ebook img

SparseDTW: A Novel Approach to Speed up Dynamic Time Warping PDF

1.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview SparseDTW: A Novel Approach to Speed up Dynamic Time Warping

SparseDTW: A Novel Approach to Speed up Dynamic Time Warping GhaziAl-Naymat1,∗ SanjayChawla2 JavidTaheri2 1 SchoolofComputerScienceandEngineering TheUniversityofNewSouthWales Sydney,NSW2052,Australia Email:[email protected] 2 1 0 2 SchoolofInformationTechnologies 2 TheUniversityofSydney,Australia n Email:{chawla,javidt}@it.usyd.edu.au a J 3 Abstract 1 ] We present a new space-efficient approach, (SparseDTW), to compute the Dynamic Time Warping (DTW) distance be- B tween two time series that always yields the optimal result. This is in contrast to other known approaches which typically D sacrifice optimality to attain space efficiency. The main idea behind our approach is to dynamically exploit the existence . ofsimilarityand/orcorrelationbetween thetimeseries. The more thesimilaritybetweenthetimeseriesthe lessspacere- s c quired to compute the DTW between them. To the best of our knowledge, all other techniques to speedup DTW, impose [ aprioriconstraintsanddonotexploitsimilaritycharacteristicsthatmaybepresentinthedata. Weconductexperimentsand 1 demonstratethatSparseDTWoutperformspreviousapproaches. v 9 6 Keywords: Timeseries,Similaritymeasures,Dynamictimewarping,Datamining 9 2 1 Introduction . 1 0 2 Dynamic time warping (DTW) uses the dynamic programming paradigm to compute the alignment between two time 1 series. An alignment “warps” one time series onto another and can be used as a basis to determine the similarity between v: thetimeseries. DTW hassimilaritiestosequencealignmentinbioinformaticsandcomputationallinguisticsexceptthatthe i matchingprocessinsequencealignmentandwarpinghavetosatisfyadifferentsetofconstraintsandthereisnogapcondition X inwarping. DTW firstbecamepopularinthespeechrecognitioncommunity(Sakoe&Chiba1978)whereithasbeenused r todetermineifthetwospeechwave-formsrepresentthesameunderlyingspokenphrase. Sincethenithasbeenadoptedin a manyotherdiverseareasandhasbecomethesimilaritymetricofchoiceintimeseriesanalysis(Keogh&Pazzani2000). Likeinsequencealignment,thestandardDTW algorithmhasO(mn)spacecomplexitywheremandnarethelengthsof thetwosequencesbeingaligned. Thislimitsthepracticalityofthealgorithmintodays“datarichenvironment”wherelong sequencesareoftenthenormratherthantheexception. Forexample,considertwotimeserieswhichrepresentstockprices at one second granularity. A typical stock is traded for at least eight hours on the stock exchange and that corresponds to alengthof8×60×60 = 28800. Tocomputethesimilarity, DTW wouldhavetostoreamatrixwithatleast800million entries! Figure1(a)showsanexampleofanalignment(warping)betweentwosequencesSandQ. Itisclearthatthereareseveral possiblealignmentsbutthechallengeistoselecttheonewhichhastheminimaloveralldistance.Thealignmenthastosatisfy severalconstraintswhichwewillelaborateoninSection3. Salvador&Chan(2007)haveprovidedasuccinctcategorizationofdifferenttechniquesthathavebeenusedtospeedup DTW: ∗TheworkwasdonewhiletheauthoratSchoolofInformationTechnologies,TheUniversityofSydney,Australia. 1 • Constraints: By adding additional constraints the search space of possible alignments can be reduced. Two well knownexemplarsofthisapproacharetheSakoe&Chiba(1978)andtheItakura(1975)constraintswhichlimithow farthealignmentcandeviatefromthediagonal. Whiletheseapproachesprovideareliefinthespacecomplexity,they donotguaranteetheoptimalityofthealignment. • DataAbstraction: Inthisapproach,thewarpingpathiscomputedatalowerresolutionofthedataandthenmapped backtotheoriginalresolution(Salvador&Chan2007). Again,optimalityofthealignmentisnotguaranteed. • Indexing:Keogh&Ratanamahatana(2004),Sakuraietal.(2005),andLemire(2009)proposedanindexingapproach, whichdoesnotdirectlyspeedupDTWbutlimitsthenumberofDTWcomputations. Forexample,supposethereexists a database D of time series sequences and a query sequence q. We want to retrieve all sequences d ∈ D such that DTW(q,d)<(cid:15). TheninsteadofcheckingqagainsteachandeverysequenceinD,aneasytocalculatelowerbound functionLBFisfirstappliedbetweenqandD. Theargumentworksasfollows: 1. Byconstruction,LBF(q,d)<DTW(q,d). 2. Therefore,ifLBF(q,d)>(cid:15)thenDTW(q,d)>(cid:15)andDTW(q,d)doesnothavetobecomputed. 1.1 Main Contribution Themaininsightbehindourproposedapproach,SparseDTW,istodynamicallyexploitthepossibleexistenceofinherent similarity and correlation between the two time series whose DTW is being computed. This is the motivation behind the Sakoe-ChibabandandtheItakuraParellelogrambutourapproachhasthreedistinctadvantages: 1. Bands in SparseDTW evolve dynamically and are, on average, much smaller than the traditional approaches. We alwaysrepresentthewarpingmatrixusingsparsematrices,whichleadstobetteraveragespacecomplexitycompared tootherapproaches(Figure9). 2. SparseDTW always yields the optimal warping path since we never have to set apriori constraints independently of thedata. Forexample, inthetraditionalbandedapproaches, asub-optimalpathwillresultifallthepossibleoptimal warpingpathshavetocrossthebands. 3. SinceSparseDTW yieldsanoptimalalignment,itcaneasilybeusedinconjunctionwithlowerboundapproaches. 1.2 Paper Outline Therestofthepaperisorganizedasfollows: Section2describesrelatedworkonDTW.TheDTW algorithmisdescribed inSection3. InSection4, wegiveanoverviewofthetechniquesusedtospeedupDTWbyaddingconstraints. Section5 reviews the Divide and Conquer approach for DTW which is guaranteed to take up O(m + n) space and O(mn) time. Furthermore,weprovideanexamplewhichclearlyshowsthatthedivideandconquerapproachfailstoarriveattheoptimal DTW result. The SparseDTW algorithm is introduced with a detailed example in Section 6. We analyze and discuss our resultsinSection7,followedbyourconclusionsinSection8. 2 RelatedWork DTWwasfirstintroducedinthedataminingcommunityinthecontextofminingtimeseries(Berndt&Clifford1994). Since it is a flexible measure for time series similarity it is used extensively for ECGs (Electrocardiograms) (Caiani et al. 1998),speechprocessing(Rabiner&Juang1993),androbotics(Schmilletal.1999). ItisimportanttoknowthatDTW isa measurenotametric,becauseDTW doesnotsatisfythetriangularinequality. SeveraltechniqueshavebeenintroducedtospeedupDTW and/orreducethespaceoverhead(Hirschberg1975,Yietal. 1998,Kimetal.2001,Keogh&Ratanamahatana2004,Lemire2009). Divideandconquer(DC)heuristicproposedbyHirschberg(1975); thatisadynamicprogrammingalgorithmthatfinds the least cost sequence alignment between two strings in linear space and quadratic time. The algorithm was first used in speechrecognitionareatosolvetheLongestCommonSubsequence(LCSS).Howeveraswewillshowwiththehelpofan example,DCdoesnotguaranteetheoptimalityoftheDTW distance. 6 Q D 1 2 2 1 0 1 1 2 1 2 5 3 4 5 6 10 19 23 27 28 32 33 4 13 88 9 15 26 28 32 31 37 36 4 5 29 17 17 25 40 42 44 40 47 45 3 33 18 18 21 30 34 38 39 43 44 S S 3 3 37 19 19 22 30 34 38 39 43 44 2 38 19 19 20 24 25 26 26 27 27 2 3 42 20 20 23 29 28 26 27 30 28 4 51 24 24 29 39 37 37 31 36 32 1 Q 2 52 24 24 25 29 30 31 31 32 32 3 56 25 25 28 34 33 34 32 35 33 0 (a) ThealignmentofmeasurementsformeasuringtheDTWdistancebetween(b) ThewarpingmatrixDproducedbyDTW;highlightedcellsconstitutethe thetwosequencesSandQ. optimalwarpingpath. Figure1.IllustrationofDTW. Sakoe & Chiba (1978) speed up the DTW by constraining the warping path to lie within a band around the diagonal. However,iftheoptimalpathcrossestheband,theresultwillnotbeoptimal. Keogh&Ratanamahatana(2004)andLemire(2009)introducedefficientlowerboundsthatreducethenumberofDTW computationsinatimeseriesdatabasecontext. However,theselowerboundsdonotreducethespacecomplexityoftheDTW computation,whichistheobjectiveofourwork. Sakurai et al. (2005) presented FTW, a search method for DTW; it adds no global constraints on DTW. Their method designed based on a lower bounding distance measure that approximates the DTW distance. Therefore, it minimizes the numberofDTWcomputationsbutdoesnotincreasethespeedtheDTWitself. Salvador & Chan (2007) introduced an approximation algorithm for DTW called FastDTW. Their algorithm begins by usingDTWinverylowresolution,andprogressestoahigherresolutionlinearlyinspaceandtime. FastDTWisperformedin threesteps: coarseningshrinksthetimeseriesintoasmallertimeseries;thetimeseriesisprojectedbyfindingtheminimum distance (warping path) in the lower resolution; and the warping path is an initial step for higher resolutions. The authors refinedthewarpingpathusinglocaladjustment. FastDTW isanapproximationalgorithm,andthusthereisnoguaranteeit willalwaysfindtheoptimalpath.Itrequiresthecoarseningsteptoberunseveraltimestoproducemanydifferentresolutions ofthetimeseries. TheFastDTW approachdependsonaradiusparameterasaconstraintontheoptimalpath;however,our techniquedoesnotplaceanyconstrainwhilecalculatingtheDTW distance. DTW has been used in data streaming problems. Capitani & Ciaccia (2007) proposed a new technique, Stream-DTW (STDW).ThismeasureisalowerboundoftheDTW.Theirmethodusesaslidingwindowofsize512. Theyincorporateda bandconstraint,forcingthepathtostaywithinthebandfrontiers,asin(Sakoe&Chiba1978). AlltheabovealgorithmswereproposedeithertospeedupDTW,byreducingitsspaceandtimecomplexity,orreducing thenumberofDTW computations. Interestingly, theapproachofexploitingthesimilaritybetweenpoints(correlation)has never,tothebestofourknowledge,beenusedinfindingtheoptimalitybetweentwotimeseries. SparseDTW considersthe correlationbetweendatapoints,thatallowsustouseasparsematrixtostorethewarpingmatrixinsteadofafullmatrix. We donotbelievethattheideaofsparsematrixhasbeenconsideredpreviouslytoreducetherequiredspace. 3 DynamicTimeWarping(DTW) DTWisadynamicprogrammingtechniqueusedformeasuringthesimilaritybetweenanytwotimeserieswitharbitrary lengths. ThissectiongivesanoverviewofDTW andhowitiscalculated. Thefollowingtwotimeseries(Equations1and2) Algorithm1DTW:ThestandardDTWalgorithm. Input: S: Sequenceoflengthn,Q: Sequenceoflengthm. Output: DTWdistance. 1: InitializeD(i,1)⇐iδforeachi 2: InitializeD(1,j)⇐jδforeachj 3: forallisuchthat2≤i≤ndo 4: forallj suchthat2≤j ≤mdo 5: UseEquation3tocomputeD(i,j) 6: endfor 7: endfor 8: return D(n,m) willbeusedinourexplanations. S = s ,s ,s ,···,s ,···,s (1) 1 2 3 i n Q = q ,q ,q ,···,q ,···,q (2) 1 2 3 j m WherenandmrepresentthelengthoftimeseriesS andQ,respectively. iandj arethepointindicesinthetimeseries. DTWisatimeseriesassociationalgorithmthatwasoriginallyusedinspeechrecognition(Sakoe&Chiba1978).Itrelates twotimeseriesoffeaturevectorsbywarpingthetimeaxisofoneseriesontoanother. As a dynamic programming technique, it divides the problem into several sub-problems, each of which contribute in calculatingthedistancecumulatively. Equation3showstherecursionthatgovernsthecomputationsis:  D(i−1,j)  D(i,j)=d(i,j)+min D(i−1,j−1) (3)  D(i,j−1). ThefirststageintheDTW algorithmistofillalocaldistancematrixd. Thatmatrixhasn×melementswhichrepresent the Euclidean distance between every two points in the time series (i.e., distance matrix). In the second stage, it fills the warpingmatrixD (Figure1(b))onthebasisofEquation3. Lines1to7inAlgorithm1illustratetheprocessoffillingthe warpingmatrix. Werefertothecostbetweentheithandthejthelementsasδasmentionedinline1and2. Afterfillingthewarpingmatrix,thefinalstagefortheDTW istoreporttheoptimalwarpingpathandtheDTW distance. Warping path is a set of adjacent matrix elements that identify the mapping between S and Q. It represents the path that minimizestheoveralldistancebetweenS andQ. ThetotalnumberofelementsinthewarpingpathisK,whereK denotes thenormalizingfactorandithasthefollowingattributes: W =w ,w ,...,w 1 2 K max(|S|,|Q|)≤K <(|S|+|Q|) Everywarpingpathmustsatisfythefollowingconstraints(Keogh&Ratanamahatana2004,Salvador&Chan2007,Sakoe &Chiba1978): 1. Monotonicity: AnytwoadjacentelementsofthewarpingpathW,w = (w ,w )andw = (w(cid:48),w(cid:48)),followthe k i j k−1 i j inequalities,w −w(cid:48) ≥0andw −w(cid:48) ≥0. Thisconstrainguaranteesthatthewarpingpathwillnotrollbackonitself. i i j j Thatis,bothindexesiandj eitherstaythesameorincrease(theyneverdecrease). 2. Continuity: Any two adjacent elements of the warping path W,w = (w ,w ) and w = (w(cid:48),w(cid:48)), follow the k i j k+1 i j inequalities,w −w(cid:48) ≤ 1andw −w(cid:48) ≤ 1. Thisconstraintguaranteesthatthewarpingpathadvancesonestepata i i j j time. Thatis,bothindexesiandj canonlyincreasebyatmost1oneachstepalongthepath. 3. Boundary: The warping path starts from the top left corner w = (1,1) and ends at the bottom right corner w = 1 k (n,m). Thisconstraintguaranteesthatthewarpingpathcontainsallpointsofbothtimeseries. Figure2.Globalconstraint(SakoeChibaBand),whichlimitsthewarpingscope. Thediagonalgreen areascorrespondtothewarpingscopes. Althoughtherearealargenumberofwarpingpathsthatsatisfyalloftheaboveconstraints,DTW isdesignedtofindthe onethatminimizesthewarpingcost(distance). Figures1(a)and1(b)demonstrateanexampleofhowtwotimeseries(Sand Q)arewarpedandthewaytheirdistanceiscalculated. Thecircledcellsshowtheoptimalwarpingpath,whichcrossesthe gridfromthetopleftcornertothebottomrightcorner. TheDTW distancebetweenthetwotimeseriesiscalculatedbased onthisoptimalwarpingpathusingthefollowingequation: (cid:113)  (cid:80)Kk=1Wk DTW(S,Q)=min (4) K  TheK inthedenominatorisusedtonormalizedifferentwarpingpathswithdifferentlengths. SincetheDTW hastopotentiallyexamineeverycellinthewarpingmatrix,itsspaceandtimecomplexityisO(nm). 4 GlobalConstraint(BandDTW) ThereareseveralmethodsthataddglobalconstraintsonDTWtoincreaseitsspeedbylimitinghowfarthewarpingpath maystrayfromthediagonalofthewarpingmatrix(Tappert&Das1978,Berndt&Clifford1994,Myersetal.1980). Inthis paperweuseSakoe-ChibaBand(henceforth,werefertoitasBandDTW)Sakoe&Chiba(1978)whencomparingwithour proposedalgorithm(Figure2). BandDTWusedtospeeduptheDTW byaddingconstraintswhichforcethewarpingpathto liewithinabandaroundthediagonal;iftheoptimalpathcrossestheband,theDTWdistancewillnotbeoptimal. 5 DivideandConquerTechnique(DC) Intheprevioussection,wehaveshownhowtocomputetheoptimalalignmentusingthestandardDTWtechniquebetween twotimeseries. InthissectionwewillshowanothertechniquethatusesaDivideandConquerheuristic,henceforthwerefer toitas(DC),proposedbyHirschberg(1975). DCisadynamicprogrammingalgorithmusedtofindtheleastcostsequence alignment between two strings. The algorithm was first introduced to solve the Longest Common Subsequence (LCSS) (Hirschberg1975). Algorithm2givesahighleveldescriptionoftheDCalgorithm. Likeinthestandardsequencealignment, theDC algorithmhasO(mn)timecomplexitybutO(m+n)spacecomplexity,wheremandnarethelengthsofthetwo Algorithm2DC:DivideandConquertechnique. Input: S: Sequenceoflengthn,Q: Sequenceoflengthm. Output: DTWdistance. 1: Divide-Conquer-Alignment(S,Q) 2: n⇐|S| 3: m⇐|Q| 4: Mid⇐(cid:100)m/2(cid:101) 5: ifn≤2orm≤2then 6: ComputeoptimalalignmentusingstandardDTW 7: else 8: f ⇐ForwardsSpaceEfficientAlign(S,Q[1:Mid]) 9: g ⇐BackwardsSpaceEfficientAlign(S,Q[Mid:m]) 10: q ⇐indexthatminimizingf(q,Mid)+g(q,Mid) 11: Add(q,Mid)toglobalarrayP 12: Divide-Conquer-Alignment(S[1:q],Q[1:Mid]) 13: Divide-Conquer-Alignment(S[q:n],Q[Mid:m]) 14: endif 15: return P sequencesbeingaligned. WewillbeusingAlgorithm2alongwithFigure3toexplainhowDC works. Intheexamplewe usetwosequencesS = [3,4,5,3,3]andQ = [1,2,2,1,0]todeterminetheoptimalalignmentbetweenthem. Thereisonly oneoptimalalignmentforthisexample(Figure3(e)), whereshadedcellsaretheoptimalwarpingpath. TheDC algorithm worksasfollows: 1. ItfindsthemiddlepointinQwhichisMid = |Q|/2, (Figure3(a)). Thishelpstofindthesplitpointwhichdivides the warping matrix into two parts (sub-problems). A forward space efficiency function (Line 8) uses S and the first cut of Q = [1,2,2], then a backward step (Line 9) uses S and Q = [2,1,0] (Figure 3(a)). Then by adding the lastcolumnfromtheforwardandbackwardstepstogetherandfindingtheindexoftheminimumvalue,theresultant column indicates the row index that will be used along with the middle point to locate the split point (shaded cell in Figure 3(a)). Thus, the first split point is D(4,3). At this stage of the algorithm, there are two sub-problems; the alignmentofS =[3,4,5,3]withQ=[1,2,2]andofS =[3,3]withQ=[2,1,0]. 2. DCisrecursivealgorithm,eachcallsplitstheproblemintotwoothersub-problemsifbothsequencesareoflength>2, otherwiseitcallsthestandardDTW tofindtheoptimalpathforthatparticularsub-problem. Intheexample,thefirst sub-problemwillbefedtoLine12whichwillfindanothersplitpoint,becausebothinputsequencesareoflength>2. Figure3(b)showshowthenewsplitpointisfound. Figure3(c)showsthetwosplitpoints(shadedcells)whichyield tohavesub-problemsofsequencesoflength≤2. InthiscaseDTW willbeusedtofindtheoptimalalignmentforeach sub-problem. 3. TheDCalgorithmfindsthefinalalignmentbyconcatenatingtheresultsfromeachcallofthestandardDTW. TheexampleinFigure3clarifiesthattheDCalgorithmdoesnotgivetheoptimalwarpingpath. Figures3(d)and(e)show thepathsobtainedbytheDCandDTW algorithms,respectively. DC does not yield the optimal path as it goes into infinite recursion because of how it calculates the middle point. DC calculatesthemiddlepointasfollows: Therearetwoscenarios: first,whenthemiddlepoint(Algorithm2Line4)isfloored(Mid = (cid:98)m/2(cid:99))andsecondwhen itisroundedup(Mid=(cid:100)m/2(cid:101)). Thefirstscenariocausesinfiniterecursion,sincethesplitfromthepreviousstepgivesthe samesub-sequences(i.e.,thealgorithmkeepsfindingthesamesplitpoint). ThesecondscenarioisshowninFigures3(a-d), whichclearlyconfirmsthatthefinaloptimalpathisnotthesameastheoneretrievedbythestandardDTW 1.ThefinalDTW distanceisdifferentaswell. TheshadedcellsinFigures3(d)and(e)showthatbothwarpingpathsaredifferent. 1Itshouldbenotedthatourexamplehasonlyoneoptimalpaththatgivestheoptimaldistance. Middle point Middle point Q Q Q Q 1 2 2 2 1 0 1 2 2 2 3 4 5 6 33 27 42 68 3 3 4 5 20 15 15 3 S S S 4 13 8 9 35 26 38 59 4 4 13 8 22 14 14 4 5 29 17 17 39 22 29 43 5 5 29 17 27 10 10 5 3 33 18 18 32 14 13 18 3 3 33 18 20 2 1 3 3 37 19 19 33 14 13 9 3 Forward cut Backward cut Forward cut Backward cut (b) Finding second split point. (a) Finding first split point. Q Q Q 1 2 2 1 0 1 2 2 1 0 D 1 2 2 1 0 3 3 4 5 6 3 4 5 6 10 19 4 4 9 9 4 13 8 9 15 26 S S S 5 5 18 18 5 29 17 17 25 40 3 3 19 19 23 32 3 33 18 18 21 30 3 3 20 23 32 3 37 19 19 22 30 (c) Split points (sub-problems). (d) Final optimal path using DC. (e) Final optimal path using standard DTW. Figure3.AnexampletoshowthedifferencebetweenthestandardDTWandtheDCalgorithm. 6 SparseDynamicProgrammingApproach In this section, we outline the main principles we use in SparseDTW and follow up with an illustrated example along with the SparseDTW pseudo-code. We exploit the following facts in order to reduce space usage while avoiding any re- computations: 1. Quantizingtheinputtimeseriestoexploitthesimilaritybetweenthepointsinthetwotimeseries. 2. Using a sparse matrix of size k, where k = n×m in the worst case. However, if the two sequences are similar, k <<n×m. 3. Thewarpingmatrixiscalculatedusingdynamicprogrammingandsparsematrixindexing. 6.1 Key Concepts Inthissectionweintroducethekeyconceptsusedinouralgorithm. Definition1(SparseMatrixSM) isamatrixthatispopulatedlargelywithzeros.Itallowsthetechniquestotakeadvantage ofthelargenumberofzeroelements. Figure4(a)showstheSM initialstate. SM islinearlyindexed,Thelittlenumbers,in thetopleftcornerofSM’scells,representthecellindex. Forexample,theindicesofthecellsSM(1,1)andSM(5,5)are 1and25,respectively. Definition2(LowerNeighbors(LowerNeighbors)) acellc ∈ SM hasthreelowerneighborswhicharethecellsofthe indices(c−1),(c−n),and(c−(n+1))(wherenisthenumberofrowsinSM). Forexample,thelowerneighborsofcell SM(12)areSM(6),SM(7)andSM(11)(Figure4(a)). Q Q Q SM 1 2 2 1 0 SM 1 2 2 1 0 SM 1 2 2 1 0 3 1 B 6 B 11B 16B 21B 3 4 B B 4 9 3 4 B B 4 9 4 2 B 7 B 12B 17B 22B 4 9 4 4 9 16 4 13 4 4 9 16 S S S 5 3 B 8 B 13B 18B 23B 5 16 9 9 16 B 5 29 9 9 16 25 4 9 14 19 24 3 B B B B B 3 4 B B 4 9 3 33 B B 4 9 3 5 B 10B 15B 20B 25B 3 4 B B 4 9 3 37 1 1 4 9 (a) SM initially blocked [B]. (b)SM after unblocking the optimal cells. (c) Unblocking upper neighbor Values are Euclidean distances. (Shaded cell). Q Q Q SM 1 2 2 1 0 SM 1 2 2 1 0 D 1 2 2 1 0 3 4 B B 4 13 3 4 B B 4 13 3 4 5 6 10 19 4 13 8 12 13 20 4 13 8 12 13 20 4 13 8 9 15 26 S S S 5 29 17 17 28 38 5 29 17 17 28 38 5 29 17 17 25 40 3 33 B B 21 30 3 33 B B 21 30 3 33 18 18 21 30 3 37 34 35 25 30 3 37 34 35 25 30 3 37 19 19 22 30 (d) Constructing SM. (e) Final optimal path using SparseDTW. (f) Final optimal path using standard DTW. Figure4.AnexampleoftheSparseDTWalgorithmandthemethodoffindingtheoptimalpath. Definition3(UpperNeighbors(UpperNeighbors)) acellc ∈ SM hasthreeupperneighborswhicharethecellsofthe indices(c+1),(c+n),and(c+n+1)(wherenisthenumberofrowsinSM). Forexample,theupperneighborsofcell SM(12)areSM(13),SM(17)andSM(18)(Figure4(a)). Definition4(BlockedCell(B)) a cell c ∈ SM is blocked if its value is zero. The letter (B) refers to the blocked cells (Figure4(a)). Definition5(Unblocking) Givenacellc∈SM,ifSM(c)’supperneighbors(SM(c+1),SM(c+n),andSM(c+n+1)) areblocked,theywillbeunblocked. UnblockingisperformedbycalculatingtheEucDistforthesecellsandaddingthemto SM. In other words, adding the distances to these cells means changing their state from blocked (B) into unblocked. For example,SM(10)isablockedupperneighborofSM(5),inthiscaseSM(10)needstobeunblocked(Figure4(c)). 6.2 SparseDTW Algorithm Algorithm3takesRes,theresolutionparameterasaninputthatdeterminesthenumberofbinsas 2 . Reswillhaveno Res impactontheoptimality. Wenowpresentanexampleofouralgorithmtoillustratesomeofthehighlightsofourapproach: Westartwithtwosequences: S =[3,4,5,3,3]andQ=[1,2,2,1,0]. InLine1,wefirstquantizethesequencesintotherange[0,1]usingEquation5: Sk−min(Sk) QuantizedSeqk = i . (5) i max(Sk)−min(Sk) WhereSk denotestheithelementofthekthtimeseries. Thisyieldsthefollowingsequences: i S(cid:48) =[0,0.5,1.0,0.0,0.0]andQ(cid:48) =[0.5,1.0,1.0,0.5,0] InLines4to7wecreateoverlappingbins,governedbytwoparameters: bin-widthandtheoverlappingwidth(whichwe refertoastheresolution). Itisimportanttonotethatthesetwoparametersdonotaffecttheoptimalityofthealignmentbut do have an affect on the amount of space utilized. For this particular example, the bin-width is 0.5. We thus have 4 bins whichareshowninTable1. BinNumber Bin Indices Indices (B ) Bounds ofS(cid:48) ofQ(cid:48) k 1 0.0-0.5 1,2,4,5 1,4,5 2 0.25-0.75 2 1,4 3 0.5-1.0 2,3 1,2,3,4 4 0.75-1.25 3 2,3 Table1.Binsbounds,whereB isthekth bin. k Ourintuitionisthatpointsinsequenceswithsimilarprofileswillbemappedtootherpointsinthesamebinorneighboring bins. Inwhichcasethenon-defaultentriesofthesparsematrixcanbeusedtocomputethewarpingpath. Otherwise,default entriesofthematrixwillhavetobe“opened”,reducingthesparsityofthematrixbutneversacrificingtheoptimalalignment. In Lines 3 to 13, the sparse warping matrix SM is constructed using the equation below. SM2 is a matrix that has generallyfewnon-zero(or“interesting”)entries. Itcanberepresentedinmuchlessthann×mspace,wherenandmare thelengthsofthetimeseriesS andQ,respectively. (cid:26) EucDist(S(i),Q(j)) ifS(i)andQ(j)∈B SM(i,j)= k (6) B otherwise We assume that SM is linearly ordered and the default value of SM cells are zeros. That means the cells initially are Blocked (B) (Figure 4(a)). Figure 4(a) shows the linear order of the SM matrix, where the little numbers on the top left cornerofeachcellrepresenttheindexofthecells. InLine6and7,wefindtheindexofeachquantizedvaluethatfallsinthe binbounds(Table1column2,3and4). TheInequality7isusedinLine6and7tofindtheindicesofthedefaultentriesof theSM. LowerBound≤QuantizedSeqk ≤UpperBound. (7) i Where LowerBound and UpperBound are the bin bounds and QuantizedSeqk represents the quantized time series i whichcanbecalculatedusingEquation5. Lines8to12areusedtoinitializetheSM. ThatisbyjoiningallindicesinidxS andidxQtoopencorrespondingcells inSM. Afterunblocking(opening)thecellsthatreflectthesimilaritybetweenpointsinbothsequences,theSM entriesare showninFigure4(b). Lines14to22areusedtocalculatethewarpingcost.InLine15,wefindthewarpingcostforeachopencellc∈SM (cell cisthenumberfromthelinearorderofSM’scells)byfindingtheminimumofthecostsofitslowerneighbors,whichare [c−1,c−n,c−(n+1)](blackarrowsinFigure4(d)showthelowerneighborsofeveryopencell).Thiscostisthenaddedto thelocaldistanceofcellc(Line17). TheabovestepissimilartoDTW,however,wemayhavetoopennewcellsiftheupper neighborsatagivenlocalcellc∈SM areblocked. Theindicesoftheupperneighborsare[c+1,c+n,c+n+1],where n is the length of sequence S (i.e., number of rows in SM). Lines 18 to 21 are used to check always the upper neighbors ofc ∈ SM. Thisisperformedasfollows: ifthe|UpperNeighbors| = 0foraparticularcell, itsupperneighborswillbe unblocked. This is very useful when the algorithm traverses SM in reverse to find the final optimal path. In other words, unblockingallowsthepathtobeconnected. Forexample,thecellSM(5)hasoneupperneighborthatiscellSM(10)which isblocked(Figure4(b)),thereforethiscellwillbeunblockedbycalculatingtheEucDist(S(5),Q(2)). Thevaluewillbeaddto theSM whichmeansthatcellSM(10)isnowanentryinSM (Figure4(c)). AlthoughunblockingaddscellstoSM which meansthenumberofopencellswillincrease,buttheoverlappinginthebinsboundariesallowstheSM’sunblockedcellsto beconnectedmostlythatmeanslessnumberofunblockingoperations. Figure4(d)showsthefinalentriesoftheSM after calculatingthewarpingcostofallopencells. 2IftheEuclideandistance(EucDist)betweenS(i)andQ(j)iszero,thenSM(i,j) = −1,todistinguishbetweenablockedcellandanycellthat representszerodistance. Lines 23 to 32 return the warping path. hop initially represents the linear index for the (m,n) entry of SM, that is the bottomrightcornerofSM inFigure4(e).Startingfromhop=n×mwechoosetheneighbors[hop−n,hop−1,hop−(n+ 1)]withminimumwarpingcostandproceedrecursivelyuntilwereachthefirstentryofSM,namelySM(1)orhop=1. It isinterestingthatwhilecalculatingthewarpingpathweonlyhavetolookattheopencells,whichmaybefewerinnumber than3. Thispotentiallyreducestheoveralltimecomplexity. Figure 4(e) demonstrates an example of how the two time series (S and Q) are warped and the way their distance is calculatedusingSparseDTW.Thefilledcellsshowtheoptimalwarpingpath,whichcrossesthegridfromthetopleftcorner tothebottomrightcorner. ThedistancebetweenthetwotimeseriesiscalculatedusingEquation4. Figure4(f)showsthe standardDTW wherethefilledcellsaretheoptimalwarpingpath. Itisclearthatbothtechniquesgivetheoptimalwarping pathwhichwillyieldtheoptimaldistance. Algorithm3SparseDTW:Sparsedynamicprogrammingtechnique. Input: S: Timeseriesoflengthn,Q: Timeseriesoflengthm,andRes. Output: OptimalwarpingpathandSparseDTW distance. 1: [S(cid:48),Q(cid:48)]⇐Quantize(S,Q) 2: LowerBound⇐0,UpperBound⇐Res 3: forall0≤LowerBound≤1− Res do 2 4: IdxS ⇐find(LowerBound≤S(cid:48) ≤UpperBound) 5: IdxQ⇐find(LowerBound≤Q(cid:48) ≤UpperBound) 6: LowerBound⇐LowerBound+ Res 2 7: UpperBound⇐LowerBound+Res 8: forallidxi ∈IdxS do 9: forallidxj ∈IdxQdo 10: AddEucDist(idxi,idxj)toSM {WhenEucDist(idxi,idxj)=0,SM(i,j)=−1.} 11: endfor 12: endfor 13: endfor {Note: SM islinearlyindexed.} 14: forallc∈SM do 15: LowerNeighbors⇐{(c−1),(c−n),(c−(n+1))} 16: minCost⇐min(SM(LowerNeighbors)){SM(LowerNeighbors)=-1meanscost=0.} 17: SM(c)⇐SM(c)+minCost 18: UpperNeighbors⇐{(c+1),(c+n),(c+n+1)} 19: if|UpperNeighbors|==0then 20: SM ∪EucDist(UpperNeighbors) 21: endif 22: endfor 23: WarpingPath⇐Φ 24: hop⇐SM(n×m){LastindexinSM.} 25: WarpingPath∪hop 26: whilehop(cid:54)=SM(1)do 27: LowerNeighbors⇐{(hop−1),(hop−n),(hop−(n+1))} 28: [minCost,index]⇐min[Cost([LowerNeighbors]) 29: hop⇐index 30: WarpingPath∪hop 31: endwhile 32: WarpingPath∪SM(1) 33: return WarpingPath,SM(n×m)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.