ScienceoftheTotalEnvironment472(2014)517–529 ContentslistsavailableatScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv Spatial and temporal patterns of pesticide use on California almonds and associated risks to the surrounding environment ⁎ YuZhan,MinghuaZhang DepartmentofLand,Air,andWaterResources,UniversityofCalifornia,Davis,CA95616,USA H I G H L I G H T S •Saptiotemporalpatternsofpesticideuse/riskinCaliforniaalmondswerestudied. •Useintensitiesofinsecticides/fungicides/herbicidesshowedlatitudinalgradients. •Overall,herbicideuseincreasedconsiderably,whilefungicideusedecreased. •Theriskstosurfacewater,groundwater,andsoildecreasedinmanyareas. •Riskpatternsweremainlyassociatedwithusepatternsofhigh-riskpesticides. a r t i c l e i n f o a b s t r a c t Articlehistory: VariousstakeholdersofCaliforniaalmondshavebeeninvestingeffortsintomitigatingpesticideimpactson Received14September2013 humanandecosystemhealth.Thisstudyisthefirstcomprehensiveevaluationthatexaminesthespatialandtem- Receivedinrevisedform2November2013 poralpatternsofpesticideuseandassociatedenvironmentalrisks.Thepesticideusedatafrom1996to2010were Accepted3November2013 obtainedfromthePesticideUseReportingdatabase.ThePesticideUseRiskEvaluationindicatorwasemployedto Availableonlinexxxx evaluatethepesticideenvironmentalrisksbasedonthepesticidepropertiesandlocalenvironmentalconditions. Analysesshowedthattheuseintensities(UI)ofinsecticides(oilsaccountedfor86%ofthetotalinsecticideUI) Keywords: andherbicidesbothincreasedfromnorthtosouth;fungicidesshowedtheoppositespatialpattern;andfumi- Pesticide Environmentalrisk gantswereusedmostintensivelyinthemiddleregion.TheUIoffungicidesandherbicidessignificantlydecreased Pestmanagement andincreased,respectively,throughoutthestudyarea.TheinsecticideUIsignificantlydecreasedinthenorthbut Regulation increasedinmanyareasinthesouth.Inparticular,theorganophosphateUIsignificantlydecreasedacrossthe Almond studyarea,whilethepyrethroidUIsignificantlyincreasedinthesouth.ThefumigantUIdidnotshowatrend. California Theregionalriskintensitiesofsurfacewater(RI ),soil(RI),andair(RI )allincreasedfromnorthtosouth, W S A whilethegroundwaterregionalriskintensity(RI )decreasedfromnorthtosouth.ThemaintrendsofRI ,RI , G W G andRI weredecreasing,whiletheRI didnotshowatrendinanyregion.It'snoticeablethatalthoughtheher- S A bicideUIsignificantlyincreased,theUIofhigh-leachingherbicidessignificantlydecreased,whichledtothesig- nificantdecreaseofRI .Insummary,thetemporaltrendsofthepesticideuseandrisksindicatethattheCalifornia G almondgrowersaremakingconsiderableprogresstowardssustainablepestmanagementviaintegratedpest management,butstillrequiremoreeffortstocurbthefastincreaseofherbicideuse. ©2013ElsevierB.V.Allrightsreserved. 1.Introduction orangeworm (Amyelois transitella), San Jose scale (Quadraspidiotus perniciosus),peachtwigborer(Anarsialineatella),web-spinningspider AlmondsareoneofthemostimportantspecialtycropsinCalifornia, mites,andants(CEPA,2011).Inthedormantseason,oilsprayalone USA,whichproducedabout80%oftheglobalalmondsupplyandgener- cancontrollowtomoderatepopulationsofSanJosescaleandmites. ated$3.87billioninrevenuein2012(AlmondBoardofCalifornia,2012). Whenpopulationsofpeachtwigborer(alsotargetedduringbloom) AlmostalltheCaliforniaalmondorchards(3080km2in2012)arelocated andSanJosescalearehigh,oilsarelikelysprayedwithotherinsecticides. intheCentralValley(58,000km2),whichhasamildclimate,fertilesoil, Inthegrowingseason,insecticidetreatments(mainlyinJulyandAugust) andabundantsunshine.TheCentralValleyisoneofthemostproductive mostlycontrolnavelorangeworm.Diseasesduringwintersandearly agricultural areas in the world. Key pests in almond are navel springs, such as anthracnose (pathogen: Colletotrichum acutatum), brown rot blossom blight (pathogen: Monilinia laxa), and scab (pathogen:Cladosporiumcarpophilum)arecontrolledbyvariousfungi- ⁎ Correspondingauthor at. DepartmentofLand, Air,andWaterResources, 131 VeihmeyerHall,UniversityofCalifornia,Davis,CA95616,USA.Tel.:+15307524953; cides,e.g.,captan,copper,orziram(UCIPM,2012).Weeds,suchas fax:+15307521552. bermudagrass(Cynodondactylon),dallisgrass(Paspalumdilatatum),and 0048-9697/$–seefrontmatter©2013ElsevierB.V.Allrightsreserved. http://dx.doi.org/10.1016/j.scitotenv.2013.11.022 518 Y.Zhan,M.Zhang/ScienceoftheTotalEnvironment472(2014)517–529 hairyfleabane(Conyzabonariensis),aretreatedwithpre-emergenceor resultsandconclusionsareexpectedtoreflecttheoutcomeofCalifornia post-emergenceherbicides.Tominimizetheyieldlosscausedbypests, almondstakeholders'effortstowardssustainablepestmanagementand pathogens,andweeds,Californiaalmondgrowersapplyalargeamount toprovidesuggestionsforprioritizingpestmanagementpractices. ofpesticides;9.3milliontonsofpesticideactiveingredientswereapplied in2010(CEPA,2012).However,theappliedpesticidesthreatentheenvi- 2.Materialsandmethods ronmentandhumanhealth,asevidencedbypesticidedetectionsin groundwater(Kolpinetal.,2000)andsurfacewater(Guoetal.,2007; 2.1.Studyarea Hladiketal.,2009). Variousstakeholdershavemadeeffortstoreduceoreliminatetheir TheCentralValley,wherealmostallofthealmondsinCalifornia usesofthepesticidesthatareknowntoharmhumanhealthordegrade werecultivated,wasselectedasthestudyarea(Fig.1a).Thestudy environmentalquality.TheUnitedStatesEnvironmentalProtection Agency(USEPA)regulatespesticideuseundertheFederalInsecticide, Fungicide,andRodenticideAct(FIFRA)andtheFederalFood,Drug, and Cosmetic Act (FFDCA). Both of these acts were significantly amendedbytheFoodQualityProtectionActof1996(FQPA),which settoughersafetystandards,includingmandatorypesticidereregistra- tion(USEPA,2012).Inaddition,integratedpestmanagement(IPM) practiceshavebeenpromotedtoachievethegoalofsustainablepest management. Growers monitor pest pressure and apply pesticides only when necessary, and high-risk pesticides tend to be replaced with reduced-risk pesticides. For instance, organophosphates that werefoundtodeterioratesurfacewaterqualitywerepartiallyreplaced withoilsorBacillusthuringiensis(Bt),andhencethemajorityofinsecti- cides(intermsofmass)appliedonalmondsinrecentyearswereoils (Epsteinetal.,2001;Zhangetal.,2005).Topresentanoveralland more recent picture of the shift of pest management practices for Californiaalmonds,itisimportanttoevaluateallthepesticidesthat areused,whichhasnotbeendoneinpreviousstudies. Analyzingthedataforpesticideusealoneisinsufficientforevaluat- ing environmental consequences of pest management practices (Barnardetal.,1997),thusnumerouspesticideriskindicatorsconsider- ingpesticideeffectsandexposurehavebeendevelopedaroundthe world (Bockstaller et al., 2009), including PRoMPT (Whelan et al., 2007),SPIDER(Renaudetal.,2008;RenaudandBrown,2008),EPRIP (Trevisan et al., 2009), and I-Phy (Lindahl and Bockstaller, 2012). Theseindicatorsvaryinmethodologies,inputdatarequirements,indi- catoroutputs,andapplicablescales.Severalindicatorcomparisonstud- ies have been carried out to identify ideal indicators for different purposes(Maudetal.,2001;Reusetal.,2002;Stenrodetal.,2008), but they have failed to reach clear agreements. In recent years, alongwiththeadvancementoftheGeographicInformationSystem (GIS)softwaretechniquesandaccumulationofenvironmentaldata, pesticideriskindicatorshavebecomecloselyintegratedwithGISfor preparingsite-specificenvironmentalconditiondataandpresenting riskmaps(e.g.,Centofantietal.,2008;Salaetal.,2010;Schrieverand Liess,2007;Vajetal.,2011). Yet,twoobstaclesexistinappliedpesticideriskevaluation:(1)the shortageofrealpesticideapplicationdata;and(2)thelackofasuitable pesticideriskindicatorequippedwithextensivedataofpesticideproper- tiesandenvironmentalconditions.Thisstudyovercamethesetwoobsta- cleswiththePesticideUseReporting(PUR)database(CEPA,2012)and thePesticideUseRiskEvaluation(PURE)indicator(ZhanandZhang, 2012).ThePURdatabasehascomprehensivelyrecordedtemporaland spatialdataforagriculturalpesticideuseinCalifornia,USAsince1990. ThePUREindicatorwasspecificallydevelopedforCaliforniaagricultural pesticideuse,andevaluatespesticide'sriskstosurfacewater,groundwa- ter,soil,andair,byconsideringpesticidepropertiesandon-siteenviron- mentalconditions.ThePUREindicatorwasvalidatedagainstsurface water monitoring data (Zhan and Zhang, 2012) and was evaluated withasensitivityanalysis(ZhanandZhang,2013). Thisstudyprovidesthefirstcomprehensiveanalysisofoverallpesti- cideuseforacrop,alongwithriskevaluationbyapesticideriskindica- tor.Thegoalistoevaluatethepastperformanceofpestmanagementin Californiaalmonds.Thespecificobjectivesare:(1)tocharacterizethe Fig.1.Spatialandtemporalpatternsofthealmondplantedareasfrom1996to2010in spatialandtemporalpatternsofpesticideuse;and(2)toanalyzethe theCentralValley,California,USA.(a)Theaverageannualplantedareasattownship spatialandtemporalpatternsofpesticideenvironmentalrisks.The (~9.7×9.7km2)level,and(b)theannualplantedareasforeachregion. Y.Zhan,M.Zhang/ScienceoftheTotalEnvironment472(2014)517–529 519 area was divided according to convention into three regions tosurfacewatertothemaximumacuteandchronicpesticidetoxicities, fromnorthtosouthinthestate:theSacramentoValley(SAC),the respectively,totheaquaticorganisms(includingfish,Daphnia,and SanJoaquinValley(SJQ),andtheTulareBasin(TUL).Theaverageannu- algae).PEC wasdeterminedbythepesticidedriftprocessmodeled WS al planted area of almonds in California from 1996 to 2010 was withtheDriftCalculator(FOCUS,2001)andthepesticiderunoffprocess 277,000ha,whichwascomposedof50,000hainSAC,128,000hain usingtheSCScurvenumbermethod(SCS,1972).PEC wastheaverage WL SJQ,and99,000hainTUL.Almondsarethemostdenselycultivatedin concentrationduringthe21days(thetypicalperiodformeasuringthe centralSJQ,southTUL,andnorthSAC(Fig.1a).Theplantedareasin- chronictoxicity)afterapplication. creasedinallthreeregionsfrom1996to2010,withasharpincrease Secondly,R wastheratioofthepredictedpesticideconcentration G from2003to2007(Fig.1b).Thethreeregionshavesomewhatdifferent leachingtogroundwater(PEC )toADI.Theadaptedattenuationfactor G climaticconditions.Fromnorthtosouth,temperatureincreaseswhile methodoriginallyproposedbyRaoetal.(1985)wasusedtocalculate humiditydecreases,resultingindifferentpestpatternsandpestman- PEC ,wherepesticidedegradation,convection,anddispersionwere G agementpractices. takenintoaccount. Theenvironmentalconditions,includingtheclimaticconditions,soil Thirdly,R,similartoR ,wasthemaximumoftheshort-termand S W properties,andotherdataforenvironmentalfactorswerecompiled long-termriskscoresforsoil,whichweretheratiosofthepredicted fromvariouspublicdatasources.Theclimaticconditionswereobtained short-term(PEC )andlong-term(PEC )pesticideconcentrationsin SS SL fromtheCaliforniaIrrigationManagementInformationSystem(CIMIS) topsoiltotheacuteandchronicpesticidetoxicitiestoearthworms, (CDWR,2010).ThesoilpropertieswereextractedfromtheSoilSurvey respectively.PEC wasdeterminedbytheamountofpesticidereaching SS Geographic (SSURGO) and the State Soil Geographic (STATSGO) thegroundrightafterthepesticideapplication,andhencePEC wasthe SL databases(NRCS,2008).Thegroundslopewascalculatedfromadigital averageconcentrationintopsoilduringthe21daysafterapplication. elevationmodel(DEM)database(NRCS,2008).Thegroundwaterdepth Finally,R wastheproductofthepesticideapplicationrate(RATE), A wasinterpolatedfromtheUSGSgroundwatermonitoringdata(USGS, theEP,andtheapplicationmethodadjustmentfactor(AMAF).Fora 2010),andthefarmlanddistancetosurfacewaterwascalculatedfrom pesticideproductcontainingmultipleAIs,theproduct-levelR was A theCal-Atlasstreammap(Cal-Atlas,2008). assignedtoeachAIinproportiontotheirmasspercentagesinthat product. 2.2.Pesticideusedataandpesticideproperties Asthefourtypesofriskvalueswerecalculatedfordifferentenviron- mental compartments, they cannot be compared with each other. ThepesticideusedataforCaliforniaalmondsfrom1996to2010were SimilartoUI,theannualfield-levelpesticideriskintensities(RI;unit: queriedfromthePURdatabasemaintainedbyCDPR(CEPA,2012).Nearly R/ha)werealsosummarizedbyAI,pesticidecategories,andallpesti- 2millionpesticideapplicationrecordswereretrieved,eachincludingthe cides.RI =Σ(pesticideriskvalues)/fieldarea,wherei=W,G,S, i applicationdateandspatialsection(~1.6×1.6km2)(USDI,2009).This or A, which represent surface water, groundwater, soil, and air, studytookallpossiblepesticidesintoaccount,withafocusonthemain respectively. Then the field-level RIs were aggregated to township pesticidecategoriesofinsecticides,fungicides,herbicides,andfumigants, (~9.66×9.66km2)(USDI,2009),region,andstatelevels. whichrepresented139,76,76,and8pesticideAIs(activeingredients) (TableA1),respectively.ElevenAIs(e.g.,sulfur)wereclassifiedasinsecti- 2.4.Trendanalysisandspatialmapping cidesaswellasfungicides.Furthermore,twohighlyconcernedchemical groupsofinsecticides–organophosphateandpyrethroids(TableA2)– ThetrendanalysisandspatialmappingofUIandRIwereperformed werealsoanalyzedaspesticidecategories.Theannualfield-levelpesticide inR(RDevelopmentCoreTeam,2013),whichisafreeandversatile useintensity(UI=Σ(pesticideuseamount)/fieldarea;unit:kg/ha) computationplatform.TrendsweredetectedwiththeMann–Kendall wassummarizedbyindividualAIs,pesticidecategories,andallpesticides. trendtest(Mann,1945)implementedinpackageKendall(McLeod, Thenthefield-levelUIswereaggregatedtotownship(~9.66×9.66km2) 2011),andslopeswerecalculatedbytheTheil–Senestimator(Sen, (USDI,2009),region,andstatelevelsusingthearea-weighted-mean 1968)implementedinpackagezyp(BronaughandWerner,2013). approach. ThecombinationoftheMann–KendallmethodandtheTheil–Senesti- Theproduct-andAI-levelpesticidepropertieswereobtainedfrom matorisrobustandwidelyusedforanalyzingenvironmentaltime- severaldatasources.Theproduct-levelproperties,includingtheemis- seriesdata(HelselandHirsch,2002).Significancewasconsideredas sionpotential(EP)andpercentageofAI,werefromthepesticideprod- pb0.1. In addition, the UI and RI were mapped at township level uct/label database maintained by CDPR (CEPA, 2010). The AI-level (~9.7×9.7km2)(USDI,2009)byusingpackagesrgdal(Bivandetal., propertiesincludechemical,physical,andtoxicityproperties.Specifi- 2013)andsp(PebesmaandBivand,2005). cally,thesorptioncoefficient(K ),theHenry'slawconstant(K ),the OC H aerobic(DT )andanaerobic(DT )half-lifeinsoil,thehalf-lifein 3.Results SO SA water(DT ),themaximumacute(LEC )andchronic(NOEC )toxicity W A A toaquaticorganisms(includingfish,Daphnia,andalgae),theacute 3.1.Pesticideuseintensity(UI) (LC )andchronic(NOEC )toxicitytoearthworms,andtheacceptable W W dailyintake(ADI)wereobtainedfromtheChemPestdatabase(CEPA, Between1996and2010,thestateaverageannualUIsofinsecticides, 2009),thePesticidePropertiesDatabase(PPDB)(PPDB,2012),andthe fungicides,herbicides,andfumigantswere17.00kg/ha,4.05kg/ha, Pesticide Action Network (PAN) (Kegley et al., 2011) in order of 3.21kg/ha,and1.09kg/ha,respectively(Table1);andtheaverage preference. annualUIsoforganophosphatesandpyrethroidswere0.98kg/haand 0.06kg/ha,respectively(TableA3).Attheregionallevel,theaverage 2.3.Pesticideriskindicator annualUIofinsecticidesandherbicidesbothincreasedfromnorthto south,thefungicideUIdecreasedfromnorthtosouth,andthefumigant Onthebasisofthepesticidepropertiesandlocalenvironmental UIwasthehighestinthemiddleregion.Thesamelatitudinalpatterns conditions,thePUREindicator(ZhanandZhang,2012)wasusedto wereobservedonthetownshipscale,withsmoothspatialtransition evaluatetheriskvaluesofeachpesticideapplicationtosurfacewater (Fig.2).Furthermore,theregionalaverageannualUIoforganophos- (R ),groundwater(R ),soil(R),andair(R ). phatesinTULwasaboutthreetimesasthatinSACorSJQ,whilethe W G S A Firstly,R wasthemaximumoftheshort-termandlong-termrisk regionalaverageannualUIofpyrethroidsinSACwaslessthanahalf W valuesforsurfacewater,whichweretheratiosofthepredictedshort- ofthatinSJQorTUL(TableA3).Thespatialmaps(Fig.A1aandA1b) term(PEC )andlong-term(PEC )pesticideconcentrationsloaded confirmtheregionalUIpatternsoforganophosphatesandpyrethroids. WS WL 520 Y.Zhan,M.Zhang/ScienceoftheTotalEnvironment472(2014)517–529 Table1 Useintensities(UI)bypesticideusecategoryforCaliforniaalmondsfrom1996to2010,withstatewidetop-fivepesticidesineachusecategory. Usecategory/pesticide State SAC SJQ TUL Mean Slope Mean Slope Mean Slope Mean Slope Insecticides 17.00 −0.22 7.63 −0.83** 13.28 −0.28· 26.54 0.26 Petroleumoil,unclassified 10.03 −0.22* 2.81 −0.43** 6.79 −0.27* 17.98 −0.01 Mineraloil 4.59 0.20* 2.60 −0.37** 4.70 0.13 5.28 0.43** Sulfur 0.47 0.00 0.96 0.11* 0.44 −0.04** 0.25 0.01 Propargite 0.46 −0.06** 0.24 −0.01· 0.37 −0.05** 0.73 −0.12** Chlorpyrifos 0.45 −0.01 0.23 0.01* 0.37 −0.02** 0.67 −0.01 Fungicides 4.05 −0.28** 5.34 −0.05 4.46 −0.41** 2.83 −0.22** Ziram 0.95 −0.08** 2.06 −0.04 0.69 −0.09** 0.73 −0.08** Copperhydroxide 0.81 −0.08** 0.29 −0.02** 1.15 −0.11** 0.63 −0.04* Captan 0.48 −0.08** 0.64 −0.05* 0.58 −0.10** 0.25 −0.05** Sulfur 0.47 0.00 0.96 0.11* 0.44 −0.04** 0.25 0.01 Maneb 0.35 −0.06** 0.54 −0.05* 0.37 −0.07** 0.22 −0.04** Herbicides 3.21 0.17** 2.94 0.13** 3.10 0.14** 3.45 0.22** Glyphosate,isopropylaminesalt 1.24 0.00 1.40 −0.01 1.21 0.02 1.21 −0.01 Paraquatdichloride 0.46 0.03* 0.31 0.05** 0.37 0.02· 0.65 0.04* Glyphosate,potassiumsalt 0.26 0.04** 0.16 0.02* 0.20 0.04** 0.36 0.05** Oryzalin 0.23 −0.00 0.34 0.01 0.24 −0.01 0.18 −0.01 Oxyfluorfen 0.22 0.01* 0.15 0.01** 0.21 0.01* 0.26 0.01* Fumigants 1.09 −0.02 0.11 2E-04 1.51 −0.01 1.06 −0.02 1,3-Dichloropropene 0.77 0.07 0.05 0.00 1.06 0.09· 0.76 0.06* Methylbromide 0.26 −0.04** 0.04 −0.01** 0.33 −0.06** 0.30 −0.04** Sodiumtetrathiocarbonate 0.03 0.00 3E-3 0.00 0.06 0.00 7E-5 0.00 Metam-sodium 0.02 −1E-3** 7E-6 0.00 0.03 −3E-3** 0.01 0.00 Chloropicrin 0.01 −0.00 0.01 3E-4 0.01 −0.00 4E-3 −0.00 SAC:theSacramentoValley;SJQ:theSanJoaquinValley;TUL:theTulareBasin.Mean:averageannualuseintensity(kg/ha).Slope:theTheil–Senslope(kg/ha/year)withsignificancelevel calculatedbytheMann–Kendalltrendtest.**pb0.01;*pb0.05;·pb0.1. ThestatewideUIoffungicidesandherbicidessignificantlydecreased 3.2.Pesticideriskintensity(RI) andincreased,respectively,whilethestatewideUIofinsecticidesand fumigantsshowednotrends(Table1).AlltheUItrendsatregional Between 1996 and 2010, the state average annual RI , RI , RI , W G S level were consistent with the trends at state level, except for the andRI were81R/ha,98R/ha,182R/ha,and90R/ha,respectively A increasedtrendsoftheinsecticideUIinSACandSJQ,andthelackof (Table2).Organophosphatescontributed45%,9%,17%,and16%ofthe trendsobservedforthefungicideUIinSAC.Amonginsecticides,the totalRI ,RI ,RI,andRI ,respectively,whilepyrethroidscontributed W G S A organophosphateUIsignificantlydecreasedinallregions,whilethe 11%,0%,5%,and2%,respectively(TableA3).Atregionallevel,theaver- pyrethroidUIsignificantlyincreasedonlyinTUL(TableA3).Figs.3 ageannualRI ,RI,andRI increasedfromnorthtosouth,whileRI de- W S A G andA1showspecificareaswithsignificantUIchanges.Increaseofher- creasedfromnorthtosouth.ThespatialgradientsofRIonthetownship bicideUIoccurredacrossthewholeCentralValley,whiledecreaseof levelwerelessclearthanthoseofUI,andthehigh-RIareasweremore fungicideUIspreadoverSJQandTUL.DecreaseoforganophosphateUI clustered(Fig.5).NorthernSACandsouthernTULhadclusteredareas occurredoverthewholeCentralValley,whileincreaseofpyrethroid ofbothhighRI andhighRI ,withafewhigh-RI areasscattered W G W UImainlytookplaceinTUL.Figs.4andA2showtheyearlyUIbypesti- inmiddleSJQ.Incontrast,high-RI andhigh-RI areaswerelocatedin S A cideusecategoriesatregionallevel.ThedecreaseofinsecticideUIinSAC middleSJQandnortheasternTUL.Moreover,theriskmapsoforgano- andSJQmainlyhappenedfrom1996to2000;andtheorganophosphate phosphates(Fig.A3)aresimilartothoseofallpesticides(Fig.5)toa UIcontinuouslydecreasedinallregions,whilethepyrethroidUIkept certainextent.Forpyrethroids,RI andRI weretheonlyconcerns: W S steadyinmostyearsbutincreasedalotinSJQandTULin2010.InSJQ thehigh-RI areasscatteredacrossthewholeCentralValley,while W and TUL the fungicide UI decreased consistently, while in SAC it thehigh-RI areasclusteredinTUL(Fig.A6). S decreasedinitiallyuntil2001,followedbyaperiodofrapidincrease. ThestatewideRI andRI significantlydecreased,whilethestate- G S TheherbicideUIinallthreeregionsslightlydecreasedfrom1996to wideRI andRI didn'tshowtrends(Table2).RegionallyinSAC, W A 2001andthenincreaseddramatically.ThefumigantUIkeptsteadyin noneoftherisktypesshowedanytrends.InSJQ,allrisktypessignif- SACbutvariedwidelyinSJQandTUL. icantlydecreasedexceptRI ,whichdidnothavetrendsinanyre- A Thestatewidetop-five-UIpesticidesbyusecategoryaccountedfor gion.InTUL,bothRI andRI significantlydecreased.Fig.6shows G S 94%,76%,75%,and99.6%oftheUIofinsecticides,fungicides,herbicides, specificareaswithsignificantRIchanges.InSAC,theareaswhere andfumigants,respectively(Table1).Forinsecticides,“petroleumoil, RIsignificantlyincreased/decreasedwerescattered.InSJQRI ,RI W G unclassified”andmineraloilaccountedforthemajorityoftheinsecti- andRI significantlydecreasedacrosslargeareas.InTUL,bothRI and S W cideUIandthetotalpesticideUI.Mostofthetop-fiveinsecticideseither RI significantlydecreasedinaclusteredarealocatedinthesouth,and S significantlydecreasedorshowednotrendintheirUI.Forfungicides, RI significantlyincreasedatthewestedge.Moretemporallyspecific, A SACheavilyreliedonziramandsulfur,SJQusedcopperhydroxidethe theRI ofTULlargelydecreasedfrom1996to2002andthenbounced W mostintensively,andTULtendedtohaveevenapplicationsofziram back in 2006, while the RI of SAC and SJQ were relatively steady W andcopperhydroxide.MostoftheUIofthetop-fivefungicidesde- (Fig. 7a). The RI of SJQ and TUL showed two stages, separated in G creasedsignificantly.Forherbicides,“glyphosate,isopropylaminesalt” 2004and2000,respectively,whiletheRI ofSACdidnotshowaclear G wasthedominantherbicideinallregionsandshowednotrends.The trend(Fig.7b).TheRI ofallregionsdecreasedsharplyfrom1996to S UIoftheothertopherbicidesexceptoryzalinincreasedsignificantlyin 2000or2001,andthenroseslowlytill2006,followedbyashortde- allregions.Forfumigants,1,3-dichloropropeneandmethylbromide creasingperiod(Fig.7c).TheRI ofallthreeregionsshowedsimilar A accountedfor94%ofstatewidefumigantuses.Theformerincreasedsig- temporalpatternsasRI (i.e.,decrease–increase–decrease)(Fig.7d). S nificantlyinSJQandTUL,whilethelattersignificantlydecreasedinall ThedifferenceisthatRI recoveredtotheinitiallevelattheendofthe A regions. increasestagewhileRI onlypartiallyrecovered. S Y.Zhan,M.Zhang/ScienceoftheTotalEnvironment472(2014)517–529 521 Fig.2.Spatialpatternsoftheaverageannualuseintensities(UI;kg/ha)of(a)insecticides,(b)fungicides,(c)herbicides,and(d)fumigantsforCaliforniaalmondsfrom1996to2010. 522 Y.Zhan,M.Zhang/ScienceoftheTotalEnvironment472(2014)517–529 Fig.3.Temporaltrendsoftheannualuseintensities(UI;kg/ha)of(a)insecticides,(b)fungicides,(c)herbicides,and(d)fumigantsforCaliforniaalmondsfrom1996to2010. Y.Zhan,M.Zhang/ScienceoftheTotalEnvironment472(2014)517–529 523 Fig.4.Regionalannualuseintensities(UI;kg/ha)of(a)insecticides,(b)fungicides,(c)herbicides,and(d)fumigantsforCaliforniaalmondsfrom1996to2010. ThetemporalpatternsofRIwerequitedifferentbetweenorgano- significantlyincreasedinSJQandTUL,butonlyaccountedfor3%ofRI A phosphatesandpyrethroids.Fororganophosphates,RI significantly inSACanddidnotshowatrend. W decreasedonlyinSJQ,RI andRI significantlydecreasedinallregions, G S and RI significantly decreased in SJQ and TUL (Table A3). Fig. A4 4.Discussion A showstheRItrendsfororganophosphatesattownshiplevel.RI signif- W icantlydecreasedinlargeareasofSJQandinasmallportionofSACand 4.1.Spatialpatternsofpesticideuseandrisk TUL,whichwasreflectedinthebasin-leveltrendofRI .RI hadasim- W A ilarspatialpatternwithRI ,butsignificantlydecreasedinlargerareas 4.1.1.Pesticideuseintensity(UI) W inTUL.ThetemporaltrendsofRI andRI showedasimilarspatialpat- ThespatialpatternsofUI,mainlycausedbyspatiallydifferentpest G S tern.Fig.A5showstheyearlychangeofRIatregionallevel.Thedecrease pressures,werehighlyassociatedwithclimateconditionsandfarming ofRI wasapparentinallregions,onepeakforRI andRI ofTULoc- activities.Inthestudyarea(i.e.,theCentralValley,California),thetem- S W A curredin2006,andonepeakforRI ofSACappearedin1999.Forpyre- peratureincreasesfromnorthtosouthwhilethehumiditydecreases G throids(RI andRI werenegligible),RI significantlyincreasedonlyin fromnorthtosouth.Insouthernareas,moreinsecticides(including G A W TUL,whileRI significantlyincreasedinSJQandTUL.RI significantly moreorganophosphates,pyrethroids,andotherinsecticides)andherbi- S W decreasedinsmallareasofnorthernSACandmiddleSJQ,andsignifi- cideswereapplied,indicatingthathighertemperatureswithsufficient cantlyincreasedinlargeareasofTUL(Fig.A7a).RI significantlyin- watersupplyviairrigationfavoredthegrowthofinsectsandweeds. S creased across the whole Central Valley (Fig. A7c). The RI of TUL Incontrast,fungiprefercoolandmoistenvironments,whichresulted W increasedcontinuouslyandrapidlyfrom2005to2010(Fig.A8a).The inmoreintensivefungicideuseinnorthernareas.Inaddition,thespatial RI of TUL increased slowly but steadily from the beginning of the patternoffumigantUIwasmainlyduetofarmingactivities.Fumigants S studyperiod,andincreasedmuchfasterfrom2005(Fig.A8c). weremainlyusedtotreatsoil-bornediseaseswhenalmondfieldswere Thestatewidetop-fivepesticidesbyrisktypeaccountedfor80%, newlycultivatedorreplanted(CEPA,2008),aswellasforpost-harvest 86%,44%,and66%ofRI ,RI ,RI ,andRI ,respectively(Table2).For pests.TherapidexpansionofalmondfieldsinSJQandTULresultedin W G S A RI ,ziram,copperhydroxide,andchlorpyrifoswerethetopcontribu- higheraverageannualfumigantUIinthesetworegions(Fig.2d). W torsinSAC,SJQ,andTUL,respectively.TheRI fromziramsignificantly InadditiontothegeneralspatialpatternsoftheUIs,theexistenceof W decreasedinSJQonly.TheRI fromcopperhydroxidesignificantlyde- clusteredhigh-UIareasdemonstrateslocationspecificity,whichwas W creasedinallregions.Incontrast,theRI fromchlorpyrifosdidn'tshow likelyassociatedwithlocalpestpressure(includinginsects,pathogens, W atrendinanyregion.ForRI ,oxyfluorfenandsimazinewerethemain andweeds).Theareaswithdenseralmondfields(Fig.1a)seemedto G contributorsinallregions.TheRI ofallthetop-fivepesticidessignifi- sufferhigherpestpressuresreflectedinhigherpesticideUI.Innorthern G cantlydecreasedinallregions,exceptfortheRI ofoxyfluorfenwhich SACmoreintensefungicidesandherbicideswereapplied.IncentralSJQ G significantlyincreasedinSACandshowednotrendintheothertwore- higherUIsoffungicidesandfumigantswereobserved.InsouthernTUL gions.ForRI,mostofthetop-fivecontributorssignificantlydecreased insecticidesandherbicideswereusedmoreintensively.Thespatial S inallregions,exceptfortheRI of1,3-dichloropropenethatsignificantly correlation between the cultivation density and the pest pressure S increasedinSJQandTUL,andtheRI ofmineraloilthatsignificantlyin- mightbeinducedbypestdispersionranges.Thatis,closerdistances S creasedinTUL.ForRI ,1,3-dichloropronewasthetopcontributorand amongalmondfieldsfacilitatedthedispersionandsubsequentburst A 524 Y.Zhan,M.Zhang/ScienceoftheTotalEnvironment472(2014)517–529 Table2 Riskintensities(RI)forCaliforniaalmondsfrom1996to2010,withstatewidetop-fivepesticidesforeachrisktype. Risk/pesticide State SAC SJQ TUL Mean Slope Mean Slope Mean Slope Mean Slope Surfacewater 81 −0.8 57 −2.0 67 −2.4· 111 −1.1 Chlorpyrifos 31 1.2 9 −0.03 21 −0.7 54 2.3 Copperhydroxide 18 −1.7** 10 −0.4** 22 −1.6* 18 −1.5 Ziram 7 −0.7* 19 −0.8 5 −0.7** 4 −0.3 Permethrin 4 −0.3· 2 −0.01 4 −0.3* 6 −0.2 Chloropicrin 4 −0.2 9 0.2* 5 −0.6** 1 −0.04 Groundwater 98 −4.1** 185 −2.5 90 −4.5** 64 −3.0· Oxyfluorfen 37 1.0 83 6.8** 18 0.3 39 −0.5 Simazine 29 −1.9** 26 −1.6** 48 −2.8* 6 −0.5** Diazinon 7 −0.7** 32 −3.3** 1 −0.1* 1 −0.02** Norflurazon 6 −0.9** 7 −0.8** 8 −0.9** 3 −0.3** Propargite 5 −0.7** 12 −0.7 3 −0.4** 5 −0.9** Soil 182 −9.8* 145 −7.1 183 −9.4* 199 −9.7* Copperhydroxide 22 −2.3** 8 −0.6** 31 −3.1** 17 −1.1* 1,3-Dichloropropene 19 1.4* 1 0.03 25 2.0· 19 1.7* Ziram 17 −1.5** 39 −1.5 12 −1.6** 12 −1.6** Methidathion 15 −2.8** 11 −0.9** 9 −1.4** 25 −5.6** Mineraloil 9 0.1 6 −0.9** 9 0.03 10 0.7** Air 90 1.7 42 0.2 92 0.6 112 3.0 1,3-Dichloropropene 20 1.8 1 0.1 27 2.2 20 1.7* Oxyfluorfen 12 0.5 9 0.7* 12 0.3 15 0.5 Chlorpyrifos 12 −0.5 6 0.4 10 −0.6* 17 −0.7 Petroleumoil,unclassified 9 1.0** 1 −0.1* 6 0.6** 17 1.6** Methylbromide 7 −1.0** 1 −0.1** 8 −1.4** 7 −0.9** SAC:theSacramentoValley;SJQ:theSanJoaquinValley;TUL:theTulareBasin.Mean:averageannualriskintensity(R/ha).Slope:theTheil–Senslope(R/ha/year)withsignificancelevel calculatedbytheMann–Kendalltrendtest.**pb0.01;*pb0.05;·pb0.1. ofpests.Ontheotherhand,innortheasternTULwherethealmond animportantroleinRI andtheemissionpotentialswereimportantto S fieldswererelativelysparser,theUIsofinsecticides,fungicides,andfu- RI .Thefindingswereconsistentwiththesensitivityanalysisonthe A migantswerealsohigh.Itindicatedthatsomeotherfactors(e.g.,farm PUREindicator(ZhanandZhang,2013).Thereexistedhigh-RI and S managementpractices)influencedthelocalpesticideUIorpestpres- high-RI areasincentralSJQandnortheasternTUL,whichwasmainly A sure,whichrequiresmoreinvestigationinthefuture. causedbyhighfumigantUIinthoseareas.Inaddition,thehigh-RI S areasinnorthernSACwerelargelyduetotheintenseuseoffungicides. 4.1.2.Pesticideriskintensity(RI) ComparedwithUI,thespatialpatternsofRIwereaffectedbymore 4.2.Temporalpatternsofpesticideuseandrisk factors,includingenvironmentalconditions(e.g.,surfacewaterdis- tanceandgroundwaterdepth)andpesticideproperties.Firstly,the ThetemporalpatternsofUIandRIweretheresultsoftheshiftofpest high-RI areaswereallclosetosurfacewaterandusedpesticideshigh- managementpracticesledbygovernmentalregulations,theintegrated W lytoxictoaquaticorganisms(e.g.,chlorpyrifos).Therisktosurface pestmanagement(IPM)promotion,availabilitiesofnewpesticides,and waterwasthemainenvironmentalconcernoftreatinginsectswithor- phasing-outofpesticidesknowntoposehighlyadverseimpactson ganophosphatesandpyrethroids,whicharegenerallyhighlytoxicto humanhealthandenvironment. aquaticorganisms,moderatelypersistent,andsolubleinwaterforor- ganophosphatesorboundtosedimentforpyrethroids.Thehigh-RI 4.2.1.Insecticides W areasinsouthTULwereneartheKernRiverandthePosoCreek,with Insecticideusewasunderstringentregulation,whichlargelyaffect- intensiveapplicationsoforganophosphatesandpyrethroids.Similarly, ed the temporal patterns of insecticide UI and the associated RI. thehigh-RI areasinnorthSACwereclosetotheSacramentoRiver, Althoughpropargiteandchlorpyrifoswereusedmuchlessthanthe W andfungicideswereappliedintensivelyintheseareas.Additionally, top-three-UIinsecticides(i.e.,“petroleumoil,unclassified”,mineraloil, thehigh-RI areasscatteredincentralSJQwereneartheSanJoaquin andsulfur),theirriskstohumanandecosystemhealthweremuch W River,withintensiveuseofinsecticidesandfungicides. higher. Propargite is known to cause human health problems as a Secondly,high-RI areasweremainlycausedbythecombinedef- carcinogenandreproductivetoxicant(e.g.,MillsandYang,2007),as G fectsofhighherbicideuseandshallowgroundwaterlevel.Herbicides wellasenvironmentalproblems(e.g.,Bradfordetal.,2010).Therefore, areusuallymobileinsoilasindicatedbylowsoilsorptioncoefficients theuseofpropargitehasbeenrestrictedbyregulations,resultingin (K ).Inanationalgroundwatersurvey,mostofthedetectedpesticides thesignificantdecreaseinitsuseinallthreeregions.Inaddition,chlor- OC wereherbicidesinareaswithshallowgroundwaterlevel(Kolpinetal., pyrifos has been frequently detected in surface water in California 2000).BothnorthSACandsouthwesternTULhadhigh-RI areas.Asex- (CEPA,2007)andishighlytoxictoaquaticorganisms.Ithasbeenon G pected,intheseareasthegroundwaterlevelwasshallowandherbicide theCleanWaterAct303(d)listofimpairedwaterwayssince1998in UIwashigh.Contrarily,intheareasneartheboundarybetweenSJQand theTotalMaximumDailyLoad(TMDL)program(CEPA,2013).Inthis TULwherethegroundwaterlevelwasdeep,althoughtheherbicideUI riskevaluation,chlorpyrifoswasthetopRI contributorandoneof W wasalsohigh,theRI wasnotashighasthatinnorthSACandsouth- themainRI contributors(Table2).InTULtheelevatedRI after2005 G A W westernTUL. wascausedbytheincreaseduseofchlorpyrifos(Fig.7a).Animportant Finally,thespatialpatternsofRI andRI bothwerelargelyaffected concernisthesignificantlyincreaseduseofchlorpyrifosinSAC(though S A bytotalpesticideUI,whilethepesticidetoxicitiestoearthwormsplayed stilllowerthantheothertworegions),whichmightbeduetoelevated Fig.5.Spatialpatternsoftheannualriskintensities(R/ha)of(a)surfacewaterrisk(RIW),(b)groundwaterrisk(RIG),(c)soilrisk(RIS),and(d)airrisk(RIA)forCaliforniaalmondsfrom@ 1996to2010. Y.Zhan,M.Zhang/ScienceoftheTotalEnvironment472(2014)517–529 525 526 Y.Zhan,M.Zhang/ScienceoftheTotalEnvironment472(2014)517–529
Description: