ebook img

Sparse Representations and Compressive Sensing for Imaging and Vision PDF

113 Pages·2013·3.896 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Sparse Representations and Compressive Sensing for Imaging and Vision

SpringerBriefs in Electrical and Computer Engineering Forfurthervolumes: http://www.springer.com/series/10059 This page intentionally left blank Vishal M. Patel • Rama Chellappa Sparse Representations and Compressive Sensing for Imaging and Vision 123 VishalM.Patel RamaChellappa CenterforAutomationResearch DepartmentofElectricalandComputer UniversityofMaryland EngineeringandCenterfor A.V.WilliamsBuilding AutomationResearch CollegePark,MD A.V.WilliamsBuilding UniversityofMaryland CollegePark,MD ISSN2191-8112 ISSN2191-8120(electronic) ISBN978-1-4614-6380-1 ISBN978-1-4614-6381-8(eBook) DOI10.1007/978-1-4614-6381-8 SpringerNewYorkHeidelbergDordrechtLondon LibraryofCongressControlNumber:2012956308 ©TheAuthor(s)2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) To mysistersJulie,DhartiandGunjali —Vishal M.Patel This page intentionally left blank Acknowledgements Wethankformerandcurrentstudentsaswellascollaborators-RichardBaraniuk, Volkan Cevher, Pavan Turaga, Ashok Veeraraghavan, Aswin Sankaranarayanan, Dikpal Reddy, Amit Agrawal, Nalini Ratha, Jaishanker Pillai, Hien Van Nguyen, SumitShekhar,GarrettWarnell,QiangQiu,AshishShrivastava-forlettingusdraw upontheirwork,thusmakingthismonographpossible. Researcheffortssummarizedinthismonographweresupportedbythefollowing grantsandcontracts:AROMURI(W911NF-09-1-0383),ONRMURI(N00014-08- 1-0638),ONRgrant(N00014-12-1-0124),andaNISTgrant(70NANB11H023). vii This page intentionally left blank Contents 1 Introduction ................................................................... 1 1.1 Outline.................................................................... 2 2 CompressiveSensing ......................................................... 3 2.1 Sparsity................................................................... 3 2.2 IncoherentSampling..................................................... 5 2.3 Recovery.................................................................. 6 2.3.1 RobustCS........................................................ 7 2.3.2 CSRecoveryAlgorithms........................................ 9 2.4 SensingMatrices......................................................... 11 2.5 PhaseTransitionDiagrams.............................................. 12 2.6 NumericalExamples..................................................... 15 3 CompressiveAcquisition..................................................... 17 3.1 SinglePixelCamera ..................................................... 17 3.2 CompressiveMagneticResonanceImaging............................ 18 3.2.1 ImageGradientEstimation...................................... 21 3.2.2 ImageReconstructionfromGradients.......................... 23 3.2.3 NumericalExamples............................................. 24 3.3 CompressiveSyntheticApertureRadarImaging....................... 25 3.3.1 Slow-timeUndersampling....................................... 27 3.3.2 ImageReconstruction ........................................... 28 3.3.3 NumericalExamples............................................. 29 3.4 CompressivePassiveMillimeterWaveImaging........................ 30 3.4.1 MillimeterWaveImagingSystem .............................. 31 3.4.2 AcceleratedImagingwithExtendedDepth-of-Field........... 34 3.4.3 ExperimentalResults............................................ 36 3.5 CompressiveLightTransportSensing .................................. 37 4 CompressiveSensingforVision ............................................. 41 4.1 CompressiveTargetTracking............................................ 41 4.1.1 CompressiveSensingforBackgroundSubtraction ............ 42 ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.