- wintering adults was based on the means and where32 andmwere substitutedbythevariance variances ofthenumberspertree, pertrunk, and and mean, respectively, of the insects in the perbranch.Analysisofthespatialdistributionof samplingunit. 46 Weietal. ° ENTOMOL. FENNICAVol. 24 Table2.Taylor’spowerlawand lwao’spatchinessregression indicesforovenNinteringadultsofCorythucha ciliataamongtrees,trunks, and branches. Sampling unit Taylor’s powerlaw lwao’s patchiness regression m S2 R2 a [3 R2 Among trees 1.13—87.25 2.98—7849.64 0.99” 1.75 2.00 1.00** Among trunks O.38—47.88 0.55—3627.84 0.99” —O.78 2.55 1.00** Among branches 075—3938 1.93—1978.84 0.99” —O.15 2.26 1.00** **SignificancewithP<0.001 bylinearregression. 2.5. Selectingtheappropriate bindicesderivedfromTaylor’spowerlawtocal- samplingunitand samplingstage culatethe optimalnumberofsamples (N)neces- sarytoestimatethemeandensity(m)withagiven For the overwintering stage, the appropriate levelofprecision(D). Theirequationis: samplingunit, i.e.,eitherbranchesortrunks,was determinedbasedontheadultnumberspertrunk N:(sz/D)2 x (S/m)2 (6) orperbranch. Thepartofthetreewiththehigher insectdensitywas selectedasthe samplingunit. whereZisthestandardnormaldeviate(TypeIer- Fortheeggs,nymphs,andwanderingstageof rorrate(or)=0.1,thenZis 1.64intwotailswithdf adults, thetwigs growing inaspecific layer(up- =00). Before samplinginthefield, precisionlev- per or lower) and in a specific direction (east, els (D)were setas 0.25 and0.5 forbothofthese south,west,ornorth)withthehighestinsectden- methods. Thenoptimalnumbers (N)werecalcu- sity were regarded as the appropriate sampling lated. Forexample,whenN= 500 andD= 0.25, unit. thentheactualnumbercannotbegreaterthan625 The “appropriate representative sampling (i.e. 500><0.25 + 500) orless than375 (i.e. 500— stage”wasthendeterminedbycorrelationofeach 500><0.25). developmentalstagetothewholepopulation(i.e. thetotalofeggs, nymphs andadults). A specific developmental stage, whose numbers were best 3. Results correlatedwith the total numbers ofinsect indi- vidualsoneachtwig,waschosenastheappropri- 3.1. Spatialdistribution aterepresentative sampling stage. As showninTable2 foroverwinteringadults, in 2.6. Samplesize Taylor’s law, all S2 were higher than m, and Iwao’s indices of dispersion (B) were above 1 Afterthebestregressionmodelwas determined, amongtrees,trunksandbranches. Thesedatain- twomethodswereusedtocalculatethenumberof dicated that overwintering adults were aggre- samples required to estimate the mean with a gatedamongallthestudiedsamplinglevels.Both givenlevelofprecision. Taylor’spowerlawregressionandIwao’spatchi- (1) Iwao andKuno (1968) andKuno (1969) ness regression fitthe linear law (Taylor’s: R2 = presented a sample size method that applied or 0.99; Iwao’s: R2= 1.00; forbothP<0.001). and B indices from Iwao’s regression to deter- For the eggs, nymphs and wandering-adult minetheoptimalnumberofsamples(N)foresti- stages of C. ciliata, both indices also indicated matingthemeandensity(m)withagivenlevelof thatallthe three stages were aggregated(S2 > m precision(D). Theequationforthismethodis: for Taylor’s, B > 1 for Iwao’s). In linearregres- sions, Taylor’spowerlawfitthe datamore con- N=[(or+1)/m+(B—1)]/D (5) sistentlythanIwao’spatchinessregression(Tay- lor’s:R2=0.88—0.99;Iwao’s:R2=0.51—1.00;for (2)WilsonandRoom(1982) incorporateda and bothP<0.001) (Table3). ENTOMOL. FENNICAVol. 24 ° DistributionandsamplingofC. ciliata 47 Table3.Taylor’spowerlaw(A)and lwao’spatchinessregression (B)forCon/thuchaciliataeggs, nymphs,and adults(wanderingstage)ontrees,twigs,andleaves. A. Taylor’s powerlaw Sampling unit Developmental m 82 R2 stage Among trees Egg 420.10—928.00 72853.21—195773.33 0.99** Nymph 123.60—192.50 5516.93—9733.79 O.88** Adult 53.50—209.20 3332.50—12533.95 0.99** Among twigs Egg 13.90—156.80 475.21—23078.18 0.97** Nymph 6.80—27.40 66.18—1597.57 0.92** Adult 2.70—37.20 5.56—751.96 0.96** Among leaves Egg 0.10—25.79 0.22—1265.13 0.98** Nymph 0.30—4.55 1.33—161.46 0.96** Adult 0.11—4.85 018—5502 0.97** **SignificancewithP<0.001 bylinearregression. B. lwao’s patchiness regression Sampling unit Developmental a ,8 R2 stage Among trees Egg 171.31 1.04 1.00** Nymph 52.37 1.02 0.97** Adult 55.07 1.03 1.00** Among twigs Egg —514.65 22.87 0.51 Nymph 8.59 1.77 0.86** Adult 3.77 1.36 0.94** Among leaves Egg 16.25 1.23 0.69** Nymph 11.65 2.57 0.69** Adult 3.83 2.77 0.85** **SignificancewithP<0.001 bylinearregression. Table4. NumbersofCon/thuchaciliataeggs, nymphs,andwanderingadultspertwig (meaniSE)in relationto treelayerand branchdirection. Layer Direction Eggs Nymphs Adults Upper East 19.6 i 15.1 11.7 i 7.6 51.6 i 16.9 South 20.8 i 15.5 12.0 i 7.4 52.0 i 18.7 West 22.4 i 17.7 11.5 i 6.7 49.0 i 18.8 North 22.6 i 16.2 10.3 i 5.2 53.2 i 17.4 Lower East 21.5 $17.4 12.6 i 6.2 51.3 i 17.1 South 19.6 i 16.7 12.3 i 8.4 54.1 i 18.0 West 20.7 i 15.7 13.9 i 9.3 49.9 i 17.5 North 18.3 $17.7 12.2 i 9.1 50.2 i 16.8 Valueswithinacolumnarenotsignificantlydifferent(Tukey’stest: P<0.05). 48 Wei62‘ad. “ ENTOOL. FE 750 3.2. Selection of appropriatepfing unitand nstage 600 .. in the overwintering stage. 59% of the adults wereontrunksand41%wereonbranches.Adult 450 densities were significantly higher on trunks (45.76i9.56pertrunk)thanonbranches(34.12; 300 :1:9.78perbranch)(t39E 10.03;P<0.0001).Thus. thetrunkwasusedas the samplingtargetforin— vestigating the distribution of overwintering adults. For eggs. nymphs. and wanderng adult 30 60 00 1.20 150 1.80 stages ofC. cflz’am. densities on twigs were not Egg. significantly affectedby the layer ofthe canopy 750 O (F1 7m7"0.19m3.09.Pm 0.17—0.69) orbythe di- 239 rection(F2,239E0.31—3.76.P20.15—0.81)(Table 600 4-). Thus. twigswereusedas the samplingtarget numbers O withoutregardto layerordirection. 453 a. 0 O Todete inetherepresentativedevelopmenm insect talstageforthesamplingunitduringthewander- ing period. the numbers ofeach developmental Total stagewereregressedagainstthetotalnumbersof all stages fromeachtwig. Theregressioncoeffiu 01thwasmuchhigherforadults(R220.92)than for other stages (Fig. 1.). which indicated that adult stage couldbe reco as the sampu lingtargetforrepresentingC. cih'ampopulations infieldinvestigationsduringthewanderingperim 0d. For the overwintering adults. both Taylor’s power law regression and lwao’s patchiness re“ gressionfitthedatawell. Here.weestimatedthe optimal sample sizeaccordingtothe assumption oflwao’s regression. The 01 and B indices ofthe target sampling unit (trunks) were "—0.78 and. 6 100 zen 300 see 500 600 255.respectivelyBasedonEquation(5).the0p- Adult4: timalnumberoftrunksthatshouldbesampledfor Fig. 1. Linearregressionsofsamplemeandensitiesof agivennumberofoverwinteringadultsper differentstagesduringwandering periodagainsttotal isindicatedmFig.2a. 0321etal. (2005)reported numbers(sumofallstages)ofCon/thuchaciiiaz‘aon that 48 overwintering adults per trunk would London planetrees. cause serious damage to the tree in late spring. According to the Technical Regulation of the ShanghaiGardeningPlantProtection(TRSGPP) reaches one—quarter ofthe damaging level. Le... published by the Shanghai Administration De: whenthereare 12;overwinteringadultspertrunk partment of Afforestation in 2007. controls in Shanghai. therefore. estimatingthenumberof should be applied when the number of adults overwintering adults per with a precision iCAVol. 24. . Distribution andsamplingofC. ciliaza 4-9 numberofwanderingadultspertru witha,pro- fi M0.) cision level of 0.25 or 0.5 would require the W50 samplingof32or8trunks.respectively(Fig.2b). 05 fl .9 (0 m 0) h w w0 any researchers have used l‘wao’s or Taylor’s equationstodeterminethedistributionpatternof insect pests in crops (Taylor l96l. lwao 1968. Peng&Brewer1994-.hangatal. l995.Xue62‘0d. 2000. Hsu etai. 200i. 'Wang 62‘of. 2006. Wang 0 510120253035404550 201i).hithisstudyofC. ciliam.bothlwao”sand Taylor’sindicesofdispersionwere> l. suggest— ing(seeSouthwood1978)thatthispesthasanag- tree 90 .. gregated distribution among and Within P. X per 80 "':12; acerifaliatrees. Clumpedoraggregateddistribu— 70 .. tion patterns were detected when the pest was ken so . highlyactiveinitswanderingstagebetweenJuly btoe 50 . and August and. also when it was inactive in its overwintering stage between February and to 40 . Oszietai. (2005)reportedthatC. ciliam age 30 . nymphs were spatially aggregated. while the 1 20 fl adultstendedtohavemoreuniformand.balanced o m .. distributionpatterns. According to Vasic 0.975) andBattisti etal. 0985).theoverwinteringadultspreferthelower 0 510 parts ofthetrunk(under4.8 m ofan ll to l6 m Fig.2. Optimal numberoftrunkstobesampledfores— hightrunk).andmostoverwinteringadultsoccur timating populationdensityofCon/thuchaCiliatawith under the bark on the northeast and northwest reliabilitylevelsofD=0.25andD=0.50.--—a. Over- sideofthetru, Ourinvestigationdemonstrated winteringadults.---b.Wanderingadults. that. in additionto the trunks. the branches near the trunk were suitable overwintering sites for adults.Apreviousstudydeterminedthatthewan—- levelof0.25or0.5wouldrequirethesamplingof dering stage of C. whom mainly damages the 35 or7trunks.respectively(Fig. 2a). lower crown ofthe tree. andthe author inferred. in the wandering stage. the Taylor’s power thatthewandering adults were therefore distrib- law regression fit the data better than lwao’s uted.mainlyinthelowercrown(Zangheri 1984). patchiness regression. and the optimal sample inthe current study. in contrast. the densities of sizewasthereforedeterminedbyTaylor’spower thewanderingstagesofC. ciliamontwigsdidnot law. The a and b indices ofthe sampling target differwithcrownlayer(uppervs.lower)ordirecm twigswere l.82and. L60.respectively.Basedon tion. Thisdifferenceinresultsmaybeduetodifu Equation (6). the optimal number oftrunks that forencesinenviro entalconditionsbetweenthe shouldbesampledforagivennumberof‘wanderm tworegions. mg adults is indicatedinFig. 2b. Accordingto a Coryz‘hucha Ciliam mainly infests Piatanus recentstudy.38wanderingadultspertwigcaused occidentaiisL initsnative land.NorthAmerica serious damage (Ju er a2. ZOlOb). Based on (Halbert&Meeker 1998). butprefersto feedon TRSGPP in 2007. controls should be applied P. X acerzfolm in China. Because C. ciiim‘a has when there are l0 wandering adults per seriously damaged P. X acerzfoha in Shanghai. (38/4). in Shanghai. therefore. estimating the wearenowtryingtoreduceitsnumberandslow 50 Weietal. ° ENTOMOL. FENNICAVol. 24 its spreadbyinsecticideapplication. Large-scale References application of insecticides, however, would be environmentally undesirable, especially in the Arzone,A. 1984: Spreading andimportanceofCom/thu- commercial districts where the London plane chaciliata(Say)inItalytwentyyearslater.7Bulletin treesgrow.Hence,pesticideapplicationsmustbe of the International Union of Biological Sciences, WestPalaearcticRegionalSectionIX: 1. restrictedin spaceandtime. Byindicating effec- Balarin,I.&Maceljski,M. 1986a:Theresultsofinvestiga— tive methods for sampling C. ciliata on London tionsonCom/thucaciliata.7BulletinoftheInterna- plane trees, the results in this paper shouldhelp tional OrganisationforBiological Control, WestPa— pestmanagersdeterminewhenpesticidesorother laearcticRegionalSectionIX: 11719. controlshouldbeapplied.Theresultsshouldalso Balarin,I.&Maceljski,M. 1986b:Somenewresultsofin— indicatewherepesticides shouldbe applied. For vestigationsonthebiologyandecologyofCom/thuca ciliata.11MeetingWG“IntegratedControlofC.cilia- example, the results showed that most over- ta”Padova, 1985.7BulletinoftheInternationalOr- wintering C. ciliata adults occurredonthetrunk ganisation for Biological Control, West Palaearctic andonthebranchesnearthetrunk.Itfollowsthat, RegionalSectionIX: 48752. inwinter, insecticidescouldberestrictedtothese BattistiR.,Forti,A.&Zaugheri,S. 1985:Researchonbio— partsofthetree.Inthewanderingstage,however, logy ofsycamore lacebug Com/thucha ciliata (Say) adults and nymphs on twigs are aggregated but (RhynchotaTingidae)intheVenetoregions.7Frus— tulaEntomologica7/8: 1257141. not related to crown layer or directions. During Bechinski,E. J. &Pedigo,L. P. 1981: Populationdisper— thewanderingperiod, therefore, alltwigs should sionanddevelopmentofsamplingplansofOriusinsi- be sprayed with insecticides. The results pre- diosusandNabisspp.insoyabeans.7Environmental sentedhereshouldalsohelpwithassessingtheef- Entomology 10: 8357841. ficacyofC. ciliata control. Chen,G.B.,Wang,F.,Feng,C.J.&Ju,R.T.2011:Effica— Corythucha ciliata has naturalpredators, in- cytestsofsixkindsofpesticidesforcontrollingCoryt- cludingbedbugs,spiders,crickets,locusts(Arzo- huchaciliata.7JiangsuAgriculturalSciences39(3): 1257128. [InChinese;Englishabstract] ne 1984),andpathogens,includingviruses,nem- Cheol,S.&Kwang,Y.C.2000:Ecologicalcharacteristics atodes,andfungi(Sidor1985).Inurbanareas,bi- and insecticidal susceptibility ofsycamore lace bug ological control wouldbe preferred to chemical Com/thucha ciliata (Say) (Hemiptera: Tingidae). 7 ones, because itwould likely be less harmful to KoreanJournalofLifeScience 10: 1647168. humans andothernon-targetorganisms.Aswith Chung, Y. J., Kwon, T. S., Yeo, W. H., Byun, B. K. & Park, C. H. 1996: Occurrence ofthe sycamore lace applicationofinsecticides,applicationofbiologi- bug, Com/thuchaciliata (Say)(Hemiptera: Tingidae) calcontrolagentscouldbenefitfromtheresultsof inKorea.7KoreanJournalofAppliedEntomology thisstudyindecidingwhentreatmentsareneeded 35: 1377139. andwhichparts oftrees shouldbetreated. Halbert, S. E. &Meeker, J. R. 1998: The sycamore lace Although we investigated C. ciliata popula- bug, Com/thuchaciliata(Say)(Hemiptera:Tingidae). tionsduringtwoperiods(correspondingtothein- 7FloridaDepartmentofAgricultureandConsumer Services,DivisionofPlantIndustry,EntomologyCir- sect’s overwintering and wandering stages), C. cular387: 172. ciliatahasfivegenerationsperyearintheYangze Hsu,J. C.,Horng, S.B.,&Wu,W.J.2001: Spatialdistri— River basin ofChina (Xiao et al. 2010). For a bution and sampling ofAulacaspisyabunikkei (Ho— morecompleteunderstandingofthespatialdistri- moptera:Diaspididae)incamphortrees.7Bulletinof butionofC. ciliata andofthe samplingmethods TaiwanSocietyofPlantProtection43: 69781. required to describe that distribution, the pest Iwao,S. 1968:Anewregressionmethodforanalyzingthe aggregationpatternofanimalpopulations.7Resear— should be sampled at monthly intervals during chesonPopulationEcology 10: 1720. periods ofhighandlowactivity. Iwao, S. &Kuno,E. 1968: Useoftheregressionofmean crowdingonmeandensityforestimatingsamplesize Acknowledgements. This research was financially sup- andthetransformationofdatafortheanalysisofvari- ported by the Key Project of Science and Technology ance.7ResearchesonPopulationEcology 10:2107 Commission of Shanghai Municipality (Grant No. 214. 10JC1414100), the Shanghai Rising-Star Program (type Jasinka, J. 1981: Pyrethroidok a platan csipke'spoloska A)(GrantNo. 11QA1406000),andtheResearchProgram (Com/thuchaciliata)ellenikuzdelemben.7Novény— ofYangzhou Science & Technology Bureau (GrantNo. ve'delem 17: 3027303. [InHungarian] YZ2010064). Jasinka, J., &Bozsits, G. 1977: Aplatancsipke’spoloska ENTOMOL. FENNICAVol. 24 ° DistributionandsamplingofC. ciliata 51 (Com/thucha ciliata) fellepese Magyarorszagon. 7 Platanusspp.inNagoyacity.7ResearchBulletinof Nove'nyve'delem 13:4246. [InHungarian.] thePlantProtectionServiceJapan40: 1417143. Jiang,J.,Huang,G.P.,Liu,Q.S.&Mao,H.P. 1995:Study Mutun,S.2009:Com/thuchaciliata,anewPlatanuspestin onPhlossajianningana.7ScientiaSilvaeSinicae31: Turkey.7Phytoparasitica37: 65766. 5137519. [InChinese;Englishabstract.] Peng,C. &Brewer, G.J. 1994: Spatialdistributionofthe Ju,R.T.,Li,Y.Z.,Wang,F.&Du,Y.Z.2009: Spreadof red sunflower seed weevil (Coleoptera: Curculioni— anexotic species, Com/thuchaciliata (Say, 1832), in dae)onsunflower.7EnvironmentalEntomology23: China (Hemiptera: Tingidae). 7 Entomological 110171105. News 120: 409414. Reiderne S. & Ripka, G. 1990: Aplatancsipke’spoloska Ju,R.T.&Li,B.2010:Sycamorelacebug,Com/thuchaci- (Com/thuchaciliata Say)biolégiajaesazellenevalo vedekezeslehetose'gei.7Nove'nyve'delem26:3640. liata,anurbaninvasivealienpestrapidlyspreadingin [InHungarian.] China.7BiodiversityScience 18: 6387646. [InChi— Sidor, C. 1985: Micro—organisms pathogenic for Insects nese;Englishabstract.] tillnowfoundinCom/thuchaciliata.7Bulletinofthe Ju,R.T.,Xiao,Y.Y.,Xue,G.S.,Wang,F.,Li,Y.Z.&Du, InternationalUnionofBiologicalSciences,WestPa— Y. Z. 2010a: Host range test ofCom/thucha ciliata laearcticRegionalSectionIX: 72. (Say). 7 Chinese Bulletin ofEntomology 47: 5587 Southwood,T.R.E. 1978:Ecologicalmethods.7Chap— 562. [InChinese;Englishabstract.] manandHall,London.pp. 524. Ju,R.T.,Wang,F.&Li,B.2010b:Leafphysiologicalre- SPSS.2006:SPSSBase 15.0EditionforWindowsUser’s sponsesintheLondonplanetree(PlatanusXacerifo- Guide.7SPSSInc., Chicago. Zia)(Platanaceae)toinjurybythesycamorelacebug, Streito,J.C.2006:Notesurquelquesespe‘cesenvahissan— Com/thucha ciliata (Hemiptera: Tingidae). 7 Acta tesdeTingidae: Com/thuchaciliata(Say, 1932),Ste- Entomologica Sinica 53: 100971014. [In Chinese; phanitispyrioides(Scott, 1874)etStephanitistakeyai Englishabstract.] Drake&Maa, 1955 (Hemiptera: Tingidae).7Ento- Ju,R.T.,Xiao,Y.Y.,Wang,F.&Li,B.2010c:Supercoo— mologiste62: 3136. lingcapacityandcoldhardinessoftheadultsofthesy— Taylor, L. R. 1961: Aggregation,varianceandthemean. camore lace bug, Com/thucha ciliata (Hemiptera: 7Nature 189: 7327735. Tingidae).7CryoLetters31: 445453. Taylor,L. R. 1984:Assessingandinterpretingthespatial Ju,R.T.,Wang,F.&Li,B.2011a:Effectsoftemperature distributionofinsectpopulation.7AnnalsoftheEn- onthedevelopmentandpopulationgrowthofthesy— tomologicalSocietyofAmerica29: 3217358. camorelacebug,Com/thuchaciliata.7JournalofIn— Vasic,M. 1975:ControlofCom/thuchaciliataonPlatanus sectScience11.16.Availablefrom:http://insectscien— spp. inavenuesandparksinBelgrade.7Sumarstvo ce.org/11.16/. (Sitevisitedon2Nov,2009). 28: 59764. Ju,R.T.,Chen,G.B.,Wang,F.&Li,B.2011b:Effectsof Wang,F.2011: Spatialdistributionofhibernatingeggsof heatshock,heatexposurepattern,andheathardening Mansoniella cinnamomi. 7Journal ofZhejiangFo- onsurvivalofthesycamorelacebug,Com/thuchacili- restryScience&Technology(5): 111671119.[InChi— ata(Say)(Hemiptera:Tingidae).7EntomologiaEx- nese;Englishabstract.] perimentalisetApplicata41: 1687177. Wang, F., Ju, R. T., Li, Y. Z. &Du, Y. Z. 2006: Spatial Ju,R.T.,Xiao,Y.Y.&Li,B.2011c:Rapidcoldhardening distributionofhibernatingcocoonofParasaconsocia increasescoldandchillingtolerancesmorethanaccli- ondifferentplants.7ActaAgriculturaeZhejiangen- mationintheadultsofthesycamorelacebug, Coryt- sis 18: 448452. huchaciliata(Say)(Hemiptera:Tingidae).7Journal Wicki,C. 1984:TrialsagaintsCom/thuchaciliatainBasel. ofInsectPhysiology57: 157771582. 7Bulletin ofthe International Union ofBiological Sciences,WestPalaearcticRegionalSectionIX: 37. Kuno, E. 1969: Anewmethodofsequentialsamplingto Wilson,L.T.&Room,P.M. 1982:Therelativeefficiency obtainthe population estimates with a field level of andreliability ofthree methods forsampling arthro- precision. 7Researches onPopulationEcology 11: 1277136. podsinAustraliancottonfields.7JournaloftheAu- stralianEntomologicalSociety21: 1757181. Li, S. Q., Dong, L. K.,Xia, W. S. &Zhang, G. A. 2008: Xia,W. S.,Liu,C.,Dong,L.K.&Ou,K.F.2007:Occur— Occurrence ofCom/thucha ciliata andits control. 7 renceandbiologyofCom/thuchaciliata.7PlantPro— HubeiPlantProtection(1): 12713. [InChinese.] tection33: 1427145. [InChinese.] Lloyd, M. 1967: Mean crowding. 7Journal ofAnimal Xiao,Y.Y.,Wang,F.,Ju,R.T.&Li,Y.Z.2010:Lifehis- Ecology36: 1730. toryandoccurrenceofCom/thucha ciliata in Shang— Maceljski,M. 1986:CurrentstatusofCom/thucaciliatain hai.7ChineseBulletinofEntomology47:404408. Europe. 7 Bulletin Oral English Proficiency Pro- [InChinese;Englishabstract.] gram/EuropeanPlantProtectionOrganizationBulle- Xue,Z.G.,Wang,Y.C.&Zhang,Y.Z.2000:Astudyon tin 16: 6217624. thespatialpatternofthelarvaofThoseaSinensissurvi— Mizuno,T.,Kondo,K.,Tanaka,K.,Okahara,Y.&Degu- vinginwinter.7JournalofJiangsuForestryScience chi,K. 2004: Thelifecycleofthesycamorelacebug & Technology 27: 4345. [In Chinese; English ab— Com/thucha ciliata (Say) (Heteroptera: Tingidae) on stract.] 52 Weietal. ° ENTOMOL. FENNICAVol. 24 Yamamura,K.2000:Colonyexpansionmodelfordescri— észi,B.,Lananyi,M.&Hufnagel,L.2005:Populationdy— bingthespatialdistributionofpopulations.7Popula- namicsofthesycamorelacebuginHungary.7App— tionEcology42:1617169. lied Ecology and Environmental Research 4: 1357 Zangheri,S. 1984:Synthesesdesobservationssurlabiolo— 150. giedelaCom/thuchaciliata.,BulletinoftheInterna- tionalUnionofBiologicalSciences,WestPalaearctic RegionalSectionIX: 3497358.