Space Physics Springer-Verlag Berlin Heidelberg GmbH May-Britt Kallenrode Space Physics An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres With 170 Figures, 9 Tables, Numerous Exercises and Problems Springer Professor Dr. May-Britt Kallenrode Universitiit Liineburg FB IV - Umweltwissenschaften Scharnhorststrasse 1 D-21332 Liineburg, Germany E-Mail: [email protected] Library of Congress Cataloging-in-Publication Data Kallenrode, May-Britt, 1962- Space physics: an introduction to plasmas and particles in the heliosphere and magnetospheres I May-Britt Kallenrode. p.cm. Includes bibliographical references and index. ISBN 978-3-662-03655-6 ISBN 978-3-662-03653-2 (eBook) DOI 10.1007/978-3-662-03653-2 1. Plasma (Ionized gases) 2. Space plasmas. 3. Heliosphere. 4· Magnetosphere. 5. Space physics. I. Title. QC718.K28 1998 523-01-DC21 98-16o75 CIP This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag Berlin Heidelberg GmbH. Violations are liable for prosecution under the German Copyright Law. © Springer-Verlag Berlin Heidelberg 1998 Originally published by Springer-Verlag Berlin Heidelberg New York in 1998 Softcover reprint of the hardcover 1st edition 1998 The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant pro tective laws and regulations and therefore free for general use. Typesetting: Camera ready by the author using a Springer T£X macro package Cover design: design & production GmbH, Heidelberg SPIN 10634356 57/3144-54 3 2 1 o-Printed on acid-free paper Preface A beginner, student as well as young scientist, in the field of space physics often has to struggle with two problems: (a) space physics basically is plasma physics, but the relevant topics can be quite different from those covered in traditional lectures or textbooks, and (b) space physics is different from laboratory physics in so far as problems are complex and observations of phenomena often are incomplete: there is no chance to run the 'experiment' aurora or flare with a different set of well-defined parameters or even to know all relevant parameters of the one just observed. This book will try to lend the beginner a hand in this struggle and help to bridge the gap between the formal plasma physics background and the mani fold phenomena in space. Good books on both topics exist: a very accessible, and in its style and methodic conscientiousness unattainable book on plasma physics is Plasma Physics and Controlled Fusion by F.F. Chen [2.2]; a well written and up-to-date account of the phenomena in space plasmas is given in Introduction to Space Physics edited by M.G. Kivelson and C.T. Russell [3.13]. Both books cannot be matched by this one and can serve as valuable supplements. More formal introductions to plasma physics as required by a space scientist are given in Physics of Space Plasmas by G.K. Parks [3.16], or Basic Space Plasma Physics by W. Baumjohann and R.A. Treumann [3.2] and its sequel Advanced Space Plasma Physics [3.23]. The attempt chosen in this book is different because it contains both a more formal background and an introduction to the phenomena: the first chapters introduce the basic principles of plasma physics required in space science. Where possible, simple applications are added. The later chapters are concerned with the phenomena and an introduction to space physics and some of its currently most interesting questions. This division is disadvan tageous in so far as the phenomena are not used to illustrate the concepts. But the phenomena often are complex and invoke more than one of the con cepts or can be understood properly only in relation to other phenomena. Continuous cross referencing to earlier chapters points to the fundamental concepts and draws our attention to conceptual difficulties and fundamental open questions. In particular, we will see that 'real space' essentially is non linear, while our concepts most often are based on a well-behaved plasma described by linear or at least linearized equations. In addition to plasmas, VI Preface we will discuss energetic particles in space and inside the magnetospheres and their interaction with the plasma. This topic often is neglected, either because the books deal with plasmas only or because of its formal difficulties. Nonetheless, this book at least allows a glimpse of these phenomena. As the interests of the readers might be different, a small ~ in the margin will provide orientation. 'Whatnow?' always is accompanied by a label and a reference to another section. The labels are as follows: Whatnow? Exam0 This section/paragraph contains an example from space plasmas -+go to to illustrate the concept discussed earlier. Such a section might be skipped by the reader who is interested primarily in the physical concepts and less in space science. Formal This section is more formal, but is not vital for an understanding of basic observations. It might be skipped by the reader who is mainly interested in an introduction to space physics. Space The concept introduced in this section is important in space physics but usually is not discussed in standard plasma physics textbooks. Suppl This section is supplementary: although the ideas presented here are important in space physics, the theoretical background is compli- cated and only briefly sketched. In particular, the beginner in space physics should feel free to skip these sections on first reading and return to them later after becoming more acquainted with the topic. Hot This text points to hotly debated topics and fundamental open prob lems. This book is based on lecture notes on cosmic electrodynamics and mag netospheric physics, both courses introduced at the University of Kiel by Prof. Gerd Wibberenz and later continued- and, of course, modified ·- by myself. I am indebted to him for introducing me to the field of space science and overseeing part of my scientific education. Many other people, too many to name, have contributed directly or indirectly to this book: students partici pating in the lectures and offering suggestions and criticism, colleagues of the Extraterrestrial Physics Group at the University of Kiel serving as guinea pigs to test my own understanding or a certain way to introduce a topic, and colleagues from throughout the space science community who discussed the seemingly silliest questions with me and repeatedly challenged my scien tific understanding and beliefs. But in writing a book, professional support is one aspect; encouragement and social support are of equal importance. Here the important people can be named more easily: Bernd Heber, who shared my enjoyment in understanding physics and the ways of the world; Gunter Virkus, who shared my love of books and gave the necessary support to get this one started; and, last but not least, Ulrich Fischer, who always smiling and shaking his head helped to stay through the final process of writing it. Thank you, all of you. And thank you also to the helpful team at Springer, in particular Claus Ascheron, Andrea Gross, and Gertrud Dimler. Li.ineburg, April 1998 May-Britt Kallenrode Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Neutral Gases and Plasmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Plasmas in Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 A Brief History of Space Research . . . . . . . . . . . . . . . . . . . . . . . . 4 Exercises and Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2. Charged Particles in Electromagnetic Fields . . . . . . . . . . . . . 9 2.1 Electromagnetic Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.1 Maxwell's Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1.2 Transformation of Field Equations. . . . . . . . . . . . . . . . . . 11 2.1.3 Generalized Ohm's Law . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1.4 Energy Equation of the Electromagnetic Field . . . . . . . 12 2.2 Particle Motion in Electromagnetic Fields . . . . . . . . . . . . . . . . . 13 2.2.1 Lorentz Force and Gyration . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 Drifts of Particles in Electromagnetic Fields . . . . . . . . . . . . . . . 17 2.3.1 The Concept of the Guiding Center . . . . . . . . . . . . . . . . 17 2.3.2 Crossed Magnetic and Electric Fields: E x B Drift . . . 17 2.3.3 Magnetic and Gravitational Fields. . . . . . . . . . . . . . . . . . 19 2.3.4 Inhomogeneous Magnetic Fields . . . . . . . . . . . . . . . . . . . . 19 2.3.5 Curvature Drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3.6 Drifts Combined with Changes in Particle Energy . . . . 21 2.3.7 Drift Currents in Plasmas . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.4 Adiabatic Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.4.1 First Adiabatic Invariant: The Magnetic Moment . . . . 23 2.4.2 Magnetic Mirrors and Bottles . . . . . . . . . . . . . . . . . . . . . . 25 2.4.3 Second Adiabatic Invariant: Longitudinal Invariant . . . 27 2.4.4 Third Adiabatic Invariant: Flux Invariant . . . . . . . . . . . 29 2.5 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Exercises and Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3. Magnetohydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.1 Basic MHD Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.1.1 Momentum Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.1.2 Equation of Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 VIII Contents 3.1.3 Equation of State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.1.4 Basic Equations of MHD . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.1.5 Two-Fluid Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2 Magnetohydrostatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.2.1 Magnetic Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.2.2 Magnetic Tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.3 Magnetohydrokinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.3.1 Frozen-in Magnetic Fields . . . . . . . . . . . . . . . . . . . . . . . . 49 3.3.2 Dissipation of Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.3.3 Reconnection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.3.4 Deformation of the Field in a Plasma Flow . . . . . . . . . . 55 3.4 The Magnetohydrodynamic Dynamo . . . . . . . . . . . . . . . . . . . . . 58 3.5 Debye Shielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.6 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Exercises and Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4. Plasma Waves ........................................... 67 4.1 What is a Wave? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.2 Magnetohydrodynamic Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.2.1 Linearization of the Equations: Perturbation Theory . 69 4.2.2 Alfven Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.2.3 Magneto-Sonic Waves..................... . . . . . . . . 73 4.3 Electrostatic Waves in Non-Magnetic Plasmas. . . . . . . . . . . . . . 75 4.3.1 Plasma Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.3.2 Electron Plasma Waves (Langmuir Waves) . . . . . . . . . . 77 4.3.3 Ion-Acoustic Waves (Ion Waves) . . . . . . . . . . . . . . . . . . . 78 4.4 Electrostatic Waves in Magnetized Plasmas . . . . . . . . . . . . . . . . 79 4.4.1 Electron Oscillations Perpendicular to B (Upper Hybrid Frequency). . . . . . . . . . . . . . . . . . . . . . . . . 79 4.4.2 Electrostatic Ion Waves Perpendicular to B (Ion Cyclotron Waves) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.4.3 Lower Hybrid Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.5 Electromagnetic Waves in Non-Magnetized Plasmas. . . . . . . . . 81 4.6 Electromagnetic Waves in Magnetized Plasmas . . . . . . . . . . . . 83 4.6.1 Electromagnetic Waves Perpendicular to Bo . . . . . . . . . 83 4.6.2 Waves Parallel to the Magnetic Field: Whistler (R-Waves) and L-Waves . . . . . . . . . . . . . . . . . . 85 4. 7 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Exercises and Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5. Kinetic Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.1 The Distribution Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.1.1 Phase Space and Distribution Function . . . . . . . . . . . . . 89 5.1.2 Maxwell's Velocity Distribution . . . . . . . . . . . . . . . . . . . . 90 5.1.3 Other Distributions............................... 92 Contents IX 5.1.4 Distribution Function and Measured Quantities . . . . . . 93 5.2 Basic Equations of Kinetic Theory........................ 94 5.2.1 The Boltzmann Equation.......................... 94 5.2.2 The Vlasov Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.2.3 The Fokker-Planck Equation . . . . . . . . . . . . . . . . . . . . . . 96 5.3 Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.3.1 Collisions Between Neutrals . . . . . . . . . . . . . . . . . . . . . . . 99 5.3.2 Collisions Between Charged Particles ............... 100 5.4 Summary ............................................. 102 Exercises and Problems ...................................... 102 6. Diffusive Transport ...................................... 103 6.1 Diffusion .............................................. 103 6.1.1 Spatial Diffusion ................................. 104 6.1.2 Pitch-Angle Diffusion ............................ 110 6.1.3 Diffusion in Momentum Space ..................... 111 6.2 Wave-Particle Interactions .............................. 112 6.2.1 Quasi-Linear Theory ............................. 112 6.2.2 Resonance Scattering ............................. 113 6.2.3 Alfven Waves and Interplanetary Propagation ........ 114 6.2.4 Electromagnetic Waves ............................ 115 6.2.5 Diffusion in Momentum Space ..................... 116 6.3 Summary ............................................. 117 Exercises and Problems ...................................... 118 7. Shock Waves ............................................. 119 7.1 What is a Shock Wave? ................................. 119 7.1.1 Information, Dissipation, and Non-Linearity ......... 120 7.1.2 The Shock's Rest Frame ........................... 122 7.1.3 Collisionless Shock Waves ......................... 122 7.2 Shock Conservation Laws ................................ 123 7.2.1 Rankine-Hugoniot Equations in Ordinary Shocks .... 123 7.2.2 Rankine-Hugoniot Equations in MHD Shocks ....... 125 7.2.3 Jump Conditions and Discontinuities ............... 126 7.3 Shock Parameters ...................................... 127 7.3.1 Shock Geometry ................................. 127 7.3.2 Fast and Slow Shocks ............................. 127 7.3.3 The Coplanarity Theorem ......................... 130 7.3.4 The Shock Normal Direction ....................... 130 7.4 Particle Acceleration at Shocks .......................... 131 7.4.1 Shock Drift Acceleration (SDA) .................... 131 7.4.2 Diffusive Shock Acceleration ....................... 134 7.4.3 Diffusive Shock Acceleration and Self-Generated Turbulence .................... 137 7.4.4 Stochastic Acceleration ........................... 139 X Contents 7.5 The Shock as a Non-Linear System ....................... 139 7.6 Summary .............................................. 141 Exercises and Problems ...................................... 142 8. Sun and Solar Wind: Plasmas in the Heliosphere .............................. 143 8.1 The Sun ............................................... 143 8.1.1 Nuclear Fusion ................................... 145 8.1.2 Structure of the Sun .............................. 146 8.1.3 The Solar Atmosphere ............................ 147 8.1.4 The Coronal Magnetic Field ...................... 148 8.2 The Solar Wind ........................................ 150 8.2.1 Properties ....................................... 150 8.2.2 Solar Wind Models ............................... 151 8.2.3 The Problem: Coronal Heating and Solar Wind Acceleration ....................... 155 8.3 The Interplanetary Magnetic Field ....................... 156 8.3.1 Spiral Structure .................................. 156 8.3.2 Sector Structure .................................. 158 8.3.3 The Ballerina Model .............................. 159 8.3.4 Corotating Interaction Regions ..................... 160 8.4 Plasma Waves in Interplanetary Space .................... 162 8.4.1 Power-Density Spectrum .......................... 162 8.4.2 Waves or Thrbulence? ............................. 163 8.5 The Three-Dimensional Heliosphere ....................... 165 8.6 The Active Sun ........................................ 167 8.6.1 The Solar Cycle .................................. 167 8.6.2 A Simple Model of the Solar Cycle ................. 168 8.6.3 The Heliosphere During the Solar Cycle ............. 170 8.7 Flares and Coronal Mass Ejections ....................... 171 8. 7.1 Electromagnetic Radiation . . . . . . . . . . . . . . . . . . . . . . . . . 171 8. 7.2 Classes of Flares ................................. 175 8.7.3 Coronal Mass Ejections ........................... 176 8. 7.4 Coronal Mass Ejections, Flares, and Coronal Shocks .. 178 8.7.5 Models of Coronal Mass Ejections (CMEs) .......... 179 8. 7.6 Models of Flares ................................. 182 8. 7. 7 Magnetic Clouds: CMEs in Interplanetary Space ..... 183 8.7.8 Interplanetary Shocks ............................ 184 8.8 Summary .............................................. 186 Exercises and Problems ...................................... 186