ebook img

Spacer length shapes drug release and therapeutic efficacy of traceless disulfide-linked ADCs ... PDF

67 Pages·2012·5.29 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Spacer length shapes drug release and therapeutic efficacy of traceless disulfide-linked ADCs ...

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2012 Supporting Information Spacer length shapes drug release and therapeutic efficacy of traceless disulfide-linked ADCs targeting the tumor neovasculature Martina Steiner,a Isabelle Hartmann,a Elena Perrino,a Giulio Casi,b Samatanga Brighton,c, d Ilian Jelesarov,c Gonçalo J. L. Bernardes*a and Dario Neria aDepartment of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Wolfgang-Pauli Str. 10, 8093 Zurich, Switzerland. bPhilochem AG, Libernstrasse 3, 8112 Otelfingen, Switzerland. cDepartment of Biochemistry, University of Zürich, Winterthurerstr. 190, 8057 Zurich, Switzerland dDepartment of Biology, Institute of Molecular Biology and Biophysics, Swiss Federal Institute of Technology (ETH Zürich), Schafmattstrasse 20, 8093 Zürich, Switzerland. To whom correspondence should be addressed: [email protected]; [email protected] S1 Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2012 Supporting Information ! "#$%&'()(*+,*-'./*-'.-0 2"0*3$4*-'.-0 2""5#*666666666666666666666666666666666666666666666*7 1 1 1 -'88*9:8%:;'*66666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666*!! ! ! 16! <$9:=3%)+$*3$4*.3$)>:83%)+$*9+$4)%)+$(*6666666666666666666666666666666666666666666666666666666666666*!! !161 -0?2"*9'88(*6666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666*!!! ! ! 7 @$%)=+4#*98+$)$A/*'B>;'(()+$/*>:;),)93%)+$*3$4*9&3;39%';)C3%)+$*6666666666*!! ! ! 76! 5;+%')$*>:;),)93%)+$*66666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666*!1 ! ! ! ! "#$#$! %&'()*+,+*,!-.*/()0+,1.*!#################################################################################################!$2! "#$#2! 3).,(1*!4!/('5+)./(!)(/1*!'&)161-+,1.*!########################################################################!$2! "#$#"! 78&,1.*!########################################################################################################################################!$2! 761"#$#59;!+%:'1)+$8;*9/&1/3!#;###3##9###%#'###;##)##C##3###%#)##+###$###*6#6#6#6#6##6#6#6#6#6#6#6#6##6#6#6#6#6#6#6##6#6#6#6#6#6#6#6##6#6#6#6#6#6#6##6#6#6#6#6#6#6#6##6#6#6#6#6#6#6#6##6#6#6#6#6#6#6##6#6#6#6#6#6#6#6##6#6#6#6#6#6#6#6##6#6#6#6#6#6#6##6#6#6#6#6#6#6#6##6#6#6#*!!$7"! "#$#<! =18,)+,1.*!###################################################################################################################################!$"! ! ! "#2#$! %:%>34?7!##################################################################################################################################!$"! "#2#2! 3).,(1*!@+//!%'(-,).A(,);!##############################################################################################!$"! "#2#"! ?(8!618,)+,1.*!+*+8;/1/!###########################################################################################################!$9! "#2#9! B1+-.)(!#######################################################################################################################################!$9! "#2#<! 7CD%4!##########################################################################################################################################!$<! "#2#E! 3).F&-,1.*G!'&)161-+,1.*!+*F!-5+)+-,()1H+,1.*!.6!%D3I=JK??L!##########################!$<! "#2#M! 3).F&-,1.*G!'&)161-+,1.*!+*F!-5+)+-,()1H+,1.*!.6!%D3IN%=K??L!########################!$M! "#2#J! 3).F&-,1.*!+*F!'&)161-+,1.*!.6!:OI=JK??L!###############################################################!$P! "#2#P! 3).F&-,1.*G!'&)161-+,1.*!+*F!-5+)+-,()1H+,1.*!.6!%D3I=JK??4??L!+*F! D E)B'4*4)(:8,)4'*9+$F:A3%)+$*3$4*>;'>3;3%)+$*+,*@G-(*,+;*%&';3>#*66666666*1H %D3I=JK??4?4??L!###############################################################################################################################!$P! D6! -+$F:A3%)+$*3$38#()(*=#*I-2E"*66666666666666666666666666666666666666666666666666666666666666666666666666666666*1H !D61 E)B'4*4)(:8,)4'28)$J'4*@G-(*666666666666666666666666666666666666666666666666666666666666666666666666666666666666*1H! ! ! ! ! D679#2#-$&! 3;738(9-%,');.)'C35%18)1+-$!4*+','*9)+.$+-F:5!A###3##%##'###(##*#6#6#6#6#6#6#6#6##6#6#6#6#6#6#6#6##6#6#6#6#6#6#6#6##6#6#6#6#6#6#6##6#6#6#6#6#6#6#6##6#6#6#6#6#6#6##6#6#6#6#6#6#6#6##6#6#6#6#6#6#6#6##6#6#6#6#6#6#6##6#6#6#6#6#6#6#6##6#6#6#*!12K<! D6D9#2#"2%!3=Q)8&)%-#8(*3.('(5'1(81(-.!+'''$)%.*++,-*"5<!#5###L##M###N###O##P###P###-###2#"###"##2##-###0#####-###'##.#####*#6#6#6#6#6#6#6##6#6#6#6#6#6#6##6#6#6#6#6#6#6#6##6#6#6#6#6#6#6#6##6#6#6#6#6#6#6##6#6#6#6#6#6#6#6##6#6#6#*!72HJ! 1 D6H! "%3=)8)%#*3(('((.'$%*+,*"<5LMNOPP@PP-2""2-0 -'.*6666666666666666666666666666666666666666*7K! 1 D6Q! "%3=)8)%#*3(('((.'$%*+,*3$4*"<5LMNOPP@P@PP-2""2-0 -'.*66666666666666666666666666*DD! 1 D6R! @(('((.'$%*+,*;'8'3('*+,*S88.3$T(*;'3A'$%*,;+.*"<5LMNOPP-2""2S88.3$T(/* ! "<5!LMNOPP@PP-2""2S88.3$T(/*"<5LMNOPP@P@PP-2""2S88.3$T(*)$*%&'*>;'('$9'*+,* ! GUU! * *66666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666*DK D6N @(('((.'$%*+,*%&'*;'39%)V)%#*+,*"<5LMNOPP-2""2-0 -'./*"<5LMNOPP@PP-2 1 ""2-0 -'./*"<5LMNOPP@P@PP-2""2-0 -'.*)$*%&'*>;'('$9'*+,*;'4:9'4* ! 1 1 A8:!%3%&)+$'*66666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666*HW D6K Stability assessment of ADCs (1 mg/mL) in mouse plasma*66666666666666666666666666666666666*QW ! 5 U&';3>#*"%:4)'(*66666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666*QH ! ! H6! U:.+;*9'88*8)$'(*666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666*QH ! H61 "#$A'$')9*%:.+;*.+:('*.+4'8*)$*)..:$+9+.>'%'$%*.)9'*6666666666666666666666666*QH! H67! U&';3>#*'B>';).'$%(*66666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666*QH! ! ! Q G"-*'B>';).'$%38*('9%)+$*6666666666666666666666666666666666666666666666666666666666666666666666666666666666666*QQ ! ! R X',';'$9'(*666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666*QR ! ! ! ! S2 Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2012 Supporting Information 1 Synthesis of Cem, CemCH -SH and CemCH -SSPy 2 2 The synthesis of cemadotin and its derivatives is based on previously reported work from our group.1, 2 In addition, the data for CemCH -SH has been previously 2 reported.1 Material and Methods: Analytical and preparative HPLC were performed on an Alliance HT RP-HPLC with PDA UV detector, using either a Synergi 4 !m, Polar-RP 150*10 mm at a flow rate of 4 mL/min with linear gradients of solvents A and B (A=millipore water with 0.1% trifluoroacetic acid (TFA), B=acetonitrile), or an X- Terra Prep RP-18, 5 !m 150*10 mm at a flow rate of 4 mL/min with linear gradients of A’ and B (A’= 0.1 M Triethylammonium acetate pH 7). Synthesis of S-4(aminoethyl)benzyl ethanethioate CH3 OH LiAlH4 OH Boc2O OH thioacetic acid S O reflux, THF 1M NaOH, t-BuOH PPh3, DIAD, THF N 96% NH2 98% NHBoc 46% NHBoc TFA/DCM (1:1) quantitative CH3 S O NH2 Synthesis of Cem, CemCH2-SH, CemCH2-SSPy H O NH2 H O H N N N N N OH HATU, DIEA, DMF N N N N N N O O O O 67% O O O O P5 (assembled by stepwise solid phase peptide synthesis) CH3 S O NH2 HATU, DIEA, DMF 83% O N HN ON N N HN S CH3 1M HC74l %/MeOH N HN ON N N HN SH O O O O O O O O CemCH2-SH PySSPy, AcOH CH3CN/H2O (9:1) 40% S N H O H S N N N N N N O O O O CemCH2-SSPy Scheme 1. Synthetic scheme for the synthesis of Cem, CemCH -SH and CemCH -SSPy. 2 2 S3 Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2012 Supporting Information (4-(aminomethyl)phenyl)methanol 2-Cyanobenzaldehyde was converted into the corresponding amino- OH alcohol derivative as previously described.3, 4 A solution of 2- NH 2 cyanobenzaldehyde (1 g, 7.6 mmol) in anhydrous THF (10 mL) was added dropwise to a stirred suspension of LiAlH (1.74 g, 45.8 mmol) in anhydrous 4 THF (30 mL) at 0 ºC. The reaction mixture was heated to reflux and stirred for 5 hours before cooling down again to 0 ºC and quenching with H O (2 mL), 15% 2 NaOH (4 mL) and H O (6 mL). After stirring for 10 min at room temperature, the 2 mixture was filtered on a pad of celite (washed with EtOAc). Concentration in vacuo gave (4-(aminomethyl)phenyl)methanol as a white solid (1.0 g, 96% yield), which was used without further purification. Spectroscopic data was identical to that previously reported.4 1H-NMR (300 MHz, CDCl ) (cid:1) 3.80 (s, 2H), 4.60 (s, 2H), 7.25 3 (m, 4H); ESI-MS: calcd. for C H NO ([M+H]+) m/z 138.08, found 137.79. 8 12 tert-butyl 4-(hydroxymethyl)benzylcarbamate (4-(Aminomethyl)phenyl)methanol was converted to the Boc OH derivative as previously described.4 Briefly di-tert-butyl dicarbonate NHBoc (1.99 g, 9.12 mmol) was added to a stirred solution of - (aminomethyl)phenyl)methanol (1.0 g, 7.3 mmol) in tBuOH / 1M NaOH (2/1, 50 mL) at 0 °C. The reaction was allowed to warm up to room temperature, and stirred for 2 additional hours. The reaction was then washed with a NaHCO saturated solution 3 and the aqueous phase extracted with EtOAc. The combined organic layers were dried over Na SO , and concentrated in vacuo to give a white solid (1.70 g, 98% yield), 2 4 which was used in the next step without further purification. Spectroscopic data was identical to that previously reported.4 1H-NMR (300 MHz, CDCl ) (cid:1) 1.36 (s, 9H), 3 4.23 (s, 2H), 4.61 (s, 2H), 7.23 (m, 4H); ESI-MS: calcd. for C H NO ([M+H]+) m/z 13 20 3 238.29, found 237.92. S4 Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2012 Supporting Information S-4-((tert-Butoxycarbonyl)amino)methyl)benzyl ethanethioate tert-Butyl 4-(hydroxymethyl)benzylcarbamate was converted to CH 3 the corresponding thioester derivative using Mitsunobu conditions. S O A two-neck round bottomed flask was charged with tert-butyl 4- NHBoc (hydroxymethyl)benzylcarbamate (1.90 g, 8.0 mmol), triphenylphospine (32 mmol, 4 equiv.) and thioacetic acid (32 mmol, 4 equiv.) in anhydrous THF (100 mL). The flask was immersed in an ice bath and the mixture was stirred under an atmosphere of argon. Diisopropyl azodicarboxylate (DIAD) (32 mmol, 4 equiv.) was then added dropwise. Upon completion of addition, the mixture was allowed to warm to room temperature and was stirred overnight. The reaction mixture was diluted with diethyl ether (100 mL) and washed twice with a NaHCO saturated solution. The aqueous layers were combined and re-extracted with 3 diethyl ether (100 mL). The organics were combined, dried with Na SO , filtered, and 2 4 concentrated in vacuo. The resulting residue was diluted in diethyl ether (40 mL) and hexanes were added (20 mL). The mixture was left standing overnight. The resulting white solid was removed under vacuum and the filter cake washed with a 50% (v/v) solution of hexanes/diethyl ether (100 mL). The solvent was removed under vacuum, and the resulting yellow oil was purified by flash column chromatography (hexanes/EtOAc, 8/1, R 0.15). Solvent evaporation resulted in an oil that upon f addition of hexanes resulted in a white solid. The product was filtered and washed with cold hexanes to give the desired product as a white solid (1.15 g, 46% yield). 1H- NMR (300 MHz, CDCl ) (cid:1) 1.43 (s, 9H), 2.32 (s, 3H), 4.08 (s, 2H), 4.26 (m, 2H), 3 7.21 (m, 4H); ESI-MS: calcd. for C H NO S ([M+H]+) m/z 296.40, found 295.90. 15 22 3 S-4-(Aminomethyl)benzyl ethanethioate In a 10 mL flask S-4-((tert-butoxycarbonyl)amino)methyl)benzyl CH 3 ethanethioate (0.4 g, 1.35 mmol) was dissolved in DCM (6 mL). S O TFA (2 mL) was added and the mixture stirred at room NH 2 temperature for 15 minutes. After the mixture was evaporated and lyophilized from dioxane, the desired product was isolated as a white powder (260 mg, quantitative). 1H-NMR (300 MHz, CDCl ) (cid:1) 2.33 (s, 3H), 3.71 (s, 2H), 3 4.09 (m, 2H), 7.25 (m, 4H); ESI-MS: calcd. for C H NOS ([M+H]+) m/z 196.28, 10 14 found 195.83. S5 Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2012 Supporting Information N,N-dimethylvalyl-valyl-N-methylvalyl-prolyl-proline (P5) The pentapeptide P5 was assembled by step- O H N N N OH wise solid phase peptide synthesis. N N O O O O Commercially available pre-loaded Fmoc-Pro on Tentagel resin (3.88 g, 0.66 mmol, RAPP Polymere) was swollen first in DCM, then in DMF (2 x 3 min x 15 mL, in both cases). The Fmoc group was removed with 20 % piperidine in DMF (2 x 5 min x 10 mL). The resin was washed with DMF. Prior to coupling to the resin, amino acids were activated: 3 equiv. of each amino acid were pre-activated for 10 minutes with equimolar amounts of a coupling agent in the presence of 6 equiv. N,N-diisopropylethylamine (DIEA) at a concentration of 0.15 M in DMF. In the case of Fmoc-Pro-OH and Fmoc-N(Me)-Val-OH single couplings were performed using HBTU/HOBt; in the case of Fmoc-Val-OH and (Me) -Val-OH 2 prolonged triple and double couplings with HATU, respectively, were required for complete reaction. The pentapeptide was cleaved from the resin after 2 hours incubation with 60 mL of DCM/TFE/AcOH (3/1/1). The resin was filtered, the solvent evaporated and the desired product lyophilized from dioxane (310 mg, 85% yield). ESI-MS: calcd. for C H N O ([M+H]+) m/z 552.7, found 552.1. 28 50 5 6 Cem In a 25 mL round bottom flask H O H N N N N containing P5 (40 mg, 0.073 mmol) N N O O O O dissolved in DMF (2 mL), HATU (28 mg, 0.073 mmol, 1 equiv.) and DIEA (51 !L, 0.290 mmol, 4 equiv.) were added. After 10 minutes pre-activation, benzylamine (10 !L, 0.087 mmol, 1.2 equiv.) was added dropwise. The reaction was judged completed after 2 hours by HPLC chromatography. DMF was removed under vacuum, the crude product re-suspended in 50% CH CN / H O, and purified over HPLC. The collected fractions were 3 2 lyophilized, and the desired peptide was isolated as a white powder (32 mg, 67 % yield, HPLC retention time: 10.36 minutes, Synergi column, 20-80% B in 15 minutes, 4 mL/min). ESI-MS: calcd. for C H N O ([M+H]+) m/z 641.44, found 641.14. 35 57 6 5 S6 Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2012 Supporting Information Figure 1. HPLC trace (wavelength of 210 nm) and ESI-MS spectrum of Cem. CemCH -SAc 2 In a 25 mL round bottom O S CH flask containing P5 (100 mg, H O H 3 N N N N N N 0.181 mmol) dissolved in O O O O DMF (4 mL), HATU (68.9 mg, 0.181 mmol, 1 equiv.) and DIEA (127 !L, 0.725 mmol, 4 equiv.) were added. After 10 minutes pre-activation, S-4-(aminomethyl)benzyl ethanethioate (42.5 mg, 0.218 mmol, 1.2 equiv.) was added as a solid. The reaction was judged completed after 1 hour by HPLC chromatography. DMF was removed under vacuum, the crude product re-suspended in 50% CH CN / H O, and purified over HPLC. The 3 2 collected fractions were lyophilized, and the desired peptide was isolated as a white powder (110 mg, 83 % yield, HPLC retention time: 11.52 minutes, Synergi column, 20-80% B in 15 minutes, 4 mL/min). ESI-MS: calcd. for C H N O S ([M+H]+) m/z 38 61 6 6 730.0, found 728.9. S7 Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2012 Supporting Information CemCH -SH 2 Cem-CH -SAc (32 mg, 0.044 mmol) was dissolved in MeOH (1.5 mL, degassed). 2 Subsequently NaOH (1.5 mL, 200 mm in water, degassed) was added and the reaction incubated for 30 minutes at room temperature. The reaction was judged to be over by ESI-MS analysis. The reaction was quenched with Tris buffer (3 mL, 1 M, pH=7) and the thiol reduced for 30 minutes with DTT (100 mm final concentration). The crude mixture was purified by HPLC. The collected fractions were lyophilized, and the desired peptide was isolated as a white powder (22 mg, 74% yield, HPLC retention time: 11.22 minutes, Synergi, 20-80% B in 15 minutes). 1H-NMR (500 MHz, DMSO) (cid:1) 0.69 (d, 3H, j= 6.8 Hz), 0.78-0.9 (m, 12H), 0.9-1 (m, 3H), 1.65-2.3 (m, 11H), 2.75 (s, 6H), 3.07 (s, 3H), 3.5-3.6 (m, 2H), 3.6-3.8 (m, 4H), 4.15 (dd, 1H, J= 14.3, 5.6 Hz), 4.25-4.35 (m, 3H), 4.48-4.6 (m, 2H), 4.97 (d, 1H, J= 11.9 Hz), 7.1-7.3 (m, 4H), 8.23- 8.29 (m, 1H), 8.9-9.0 (m, 1H), 9.8 (m, 1H); ESI-MS: calcd. for C H N O S: 36 59 6 5 ([M+H]+) m/z 687.8, found 687.0. Figure 2. HPLC trace (wavelength of 210 nm) and ESI-MS spectrum of CemCH -SH. 2 S8 Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2012 Supporting Information Figure 3. 1H-NMR spectrum of CemCH -SH. 2 CemCH -SSPy 2 CemCH -SH (40 mg, S N 2 S H O H 0.058 mmol) dissolved in N N N N N N O O O O 9/1 CH3CN/H2O was added dropwise to an AcOH (0.35 mL) solution of pyridyl-disulfide (103 mg, 0.466 mmol, 8 equiv.). After 1 h the reaction was evaporated, the crude resuspended in 1/9 CH CN/H O: the solid (pyridyl-disulfide) was removed by centrifugation, the cleared 3 2 solution was purified over HPLC and the desired product isolated as a white powder (18.5 mg, 40% yield, HPLC retention time: 12.85 minutes X-Terra, 20-80% B in 15 minutes). 1H-NMR (500 MHz, DMSO) (cid:1) 0.63-0.73 (m, 6H), 0.76-1.07 (m, 12H), 1.65-2.17 (m, 10H), 2.17-2.23 (s, 7H), 2.62-2.64 (m, 1H), 3.06 (s, 3H), 3.46-3.62 (m, 2H), 3.62-3.82 (m, 2H), 4.08 (s, 2H), 4.11-4.2 (m, 1H), 4.25-4.36 (m, 2H), 4.44-4.56 (m, 2H), 4.97 (d, 1H, J= 8.5 Hz), 7.1-7.3 (m, 4H), 7.59-7.63 (m, 1H), 7.71-7.78 (m, 1H), 8.06-8.08 (m, 1H), 8.6-8.3 (m, 1H), 8.4-8.5 (m, 1H); ESI/MS: calcd for C H N O S ([M+H]+) m/z 796.43 Da, found 796.08 Da. 41 62 7 5 2 S9 Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2012 Supporting Information Figure 4. HPLC trace (wavelength of 210 nm) and ESI-MS spectrum of CemCH -SSPy. 2 Figure 5. 1H-NMR spectrum of CemCH -SSPy. 2 S10

Description:
Spacer length shapes drug release and therapeutic efficacy .. Prior to coupling to the resin, amino acids were activated: 3 equiv. of each amino acid.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.