ebook img

Space Debris: Models and Risk Analysis PDF

437 Pages·2006·15.28 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Space Debris: Models and Risk Analysis

Space Debris – Models and Risk Analysis Heiner Klinkrad Space Debris Models and Risk Analysis Published inassociationwith PPrraaxxiiss PPuubblliisshhiinngg Chichester, UK Dr. Heiner Klinkrad European Space Agency Darmstadt Germany Coverimageshowsacomputer-generatedsnapshotoftheobservablepopulationofspaceobjects in 1997, basedon orbitinformation provided byNASA. SPRINGER–PRAXIS BOOKS IN ASTRONAUTICAL ENGINEERING SUBJECTADVISORYEDITOR:JohnMason,M.Sc.,B.Sc.,Ph.D. ISBN 3-540-25448-X Springer-Verlag Berlin Heidelberg New York Springer is part of Springer-Science+Business Media (springeronline.com) Bibliographic information published by Die Deutsche Bibliothek Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available from the Internet at http://dnb.ddb.de Library of Congress Control Number: 2005936052 Apartfrom any fair dealing for the purposes of research orprivate study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers. # Praxis Publishing Ltd, Chichester, UK, 2006 Printed in Germany The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such namesareexemptfromtherelevantprotectivelawsandregulationsandthereforefree for general use. Cover design: Jim Wilkie Completed in LaTeX: Heiner Klinkrad and Clare Martin Cover image: # European Space Agency Printed on acid-free paper Table of Contents Prolog ix 1 Introduction 1 1.1 HistoryoftheEvolvingSpaceDebrisResearch . . . . . . . . . . . . 1 1.2 GuidanceforReadingthisBook . . . . . . . . . . . . . . . . . . . . . 4 1.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 TheCurrentSpaceDebrisEnvironmentanditsSources 5 2.1 LaunchHistoryandtheResultingOrbitalEnvironment . . . . . . . 5 2.2 HistoricOn-OrbitBreak-UpEvents . . . . . . . . . . . . . . . . . . . 18 2.3 Non-FragmentationDebrisSources . . . . . . . . . . . . . . . . . . . 23 2.4 Ground-BasedRadarandOpticalMeasurements . . . . . . . . . . . 27 2.5 In-SituMeasurementsandRetrievedSurfaces. . . . . . . . . . . . . 47 2.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3 ModelingoftheCurrentSpaceDebrisEnvironment 59 3.1 OrbitPropagationMethodsforLargePopulations . . . . . . . . . . 59 3.2 VolumeDiscretizationandCell-PassageEvents . . . . . . . . . . . . 61 3.3 TheTrackableSpaceObjectPopulation. . . . . . . . . . . . . . . . . 66 3.4 ModelingExplosionandCollisionFragments . . . . . . . . . . . . . 67 3.5 ModelingSolidRocketMotorSlagandDust . . . . . . . . . . . . . 76 3.6 ModelingSodium–PotassiumCoolantDroplets. . . . . . . . . . . . 83 3.7 ModelingWestfordNeedleClusters . . . . . . . . . . . . . . . . . . 86 3.8 ModelingSurfaceDegradationandImpactEjecta . . . . . . . . . . 87 3.9 HistoricEvolutionandSpatialDistributionofDebris . . . . . . . . 91 3.10 ComparisonofMeasurementsandModeledData . . . . . . . . . . 104 3.11 AlternativeSpaceDebrisEnvironmentModels . . . . . . . . . . . . 111 3.12 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 vi TableofContents 4 ModelingofCollisionFluxfortheCurrentSpaceDebrisEnvironment 115 4.1 DeterminationofCollisionFlux . . . . . . . . . . . . . . . . . . . . . 115 4.2 AnalysisofCollisionGeometries . . . . . . . . . . . . . . . . . . . . 119 4.3 CollisionFluxAssessmentforTypicalTargetOrbits . . . . . . . . . 122 4.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 5 ModelingoftheFutureSpaceDebrisEnvironment 143 5.1 OrbitPropagationMethodsforLong-TermPredictions . . . . . . . 143 5.2 ConceptsofaLong-TermDebrisEnvironmentProjection . . . . . . 144 5.3 ModelingFutureLaunchTrafficandReleaseEvents . . . . . . . . . 145 5.4 DeploymentsofConstellationsandNano-Satellites . . . . . . . . . 148 5.5 DefinitionofaBusiness-as-UsualForecastScenario . . . . . . . . . 151 5.6 VariationsofaBusiness-as-UsualForecastScenario . . . . . . . . . 159 5.7 AlternativeDebrisEnvironmentProjectionModels . . . . . . . . . 161 5.8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 6 EffectsofDebrisMitigationMeasuresonEnvironmentProjections 165 6.1 SpaceDebrisMitigationOptions . . . . . . . . . . . . . . . . . . . . 165 6.2 ExplosionPreventionbyEnd-of-LifePassivation . . . . . . . . . . . 168 6.3 Post-MissionDisposalfromLow-EarthOrbits . . . . . . . . . . . . 170 6.4 Post-MissionDisposalfromGeo-SynchronousOrbits . . . . . . . . 183 6.5 De-OrbitofGTOUpperStages . . . . . . . . . . . . . . . . . . . . . 190 6.6 DefinitionofProtectedRegions . . . . . . . . . . . . . . . . . . . . . 192 6.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 7 HypervelocityImpactDamageAssessmentandProtectionTechniques 199 7.1 HypervelocityAcceleratorsandHydrocodeSimulations . . . . . . 199 7.2 EffectsofHypervelocityImpacts . . . . . . . . . . . . . . . . . . . . 203 7.3 Single-WallDamageEquations . . . . . . . . . . . . . . . . . . . . . 205 7.4 Multiple-WallDamageEquations . . . . . . . . . . . . . . . . . . . . 208 7.5 HVIShieldDesignsandImplementations . . . . . . . . . . . . . . . 212 7.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 8 OperationalCollisionAvoidancewithRegardtoCatalogObjects 215 8.1 OrbitPredictionandAssociatedUncertainties . . . . . . . . . . . . 215 8.2 DeterminationofNear-MissConjunctionEvents . . . . . . . . . . . 219 8.3 CollisionRiskEstimateforNear-MissConjunctions . . . . . . . . . 222 8.4 StatisticalForecastofAvoidanceManeuverFrequency. . . . . . . . 226 8.5 CollisionAvoidanceforOperationalSatellites. . . . . . . . . . . . . 233 8.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 9 Re-EntryPredictionandOn-GroundRiskEstimation 241 9.1 HistoryofHazardousRe-EntryEvents . . . . . . . . . . . . . . . . . 241 9.2 Long-andMedium-TermRe-EntryPredictions . . . . . . . . . . . . 244 9.3 Short-TermRe-EntryPredictions . . . . . . . . . . . . . . . . . . . . 249 9.4 PredictionofBreak-UpandSurvivalofEntryObjects . . . . . . . . 256 TableofContents vii 9.5 EstimationofOn-GroundRiskDuetoRe-Entries . . . . . . . . . . . 266 9.6 Long-andShort-TermRe-EntryRiskManagement . . . . . . . . . . 272 9.7 HazardousRe-EntryMaterials . . . . . . . . . . . . . . . . . . . . . 285 9.8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 10 ModelingoftheTerrestrialMeteoroidEnvironment 289 10.1 TheDivine–StaubachMeteoroidModel . . . . . . . . . . . . . . . . 289 10.2 MeteoroidFluxAssessmentforTypicalTargetOrbits . . . . . . . . 294 10.3 ModelingMeteoroidStreamEvents . . . . . . . . . . . . . . . . . . 296 10.4 Near-EarthObjectsandAssociatedRisks . . . . . . . . . . . . . . . 301 10.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 11 SpaceDebrisActivitiesinanInternationalContext 311 11.1 InternationalForumsforInformationExchange . . . . . . . . . . . 311 11.2 InternationalCooperationataTechnicalLevel . . . . . . . . . . . . 312 11.3 InternationalStandardsandPolicies . . . . . . . . . . . . . . . . . . 313 11.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 Epilog 315 A BasicsofOrbitMechanics 317 A.1 KeplerOrbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317 A.2 PlanarOrbitTransferManeuvers . . . . . . . . . . . . . . . . . . . . 321 A.3 ShapeoftheEarthandtheGeodeticPosition . . . . . . . . . . . . . 322 A.4 MajorPerturbationsonEarthOrbits . . . . . . . . . . . . . . . . . . 322 A.5 ThePerturbedNewtonEquations. . . . . . . . . . . . . . . . . . . . 324 A.6 TheGaussPerturbationEquations . . . . . . . . . . . . . . . . . . . 325 A.7 TheLagrangePerturbationEquations . . . . . . . . . . . . . . . . . 326 A.8 IntegratingthePerturbationEquations . . . . . . . . . . . . . . . . . 326 A.9 ResultingPerturbationsonEarthOrbits . . . . . . . . . . . . . . . . 328 A.10References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330 B TheAtmosphereoftheEarth 331 B.1 StructureofThermosphereModels . . . . . . . . . . . . . . . . . . . 331 B.2 ImplementationsofThermosphereModels . . . . . . . . . . . . . . 334 B.3 SolarandGeomagneticActivities . . . . . . . . . . . . . . . . . . . . 336 B.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347 C TheGravitationalPotentialoftheEarth 349 C.1 MathematicalFormulationoftheGeopotential . . . . . . . . . . . . 349 C.2 HarmonicCoefficientsoftheGeopotential. . . . . . . . . . . . . . . 350 C.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354 viii TableofContents D TheWorldPopulationViewedfromOrbit 355 D.1 ModeloftheWorldPopulationDensityDistribution . . . . . . . . . 355 D.2 SamplingtheWorldPopulationalongGroundTracks . . . . . . . . 356 D.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369 E ColorSupplement 371 ListofSymbols 387 ListofAbbreviations 393 ListofTables 399 ListofFigures 401 Bibliography 407 Index 417 Prolog Mostcolleagueswhoenterthesolemnhallsofspaceflightusethemainentrance, following the footsteps of generations of famous predecessors in their endeavor toconceiveandrealizenew,ground-breakingspacemissions. SinceIamdealing with residues of space flight, sometimes disrespectfully denoted as space junk, Iapproachedthesesolemnhallsfromthealleyway, throughthebackdoor. This wasin1978,whenIgotinvolvedinthere-entryassessmentofthereactor-equipped Cosmos 954 satellite after it spread its radioactive debris across Canada. At that time almost 6,000 trackable objects were on orbit, with more than 90% thereof spacedebris. Spacedebrisareuselessspaceobjectsincludingspentorbitalstages, de-commissioned satellites, items released during nominal missions, and frag- mentsfromdeliberateandunintentionalon-orbitexplosions,butalsoexoticrelicts ofspaceactivities,suchasprotectivegloves,orascrewdriverlostbyanastronaut. The space debris population has steadily increased since the early 1960s. By the year2005morethan14,000spaceobjectsofdiameterslargerthan5to10cmcould be tracked, of which no more than 5% were operational spacecraft. With these numbersinmind,andwith20yearsofinvolvementinthefield,Ifeltthatitwas time to write a book on space debris, which today represent the overwhelming majorityofman-madeobjectsinEarthorbits. Severalyearselapsedbetweenthefirstideasforthisbookanditscompletion. Notjustthespacedebrisenvironmentitself,butalsotherelatedresearchactivities undergo a highly dynamic evolution. As a consequence, a book on space debris runstheriskofbecominginconsistentduringthewrite-upprocess, andobsolete bythetimeofitspublication.Myintentionwastominimizethisriskbyproviding a consistent snapshot of the space debris situation around the year 2002, and by developinganddocumentingatheoreticalbasiswithahopefullybetterdurability andlongevitythattheenvironmentitself. This book was written by a single author. In many chapters, however, the research contributions of several colleagues deserved more than a citation or ac- knowledgment. Insuchcases,theyhavebeenlistedascontributingauthorsinthe chapterheadings. x Prolog Thisisnotthefirstbookdealingwithspacedebris,norwillitbethelastone. Therecouldhavebeenmanydifferentwaysofselectingthematerial, ofpresent- ingit,andofcitingrelevantwork. Whatyouseehereisaverypersonal,probably unintentionallybiasedpresentationandviewofthesubject,basedoninformation whichIcollectedduring25yearsofworkfortheEuropeanSpaceAgency,with20 years thereof at the European Space Operations Center in Darmstadt, Germany. Itwasthisenvironment,andtheprofessionalandpersonallinksandinformation exchangewithESAcolleagues,andwithcolleaguesoftheEuropeanandinterna- tionalspacedebriscommunity,whichmadethisbookpossible.Aboveall,Iwould like to acknowledge the role of Walter Flury, who has led ESA’s space debris ac- tivities since the mid 1980s. His dedication and enthusiasm helped to advance spacedebrisresearchinESAandwithinEurope,andithelpedtodevelopaEuro- peanspacedebrisexpertisewhichtodayhasreachedaninternationallyrecognized level. ThecontentofthebookislargelyfocusedonEuropeanactivities,inparticular onthosewhichwereperformedunderthelead,orwiththeparticipationofESA. Theviewsexpressedinthistext, however, arethoseoftheauthor, andtheymay notnecessarilyreflectthoseofESA.Inconsistentorerroneousinformationwhich maybecontainedinthistextarethesoleresponsibilityoftheauthor. Thetopicswhichareaddressedinthisbookfollowtheoutlineofagraduate course on Space Debris which I have given in a curriculum for aeronautical en- gineers since 2001. I have tried to keep the volume and technical detail of the presented material at a level which allows this text book to be used for teaching purposes at graduate level. Worked problems, which would have been helpful for teaching applications, are not yet contained in this text. They are, however, foreseenforalaterrelease. IwouldliketothankthepublishingstaffatPraxisandSpringerfortheiren- durance, and for their constructive comments and guidance during the prepara- tion of the manuscript, and during the final typesetting of this book. The type- setting was done in LATEX, by means of an expert-designed LATEX class-file which was provided by Clare Martin, one of the contributing authors. Apart from the contributingauthorsIwouldalsoliketoacknowledgesupport,contributions, or editorialcommentsfromLudgerLeushacke,ThomasSchildknecht,FrankScha¨fer, MichaelOswald,SebastianStabroth,GerhardDrolshagen,MichelLambert,Mar- kusLandgraf,CristinaHerna´ndez,I´n˜igoMascaraque,SantiagoLlorente,Dorothea Danesy,andTomMohr. TherearemanymoreindividualstowhomIamgrateful, and who may not recognize themselves in the previous acknowledgments. My apologiestoallofyou. Finally, and most of all, I would like to thank my wife Angelika for her pa- tienceandforhercontinuoussupport. HeinerKlinkrad Seeheim-Jugenheim,July2005 1 Introduction H.Klinkrad Weseemtoexistinahazardoustime,driftn’alongherethroughspace; nobodyknowsjustwhenwebegun,orhowfarwe’vegoneintherace. BenjaminFranklin 1.1 HISTORYOFTHEEVOLVINGSPACEDEBRISRESEARCH On June 29, 1961, the US Transit-4A satellite was launched from Kennedy Space CenteronaThor-Ablestarrocket. Thespacecraftwasdeployedintoanorbitalti- ◦ tude between 881 km and 998 km, with an orbit inclination of 66.8 . Transit-4A wascatalogedbytheFirstAerospaceControlSquadronoftheUSAirForceasthe 116th space object since the launch of Sputnik-1 on October 4, 1957. At 06:08:10 UTC on June 29, 77 minutes after the injection and separation of Transit-4A and two additional payloads, the Ablestar upper stage exploded, distributing its dry mass of 625 kg across at least 298 trackable fragments, of which nearly 200 were stillonorbit40yearslater. Thisfirston-orbitbreak-upeventinspacehistoryin- creasedtheobservablenumberofman-madespaceobjectsinstantaneouslybyat leastafactor3.5(PortreeandLoftus,1993). Sincethisdatespacedebrishasbeen the largest contributor to the observable space object population, with on-orbit explosionsasitslargestsinglesource. Thetermsspacedebrisandorbitaldebrisareoftenusedassynonyms, withthe following definition, as adopted by the Inter-Agency Space Debris Coordination Committee (IADC): ”Space debris are all man made objects including fragments and elements thereof, in Earth orbit or re-entering the atmosphere, that are non functional” (anon., 2002a). According to this definition, 46.5% of the cataloged space objects prior the Ablestar explosion had already been space debris, for in-

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.