ebook img

Spatial and temporal patterns of pesticide use on California almonds and associated risks to the ... PDF

13 Pages·2013·4.6 MB·English
by  Yu Zhan
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Spatial and temporal patterns of pesticide use on California almonds and associated risks to the ...

ScienceoftheTotalEnvironment472(2014)517–529 ContentslistsavailableatScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv Spatial and temporal patterns of pesticide use on California almonds and associated risks to the surrounding environment ⁎ YuZhan,MinghuaZhang DepartmentofLand,Air,andWaterResources,UniversityofCalifornia,Davis,CA95616,USA H I G H L I G H T S •Saptiotemporalpatternsofpesticideuse/riskinCaliforniaalmondswerestudied. •Useintensitiesofinsecticides/fungicides/herbicidesshowedlatitudinalgradients. •Overall,herbicideuseincreasedconsiderably,whilefungicideusedecreased. •Theriskstosurfacewater,groundwater,andsoildecreasedinmanyareas. •Riskpatternsweremainlyassociatedwithusepatternsofhigh-riskpesticides. a r t i c l e i n f o a b s t r a c t Articlehistory: VariousstakeholdersofCaliforniaalmondshavebeeninvestingeffortsintomitigatingpesticideimpactson Received14September2013 humanandecosystemhealth.Thisstudyisthefirstcomprehensiveevaluationthatexaminesthespatialandtem- Receivedinrevisedform2November2013 poralpatternsofpesticideuseandassociatedenvironmentalrisks.Thepesticideusedatafrom1996to2010were Accepted3November2013 obtainedfromthePesticideUseReportingdatabase.ThePesticideUseRiskEvaluationindicatorwasemployedto Availableonlinexxxx evaluatethepesticideenvironmentalrisksbasedonthepesticidepropertiesandlocalenvironmentalconditions. Analysesshowedthattheuseintensities(UI)ofinsecticides(oilsaccountedfor86%ofthetotalinsecticideUI) Keywords: andherbicidesbothincreasedfromnorthtosouth;fungicidesshowedtheoppositespatialpattern;andfumi- Pesticide Environmentalrisk gantswereusedmostintensivelyinthemiddleregion.TheUIoffungicidesandherbicidessignificantlydecreased Pestmanagement andincreased,respectively,throughoutthestudyarea.TheinsecticideUIsignificantlydecreasedinthenorthbut Regulation increasedinmanyareasinthesouth.Inparticular,theorganophosphateUIsignificantlydecreasedacrossthe Almond studyarea,whilethepyrethroidUIsignificantlyincreasedinthesouth.ThefumigantUIdidnotshowatrend. California Theregionalriskintensitiesofsurfacewater(RI ),soil(RI),andair(RI )allincreasedfromnorthtosouth, W S A whilethegroundwaterregionalriskintensity(RI )decreasedfromnorthtosouth.ThemaintrendsofRI ,RI , G W G andRI weredecreasing,whiletheRI didnotshowatrendinanyregion.It'snoticeablethatalthoughtheher- S A bicideUIsignificantlyincreased,theUIofhigh-leachingherbicidessignificantlydecreased,whichledtothesig- nificantdecreaseofRI .Insummary,thetemporaltrendsofthepesticideuseandrisksindicatethattheCalifornia G almondgrowersaremakingconsiderableprogresstowardssustainablepestmanagementviaintegratedpest management,butstillrequiremoreeffortstocurbthefastincreaseofherbicideuse. ©2013ElsevierB.V.Allrightsreserved. 1.Introduction orangeworm (Amyelois transitella), San Jose scale (Quadraspidiotus perniciosus),peachtwigborer(Anarsialineatella),web-spinningspider AlmondsareoneofthemostimportantspecialtycropsinCalifornia, mites,andants(CEPA,2011).Inthedormantseason,oilsprayalone USA,whichproducedabout80%oftheglobalalmondsupplyandgener- cancontrollowtomoderatepopulationsofSanJosescaleandmites. ated$3.87billioninrevenuein2012(AlmondBoardofCalifornia,2012). Whenpopulationsofpeachtwigborer(alsotargetedduringbloom) AlmostalltheCaliforniaalmondorchards(3080km2in2012)arelocated andSanJosescalearehigh,oilsarelikelysprayedwithotherinsecticides. intheCentralValley(58,000km2),whichhasamildclimate,fertilesoil, Inthegrowingseason,insecticidetreatments(mainlyinJulyandAugust) andabundantsunshine.TheCentralValleyisoneofthemostproductive mostlycontrolnavelorangeworm.Diseasesduringwintersandearly agricultural areas in the world. Key pests in almond are navel springs, such as anthracnose (pathogen: Colletotrichum acutatum), brown rot blossom blight (pathogen: Monilinia laxa), and scab (pathogen:Cladosporiumcarpophilum)arecontrolledbyvariousfungi- ⁎ Correspondingauthor at. DepartmentofLand, Air,andWaterResources, 131 VeihmeyerHall,UniversityofCalifornia,Davis,CA95616,USA.Tel.:+15307524953; cides,e.g.,captan,copper,orziram(UCIPM,2012).Weeds,suchas fax:+15307521552. bermudagrass(Cynodondactylon),dallisgrass(Paspalumdilatatum),and 0048-9697/$–seefrontmatter©2013ElsevierB.V.Allrightsreserved. http://dx.doi.org/10.1016/j.scitotenv.2013.11.022 518 Y.Zhan,M.Zhang/ScienceoftheTotalEnvironment472(2014)517–529 hairyfleabane(Conyzabonariensis),aretreatedwithpre-emergenceor resultsandconclusionsareexpectedtoreflecttheoutcomeofCalifornia post-emergenceherbicides.Tominimizetheyieldlosscausedbypests, almondstakeholders'effortstowardssustainablepestmanagementand pathogens,andweeds,Californiaalmondgrowersapplyalargeamount toprovidesuggestionsforprioritizingpestmanagementpractices. ofpesticides;9.3milliontonsofpesticideactiveingredientswereapplied in2010(CEPA,2012).However,theappliedpesticidesthreatentheenvi- 2.Materialsandmethods ronmentandhumanhealth,asevidencedbypesticidedetectionsin groundwater(Kolpinetal.,2000)andsurfacewater(Guoetal.,2007; 2.1.Studyarea Hladiketal.,2009). Variousstakeholdershavemadeeffortstoreduceoreliminatetheir TheCentralValley,wherealmostallofthealmondsinCalifornia usesofthepesticidesthatareknowntoharmhumanhealthordegrade werecultivated,wasselectedasthestudyarea(Fig.1a).Thestudy environmentalquality.TheUnitedStatesEnvironmentalProtection Agency(USEPA)regulatespesticideuseundertheFederalInsecticide, Fungicide,andRodenticideAct(FIFRA)andtheFederalFood,Drug, and Cosmetic Act (FFDCA). Both of these acts were significantly amendedbytheFoodQualityProtectionActof1996(FQPA),which settoughersafetystandards,includingmandatorypesticidereregistra- tion(USEPA,2012).Inaddition,integratedpestmanagement(IPM) practiceshavebeenpromotedtoachievethegoalofsustainablepest management. Growers monitor pest pressure and apply pesticides only when necessary, and high-risk pesticides tend to be replaced with reduced-risk pesticides. For instance, organophosphates that werefoundtodeterioratesurfacewaterqualitywerepartiallyreplaced withoilsorBacillusthuringiensis(Bt),andhencethemajorityofinsecti- cides(intermsofmass)appliedonalmondsinrecentyearswereoils (Epsteinetal.,2001;Zhangetal.,2005).Topresentanoveralland more recent picture of the shift of pest management practices for Californiaalmonds,itisimportanttoevaluateallthepesticidesthat areused,whichhasnotbeendoneinpreviousstudies. Analyzingthedataforpesticideusealoneisinsufficientforevaluat- ing environmental consequences of pest management practices (Barnardetal.,1997),thusnumerouspesticideriskindicatorsconsider- ingpesticideeffectsandexposurehavebeendevelopedaroundthe world (Bockstaller et al., 2009), including PRoMPT (Whelan et al., 2007),SPIDER(Renaudetal.,2008;RenaudandBrown,2008),EPRIP (Trevisan et al., 2009), and I-Phy (Lindahl and Bockstaller, 2012). Theseindicatorsvaryinmethodologies,inputdatarequirements,indi- catoroutputs,andapplicablescales.Severalindicatorcomparisonstud- ies have been carried out to identify ideal indicators for different purposes(Maudetal.,2001;Reusetal.,2002;Stenrodetal.,2008), but they have failed to reach clear agreements. In recent years, alongwiththeadvancementoftheGeographicInformationSystem (GIS)softwaretechniquesandaccumulationofenvironmentaldata, pesticideriskindicatorshavebecomecloselyintegratedwithGISfor preparingsite-specificenvironmentalconditiondataandpresenting riskmaps(e.g.,Centofantietal.,2008;Salaetal.,2010;Schrieverand Liess,2007;Vajetal.,2011). Yet,twoobstaclesexistinappliedpesticideriskevaluation:(1)the shortageofrealpesticideapplicationdata;and(2)thelackofasuitable pesticideriskindicatorequippedwithextensivedataofpesticideproper- tiesandenvironmentalconditions.Thisstudyovercamethesetwoobsta- cleswiththePesticideUseReporting(PUR)database(CEPA,2012)and thePesticideUseRiskEvaluation(PURE)indicator(ZhanandZhang, 2012).ThePURdatabasehascomprehensivelyrecordedtemporaland spatialdataforagriculturalpesticideuseinCalifornia,USAsince1990. ThePUREindicatorwasspecificallydevelopedforCaliforniaagricultural pesticideuse,andevaluatespesticide'sriskstosurfacewater,groundwa- ter,soil,andair,byconsideringpesticidepropertiesandon-siteenviron- mentalconditions.ThePUREindicatorwasvalidatedagainstsurface water monitoring data (Zhan and Zhang, 2012) and was evaluated withasensitivityanalysis(ZhanandZhang,2013). Thisstudyprovidesthefirstcomprehensiveanalysisofoverallpesti- cideuseforacrop,alongwithriskevaluationbyapesticideriskindica- tor.Thegoalistoevaluatethepastperformanceofpestmanagementin Californiaalmonds.Thespecificobjectivesare:(1)tocharacterizethe Fig.1.Spatialandtemporalpatternsofthealmondplantedareasfrom1996to2010in spatialandtemporalpatternsofpesticideuse;and(2)toanalyzethe theCentralValley,California,USA.(a)Theaverageannualplantedareasattownship spatialandtemporalpatternsofpesticideenvironmentalrisks.The (~9.7×9.7km2)level,and(b)theannualplantedareasforeachregion. Y.Zhan,M.Zhang/ScienceoftheTotalEnvironment472(2014)517–529 519 area was divided according to convention into three regions tosurfacewatertothemaximumacuteandchronicpesticidetoxicities, fromnorthtosouthinthestate:theSacramentoValley(SAC),the respectively,totheaquaticorganisms(includingfish,Daphnia,and SanJoaquinValley(SJQ),andtheTulareBasin(TUL).Theaverageannu- algae).PEC wasdeterminedbythepesticidedriftprocessmodeled WS al planted area of almonds in California from 1996 to 2010 was withtheDriftCalculator(FOCUS,2001)andthepesticiderunoffprocess 277,000ha,whichwascomposedof50,000hainSAC,128,000hain usingtheSCScurvenumbermethod(SCS,1972).PEC wastheaverage WL SJQ,and99,000hainTUL.Almondsarethemostdenselycultivatedin concentrationduringthe21days(thetypicalperiodformeasuringthe centralSJQ,southTUL,andnorthSAC(Fig.1a).Theplantedareasin- chronictoxicity)afterapplication. creasedinallthreeregionsfrom1996to2010,withasharpincrease Secondly,R wastheratioofthepredictedpesticideconcentration G from2003to2007(Fig.1b).Thethreeregionshavesomewhatdifferent leachingtogroundwater(PEC )toADI.Theadaptedattenuationfactor G climaticconditions.Fromnorthtosouth,temperatureincreaseswhile methodoriginallyproposedbyRaoetal.(1985)wasusedtocalculate humiditydecreases,resultingindifferentpestpatternsandpestman- PEC ,wherepesticidedegradation,convection,anddispersionwere G agementpractices. takenintoaccount. Theenvironmentalconditions,includingtheclimaticconditions,soil Thirdly,R,similartoR ,wasthemaximumoftheshort-termand S W properties,andotherdataforenvironmentalfactorswerecompiled long-termriskscoresforsoil,whichweretheratiosofthepredicted fromvariouspublicdatasources.Theclimaticconditionswereobtained short-term(PEC )andlong-term(PEC )pesticideconcentrationsin SS SL fromtheCaliforniaIrrigationManagementInformationSystem(CIMIS) topsoiltotheacuteandchronicpesticidetoxicitiestoearthworms, (CDWR,2010).ThesoilpropertieswereextractedfromtheSoilSurvey respectively.PEC wasdeterminedbytheamountofpesticidereaching SS Geographic (SSURGO) and the State Soil Geographic (STATSGO) thegroundrightafterthepesticideapplication,andhencePEC wasthe SL databases(NRCS,2008).Thegroundslopewascalculatedfromadigital averageconcentrationintopsoilduringthe21daysafterapplication. elevationmodel(DEM)database(NRCS,2008).Thegroundwaterdepth Finally,R wastheproductofthepesticideapplicationrate(RATE), A wasinterpolatedfromtheUSGSgroundwatermonitoringdata(USGS, theEP,andtheapplicationmethodadjustmentfactor(AMAF).Fora 2010),andthefarmlanddistancetosurfacewaterwascalculatedfrom pesticideproductcontainingmultipleAIs,theproduct-levelR was A theCal-Atlasstreammap(Cal-Atlas,2008). assignedtoeachAIinproportiontotheirmasspercentagesinthat product. 2.2.Pesticideusedataandpesticideproperties Asthefourtypesofriskvalueswerecalculatedfordifferentenviron- mental compartments, they cannot be compared with each other. ThepesticideusedataforCaliforniaalmondsfrom1996to2010were SimilartoUI,theannualfield-levelpesticideriskintensities(RI;unit: queriedfromthePURdatabasemaintainedbyCDPR(CEPA,2012).Nearly R/ha)werealsosummarizedbyAI,pesticidecategories,andallpesti- 2millionpesticideapplicationrecordswereretrieved,eachincludingthe cides.RI =Σ(pesticideriskvalues)/fieldarea,wherei=W,G,S, i applicationdateandspatialsection(~1.6×1.6km2)(USDI,2009).This or A, which represent surface water, groundwater, soil, and air, studytookallpossiblepesticidesintoaccount,withafocusonthemain respectively. Then the field-level RIs were aggregated to township pesticidecategoriesofinsecticides,fungicides,herbicides,andfumigants, (~9.66×9.66km2)(USDI,2009),region,andstatelevels. whichrepresented139,76,76,and8pesticideAIs(activeingredients) (TableA1),respectively.ElevenAIs(e.g.,sulfur)wereclassifiedasinsecti- 2.4.Trendanalysisandspatialmapping cidesaswellasfungicides.Furthermore,twohighlyconcernedchemical groupsofinsecticides–organophosphateandpyrethroids(TableA2)– ThetrendanalysisandspatialmappingofUIandRIwereperformed werealsoanalyzedaspesticidecategories.Theannualfield-levelpesticide inR(RDevelopmentCoreTeam,2013),whichisafreeandversatile useintensity(UI=Σ(pesticideuseamount)/fieldarea;unit:kg/ha) computationplatform.TrendsweredetectedwiththeMann–Kendall wassummarizedbyindividualAIs,pesticidecategories,andallpesticides. trendtest(Mann,1945)implementedinpackageKendall(McLeod, Thenthefield-levelUIswereaggregatedtotownship(~9.66×9.66km2) 2011),andslopeswerecalculatedbytheTheil–Senestimator(Sen, (USDI,2009),region,andstatelevelsusingthearea-weighted-mean 1968)implementedinpackagezyp(BronaughandWerner,2013). approach. ThecombinationoftheMann–KendallmethodandtheTheil–Senesti- Theproduct-andAI-levelpesticidepropertieswereobtainedfrom matorisrobustandwidelyusedforanalyzingenvironmentaltime- severaldatasources.Theproduct-levelproperties,includingtheemis- seriesdata(HelselandHirsch,2002).Significancewasconsideredas sionpotential(EP)andpercentageofAI,werefromthepesticideprod- pb0.1. In addition, the UI and RI were mapped at township level uct/label database maintained by CDPR (CEPA, 2010). The AI-level (~9.7×9.7km2)(USDI,2009)byusingpackagesrgdal(Bivandetal., propertiesincludechemical,physical,andtoxicityproperties.Specifi- 2013)andsp(PebesmaandBivand,2005). cally,thesorptioncoefficient(K ),theHenry'slawconstant(K ),the OC H aerobic(DT )andanaerobic(DT )half-lifeinsoil,thehalf-lifein 3.Results SO SA water(DT ),themaximumacute(LEC )andchronic(NOEC )toxicity W A A toaquaticorganisms(includingfish,Daphnia,andalgae),theacute 3.1.Pesticideuseintensity(UI) (LC )andchronic(NOEC )toxicitytoearthworms,andtheacceptable W W dailyintake(ADI)wereobtainedfromtheChemPestdatabase(CEPA, Between1996and2010,thestateaverageannualUIsofinsecticides, 2009),thePesticidePropertiesDatabase(PPDB)(PPDB,2012),andthe fungicides,herbicides,andfumigantswere17.00kg/ha,4.05kg/ha, Pesticide Action Network (PAN) (Kegley et al., 2011) in order of 3.21kg/ha,and1.09kg/ha,respectively(Table1);andtheaverage preference. annualUIsoforganophosphatesandpyrethroidswere0.98kg/haand 0.06kg/ha,respectively(TableA3).Attheregionallevel,theaverage 2.3.Pesticideriskindicator annualUIofinsecticidesandherbicidesbothincreasedfromnorthto south,thefungicideUIdecreasedfromnorthtosouth,andthefumigant Onthebasisofthepesticidepropertiesandlocalenvironmental UIwasthehighestinthemiddleregion.Thesamelatitudinalpatterns conditions,thePUREindicator(ZhanandZhang,2012)wasusedto wereobservedonthetownshipscale,withsmoothspatialtransition evaluatetheriskvaluesofeachpesticideapplicationtosurfacewater (Fig.2).Furthermore,theregionalaverageannualUIoforganophos- (R ),groundwater(R ),soil(R),andair(R ). phatesinTULwasaboutthreetimesasthatinSACorSJQ,whilethe W G S A Firstly,R wasthemaximumoftheshort-termandlong-termrisk regionalaverageannualUIofpyrethroidsinSACwaslessthanahalf W valuesforsurfacewater,whichweretheratiosofthepredictedshort- ofthatinSJQorTUL(TableA3).Thespatialmaps(Fig.A1aandA1b) term(PEC )andlong-term(PEC )pesticideconcentrationsloaded confirmtheregionalUIpatternsoforganophosphatesandpyrethroids. WS WL 520 Y.Zhan,M.Zhang/ScienceoftheTotalEnvironment472(2014)517–529 Table1 Useintensities(UI)bypesticideusecategoryforCaliforniaalmondsfrom1996to2010,withstatewidetop-fivepesticidesineachusecategory. Usecategory/pesticide State SAC SJQ TUL Mean Slope Mean Slope Mean Slope Mean Slope Insecticides 17.00 −0.22 7.63 −0.83** 13.28 −0.28· 26.54 0.26 Petroleumoil,unclassified 10.03 −0.22* 2.81 −0.43** 6.79 −0.27* 17.98 −0.01 Mineraloil 4.59 0.20* 2.60 −0.37** 4.70 0.13 5.28 0.43** Sulfur 0.47 0.00 0.96 0.11* 0.44 −0.04** 0.25 0.01 Propargite 0.46 −0.06** 0.24 −0.01· 0.37 −0.05** 0.73 −0.12** Chlorpyrifos 0.45 −0.01 0.23 0.01* 0.37 −0.02** 0.67 −0.01 Fungicides 4.05 −0.28** 5.34 −0.05 4.46 −0.41** 2.83 −0.22** Ziram 0.95 −0.08** 2.06 −0.04 0.69 −0.09** 0.73 −0.08** Copperhydroxide 0.81 −0.08** 0.29 −0.02** 1.15 −0.11** 0.63 −0.04* Captan 0.48 −0.08** 0.64 −0.05* 0.58 −0.10** 0.25 −0.05** Sulfur 0.47 0.00 0.96 0.11* 0.44 −0.04** 0.25 0.01 Maneb 0.35 −0.06** 0.54 −0.05* 0.37 −0.07** 0.22 −0.04** Herbicides 3.21 0.17** 2.94 0.13** 3.10 0.14** 3.45 0.22** Glyphosate,isopropylaminesalt 1.24 0.00 1.40 −0.01 1.21 0.02 1.21 −0.01 Paraquatdichloride 0.46 0.03* 0.31 0.05** 0.37 0.02· 0.65 0.04* Glyphosate,potassiumsalt 0.26 0.04** 0.16 0.02* 0.20 0.04** 0.36 0.05** Oryzalin 0.23 −0.00 0.34 0.01 0.24 −0.01 0.18 −0.01 Oxyfluorfen 0.22 0.01* 0.15 0.01** 0.21 0.01* 0.26 0.01* Fumigants 1.09 −0.02 0.11 2E-04 1.51 −0.01 1.06 −0.02 1,3-Dichloropropene 0.77 0.07 0.05 0.00 1.06 0.09· 0.76 0.06* Methylbromide 0.26 −0.04** 0.04 −0.01** 0.33 −0.06** 0.30 −0.04** Sodiumtetrathiocarbonate 0.03 0.00 3E-3 0.00 0.06 0.00 7E-5 0.00 Metam-sodium 0.02 −1E-3** 7E-6 0.00 0.03 −3E-3** 0.01 0.00 Chloropicrin 0.01 −0.00 0.01 3E-4 0.01 −0.00 4E-3 −0.00 SAC:theSacramentoValley;SJQ:theSanJoaquinValley;TUL:theTulareBasin.Mean:averageannualuseintensity(kg/ha).Slope:theTheil–Senslope(kg/ha/year)withsignificancelevel calculatedbytheMann–Kendalltrendtest.**pb0.01;*pb0.05;·pb0.1. ThestatewideUIoffungicidesandherbicidessignificantlydecreased 3.2.Pesticideriskintensity(RI) andincreased,respectively,whilethestatewideUIofinsecticidesand fumigantsshowednotrends(Table1).AlltheUItrendsatregional Between 1996 and 2010, the state average annual RI , RI , RI , W G S level were consistent with the trends at state level, except for the andRI were81R/ha,98R/ha,182R/ha,and90R/ha,respectively A increasedtrendsoftheinsecticideUIinSACandSJQ,andthelackof (Table2).Organophosphatescontributed45%,9%,17%,and16%ofthe trendsobservedforthefungicideUIinSAC.Amonginsecticides,the totalRI ,RI ,RI,andRI ,respectively,whilepyrethroidscontributed W G S A organophosphateUIsignificantlydecreasedinallregions,whilethe 11%,0%,5%,and2%,respectively(TableA3).Atregionallevel,theaver- pyrethroidUIsignificantlyincreasedonlyinTUL(TableA3).Figs.3 ageannualRI ,RI,andRI increasedfromnorthtosouth,whileRI de- W S A G andA1showspecificareaswithsignificantUIchanges.Increaseofher- creasedfromnorthtosouth.ThespatialgradientsofRIonthetownship bicideUIoccurredacrossthewholeCentralValley,whiledecreaseof levelwerelessclearthanthoseofUI,andthehigh-RIareasweremore fungicideUIspreadoverSJQandTUL.DecreaseoforganophosphateUI clustered(Fig.5).NorthernSACandsouthernTULhadclusteredareas occurredoverthewholeCentralValley,whileincreaseofpyrethroid ofbothhighRI andhighRI ,withafewhigh-RI areasscattered W G W UImainlytookplaceinTUL.Figs.4andA2showtheyearlyUIbypesti- inmiddleSJQ.Incontrast,high-RI andhigh-RI areaswerelocatedin S A cideusecategoriesatregionallevel.ThedecreaseofinsecticideUIinSAC middleSJQandnortheasternTUL.Moreover,theriskmapsoforgano- andSJQmainlyhappenedfrom1996to2000;andtheorganophosphate phosphates(Fig.A3)aresimilartothoseofallpesticides(Fig.5)toa UIcontinuouslydecreasedinallregions,whilethepyrethroidUIkept certainextent.Forpyrethroids,RI andRI weretheonlyconcerns: W S steadyinmostyearsbutincreasedalotinSJQandTULin2010.InSJQ thehigh-RI areasscatteredacrossthewholeCentralValley,while W and TUL the fungicide UI decreased consistently, while in SAC it thehigh-RI areasclusteredinTUL(Fig.A6). S decreasedinitiallyuntil2001,followedbyaperiodofrapidincrease. ThestatewideRI andRI significantlydecreased,whilethestate- G S TheherbicideUIinallthreeregionsslightlydecreasedfrom1996to wideRI andRI didn'tshowtrends(Table2).RegionallyinSAC, W A 2001andthenincreaseddramatically.ThefumigantUIkeptsteadyin noneoftherisktypesshowedanytrends.InSJQ,allrisktypessignif- SACbutvariedwidelyinSJQandTUL. icantlydecreasedexceptRI ,whichdidnothavetrendsinanyre- A Thestatewidetop-five-UIpesticidesbyusecategoryaccountedfor gion.InTUL,bothRI andRI significantlydecreased.Fig.6shows G S 94%,76%,75%,and99.6%oftheUIofinsecticides,fungicides,herbicides, specificareaswithsignificantRIchanges.InSAC,theareaswhere andfumigants,respectively(Table1).Forinsecticides,“petroleumoil, RIsignificantlyincreased/decreasedwerescattered.InSJQRI ,RI W G unclassified”andmineraloilaccountedforthemajorityoftheinsecti- andRI significantlydecreasedacrosslargeareas.InTUL,bothRI and S W cideUIandthetotalpesticideUI.Mostofthetop-fiveinsecticideseither RI significantlydecreasedinaclusteredarealocatedinthesouth,and S significantlydecreasedorshowednotrendintheirUI.Forfungicides, RI significantlyincreasedatthewestedge.Moretemporallyspecific, A SACheavilyreliedonziramandsulfur,SJQusedcopperhydroxidethe theRI ofTULlargelydecreasedfrom1996to2002andthenbounced W mostintensively,andTULtendedtohaveevenapplicationsofziram back in 2006, while the RI of SAC and SJQ were relatively steady W andcopperhydroxide.MostoftheUIofthetop-fivefungicidesde- (Fig. 7a). The RI of SJQ and TUL showed two stages, separated in G creasedsignificantly.Forherbicides,“glyphosate,isopropylaminesalt” 2004and2000,respectively,whiletheRI ofSACdidnotshowaclear G wasthedominantherbicideinallregionsandshowednotrends.The trend(Fig.7b).TheRI ofallregionsdecreasedsharplyfrom1996to S UIoftheothertopherbicidesexceptoryzalinincreasedsignificantlyin 2000or2001,andthenroseslowlytill2006,followedbyashortde- allregions.Forfumigants,1,3-dichloropropeneandmethylbromide creasingperiod(Fig.7c).TheRI ofallthreeregionsshowedsimilar A accountedfor94%ofstatewidefumigantuses.Theformerincreasedsig- temporalpatternsasRI (i.e.,decrease–increase–decrease)(Fig.7d). S nificantlyinSJQandTUL,whilethelattersignificantlydecreasedinall ThedifferenceisthatRI recoveredtotheinitiallevelattheendofthe A regions. increasestagewhileRI onlypartiallyrecovered. S Y.Zhan,M.Zhang/ScienceoftheTotalEnvironment472(2014)517–529 521 Fig.2.Spatialpatternsoftheaverageannualuseintensities(UI;kg/ha)of(a)insecticides,(b)fungicides,(c)herbicides,and(d)fumigantsforCaliforniaalmondsfrom1996to2010. 522 Y.Zhan,M.Zhang/ScienceoftheTotalEnvironment472(2014)517–529 Fig.3.Temporaltrendsoftheannualuseintensities(UI;kg/ha)of(a)insecticides,(b)fungicides,(c)herbicides,and(d)fumigantsforCaliforniaalmondsfrom1996to2010. Y.Zhan,M.Zhang/ScienceoftheTotalEnvironment472(2014)517–529 523 Fig.4.Regionalannualuseintensities(UI;kg/ha)of(a)insecticides,(b)fungicides,(c)herbicides,and(d)fumigantsforCaliforniaalmondsfrom1996to2010. ThetemporalpatternsofRIwerequitedifferentbetweenorgano- significantlyincreasedinSJQandTUL,butonlyaccountedfor3%ofRI A phosphatesandpyrethroids.Fororganophosphates,RI significantly inSACanddidnotshowatrend. W decreasedonlyinSJQ,RI andRI significantlydecreasedinallregions, G S and RI significantly decreased in SJQ and TUL (Table A3). Fig. A4 4.Discussion A showstheRItrendsfororganophosphatesattownshiplevel.RI signif- W icantlydecreasedinlargeareasofSJQandinasmallportionofSACand 4.1.Spatialpatternsofpesticideuseandrisk TUL,whichwasreflectedinthebasin-leveltrendofRI .RI hadasim- W A ilarspatialpatternwithRI ,butsignificantlydecreasedinlargerareas 4.1.1.Pesticideuseintensity(UI) W inTUL.ThetemporaltrendsofRI andRI showedasimilarspatialpat- ThespatialpatternsofUI,mainlycausedbyspatiallydifferentpest G S tern.Fig.A5showstheyearlychangeofRIatregionallevel.Thedecrease pressures,werehighlyassociatedwithclimateconditionsandfarming ofRI wasapparentinallregions,onepeakforRI andRI ofTULoc- activities.Inthestudyarea(i.e.,theCentralValley,California),thetem- S W A curredin2006,andonepeakforRI ofSACappearedin1999.Forpyre- peratureincreasesfromnorthtosouthwhilethehumiditydecreases G throids(RI andRI werenegligible),RI significantlyincreasedonlyin fromnorthtosouth.Insouthernareas,moreinsecticides(including G A W TUL,whileRI significantlyincreasedinSJQandTUL.RI significantly moreorganophosphates,pyrethroids,andotherinsecticides)andherbi- S W decreasedinsmallareasofnorthernSACandmiddleSJQ,andsignifi- cideswereapplied,indicatingthathighertemperatureswithsufficient cantlyincreasedinlargeareasofTUL(Fig.A7a).RI significantlyin- watersupplyviairrigationfavoredthegrowthofinsectsandweeds. S creased across the whole Central Valley (Fig. A7c). The RI of TUL Incontrast,fungiprefercoolandmoistenvironments,whichresulted W increasedcontinuouslyandrapidlyfrom2005to2010(Fig.A8a).The inmoreintensivefungicideuseinnorthernareas.Inaddition,thespatial RI of TUL increased slowly but steadily from the beginning of the patternoffumigantUIwasmainlyduetofarmingactivities.Fumigants S studyperiod,andincreasedmuchfasterfrom2005(Fig.A8c). weremainlyusedtotreatsoil-bornediseaseswhenalmondfieldswere Thestatewidetop-fivepesticidesbyrisktypeaccountedfor80%, newlycultivatedorreplanted(CEPA,2008),aswellasforpost-harvest 86%,44%,and66%ofRI ,RI ,RI ,andRI ,respectively(Table2).For pests.TherapidexpansionofalmondfieldsinSJQandTULresultedin W G S A RI ,ziram,copperhydroxide,andchlorpyrifoswerethetopcontribu- higheraverageannualfumigantUIinthesetworegions(Fig.2d). W torsinSAC,SJQ,andTUL,respectively.TheRI fromziramsignificantly InadditiontothegeneralspatialpatternsoftheUIs,theexistenceof W decreasedinSJQonly.TheRI fromcopperhydroxidesignificantlyde- clusteredhigh-UIareasdemonstrateslocationspecificity,whichwas W creasedinallregions.Incontrast,theRI fromchlorpyrifosdidn'tshow likelyassociatedwithlocalpestpressure(includinginsects,pathogens, W atrendinanyregion.ForRI ,oxyfluorfenandsimazinewerethemain andweeds).Theareaswithdenseralmondfields(Fig.1a)seemedto G contributorsinallregions.TheRI ofallthetop-fivepesticidessignifi- sufferhigherpestpressuresreflectedinhigherpesticideUI.Innorthern G cantlydecreasedinallregions,exceptfortheRI ofoxyfluorfenwhich SACmoreintensefungicidesandherbicideswereapplied.IncentralSJQ G significantlyincreasedinSACandshowednotrendintheothertwore- higherUIsoffungicidesandfumigantswereobserved.InsouthernTUL gions.ForRI,mostofthetop-fivecontributorssignificantlydecreased insecticidesandherbicideswereusedmoreintensively.Thespatial S inallregions,exceptfortheRI of1,3-dichloropropenethatsignificantly correlation between the cultivation density and the pest pressure S increasedinSJQandTUL,andtheRI ofmineraloilthatsignificantlyin- mightbeinducedbypestdispersionranges.Thatis,closerdistances S creasedinTUL.ForRI ,1,3-dichloropronewasthetopcontributorand amongalmondfieldsfacilitatedthedispersionandsubsequentburst A 524 Y.Zhan,M.Zhang/ScienceoftheTotalEnvironment472(2014)517–529 Table2 Riskintensities(RI)forCaliforniaalmondsfrom1996to2010,withstatewidetop-fivepesticidesforeachrisktype. Risk/pesticide State SAC SJQ TUL Mean Slope Mean Slope Mean Slope Mean Slope Surfacewater 81 −0.8 57 −2.0 67 −2.4· 111 −1.1 Chlorpyrifos 31 1.2 9 −0.03 21 −0.7 54 2.3 Copperhydroxide 18 −1.7** 10 −0.4** 22 −1.6* 18 −1.5 Ziram 7 −0.7* 19 −0.8 5 −0.7** 4 −0.3 Permethrin 4 −0.3· 2 −0.01 4 −0.3* 6 −0.2 Chloropicrin 4 −0.2 9 0.2* 5 −0.6** 1 −0.04 Groundwater 98 −4.1** 185 −2.5 90 −4.5** 64 −3.0· Oxyfluorfen 37 1.0 83 6.8** 18 0.3 39 −0.5 Simazine 29 −1.9** 26 −1.6** 48 −2.8* 6 −0.5** Diazinon 7 −0.7** 32 −3.3** 1 −0.1* 1 −0.02** Norflurazon 6 −0.9** 7 −0.8** 8 −0.9** 3 −0.3** Propargite 5 −0.7** 12 −0.7 3 −0.4** 5 −0.9** Soil 182 −9.8* 145 −7.1 183 −9.4* 199 −9.7* Copperhydroxide 22 −2.3** 8 −0.6** 31 −3.1** 17 −1.1* 1,3-Dichloropropene 19 1.4* 1 0.03 25 2.0· 19 1.7* Ziram 17 −1.5** 39 −1.5 12 −1.6** 12 −1.6** Methidathion 15 −2.8** 11 −0.9** 9 −1.4** 25 −5.6** Mineraloil 9 0.1 6 −0.9** 9 0.03 10 0.7** Air 90 1.7 42 0.2 92 0.6 112 3.0 1,3-Dichloropropene 20 1.8 1 0.1 27 2.2 20 1.7* Oxyfluorfen 12 0.5 9 0.7* 12 0.3 15 0.5 Chlorpyrifos 12 −0.5 6 0.4 10 −0.6* 17 −0.7 Petroleumoil,unclassified 9 1.0** 1 −0.1* 6 0.6** 17 1.6** Methylbromide 7 −1.0** 1 −0.1** 8 −1.4** 7 −0.9** SAC:theSacramentoValley;SJQ:theSanJoaquinValley;TUL:theTulareBasin.Mean:averageannualriskintensity(R/ha).Slope:theTheil–Senslope(R/ha/year)withsignificancelevel calculatedbytheMann–Kendalltrendtest.**pb0.01;*pb0.05;·pb0.1. ofpests.Ontheotherhand,innortheasternTULwherethealmond animportantroleinRI andtheemissionpotentialswereimportantto S fieldswererelativelysparser,theUIsofinsecticides,fungicides,andfu- RI .Thefindingswereconsistentwiththesensitivityanalysisonthe A migantswerealsohigh.Itindicatedthatsomeotherfactors(e.g.,farm PUREindicator(ZhanandZhang,2013).Thereexistedhigh-RI and S managementpractices)influencedthelocalpesticideUIorpestpres- high-RI areasincentralSJQandnortheasternTUL,whichwasmainly A sure,whichrequiresmoreinvestigationinthefuture. causedbyhighfumigantUIinthoseareas.Inaddition,thehigh-RI S areasinnorthernSACwerelargelyduetotheintenseuseoffungicides. 4.1.2.Pesticideriskintensity(RI) ComparedwithUI,thespatialpatternsofRIwereaffectedbymore 4.2.Temporalpatternsofpesticideuseandrisk factors,includingenvironmentalconditions(e.g.,surfacewaterdis- tanceandgroundwaterdepth)andpesticideproperties.Firstly,the ThetemporalpatternsofUIandRIweretheresultsoftheshiftofpest high-RI areaswereallclosetosurfacewaterandusedpesticideshigh- managementpracticesledbygovernmentalregulations,theintegrated W lytoxictoaquaticorganisms(e.g.,chlorpyrifos).Therisktosurface pestmanagement(IPM)promotion,availabilitiesofnewpesticides,and waterwasthemainenvironmentalconcernoftreatinginsectswithor- phasing-outofpesticidesknowntoposehighlyadverseimpactson ganophosphatesandpyrethroids,whicharegenerallyhighlytoxicto humanhealthandenvironment. aquaticorganisms,moderatelypersistent,andsolubleinwaterforor- ganophosphatesorboundtosedimentforpyrethroids.Thehigh-RI 4.2.1.Insecticides W areasinsouthTULwereneartheKernRiverandthePosoCreek,with Insecticideusewasunderstringentregulation,whichlargelyaffect- intensiveapplicationsoforganophosphatesandpyrethroids.Similarly, ed the temporal patterns of insecticide UI and the associated RI. thehigh-RI areasinnorthSACwereclosetotheSacramentoRiver, Althoughpropargiteandchlorpyrifoswereusedmuchlessthanthe W andfungicideswereappliedintensivelyintheseareas.Additionally, top-three-UIinsecticides(i.e.,“petroleumoil,unclassified”,mineraloil, thehigh-RI areasscatteredincentralSJQwereneartheSanJoaquin andsulfur),theirriskstohumanandecosystemhealthweremuch W River,withintensiveuseofinsecticidesandfungicides. higher. Propargite is known to cause human health problems as a Secondly,high-RI areasweremainlycausedbythecombinedef- carcinogenandreproductivetoxicant(e.g.,MillsandYang,2007),as G fectsofhighherbicideuseandshallowgroundwaterlevel.Herbicides wellasenvironmentalproblems(e.g.,Bradfordetal.,2010).Therefore, areusuallymobileinsoilasindicatedbylowsoilsorptioncoefficients theuseofpropargitehasbeenrestrictedbyregulations,resultingin (K ).Inanationalgroundwatersurvey,mostofthedetectedpesticides thesignificantdecreaseinitsuseinallthreeregions.Inaddition,chlor- OC wereherbicidesinareaswithshallowgroundwaterlevel(Kolpinetal., pyrifos has been frequently detected in surface water in California 2000).BothnorthSACandsouthwesternTULhadhigh-RI areas.Asex- (CEPA,2007)andishighlytoxictoaquaticorganisms.Ithasbeenon G pected,intheseareasthegroundwaterlevelwasshallowandherbicide theCleanWaterAct303(d)listofimpairedwaterwayssince1998in UIwashigh.Contrarily,intheareasneartheboundarybetweenSJQand theTotalMaximumDailyLoad(TMDL)program(CEPA,2013).Inthis TULwherethegroundwaterlevelwasdeep,althoughtheherbicideUI riskevaluation,chlorpyrifoswasthetopRI contributorandoneof W wasalsohigh,theRI wasnotashighasthatinnorthSACandsouth- themainRI contributors(Table2).InTULtheelevatedRI after2005 G A W westernTUL. wascausedbytheincreaseduseofchlorpyrifos(Fig.7a).Animportant Finally,thespatialpatternsofRI andRI bothwerelargelyaffected concernisthesignificantlyincreaseduseofchlorpyrifosinSAC(though S A bytotalpesticideUI,whilethepesticidetoxicitiestoearthwormsplayed stilllowerthantheothertworegions),whichmightbeduetoelevated Fig.5.Spatialpatternsoftheannualriskintensities(R/ha)of(a)surfacewaterrisk(RIW),(b)groundwaterrisk(RIG),(c)soilrisk(RIS),and(d)airrisk(RIA)forCaliforniaalmondsfrom@ 1996to2010. Y.Zhan,M.Zhang/ScienceoftheTotalEnvironment472(2014)517–529 525 526 Y.Zhan,M.Zhang/ScienceoftheTotalEnvironment472(2014)517–529

Description:
ronment and human health, as evidenced by pesticide detections in groundwater amended by the Food Quality Protection Act of 1996 (FQPA), which along with the advancement of the Geographic Information System .. Glyphosate, potassium salt . the Clean Water Act 303 (d) list of impaired waterways s
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.