ebook img

Sources in the development of mathematics PDF

996 Pages·2011·4.243 MB·English
by  Roy R.
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Sources in the development of mathematics

This page intentionally left blank Sources in the Development of Mathematics ThediscoveryofinfiniteproductsbyWallisandinfiniteseriesbyNewtonmarkedthe beginningofthemodernmathematicalera.TheuseofseriesallowedNewtontofind theareaunderacurvedefinedbyanyalgebraicequation,anachievementcompletely beyondtheearliermethodsofTorricelli,Fermat,andPascal. TheworkofNewtonand hiscontemporaries,includingLeibnizandtheBernoullis,wasconcentratedinmath- ematical analysis and physics. Euler’s prodigious mathematical accomplishments dramaticallyextendedthescopeofseriesandproductstoalgebra,combinatorics,and numbertheory. SeriesandproductsprovedpivotalintheworkofGauss,Abel,and Jacobiinellipticfunctions;inBooleandLagrange’soperatorcalculus;andinCayley, Sylvester,andHilbert’sinvarianttheory. Seriesandproductsstillplayacriticalrole inthemathematicsoftoday.ConsidertheconjecturesofLanglands,includingthatof Shimura-Taniyama,leadingtoWiles’sproofofFermat’slasttheorem. DrawingontheoriginalworkofmathematiciansfromEurope,Asia,andAmerica, Ranjan Roy discusses many facets of the discovery and use of infinite series and products. He gives context and motivation for these discoveries, including original notation and diagrams when practical. He presents multiple derivations for many importanttheoremsandformulasandprovidesinterestingexercises,supplementing theresultsofeachchapter. Roy deals with numerous results, theorems, and methods used by students, mathematicians,engineers,andphysicists.Moreover,sincehepresentsoriginalmath- ematical insights often omitted from textbooks, his work may be very helpful to mathematicsteachersandresearchers. ranjan roy istheRalphC.HufferProfessorofMathematicsandAstronomyat BeloitCollege.Royhaspublishedpapersandreviewsindifferentialequations,fluid mechanics, Kleinian groups, and the development of mathematics. He co-authored Special Functions (2001) with GeorgeAndrews and RichardAskey, and authored chaptersintheNISTHandbookofMathematicalFunctions(2010).Hehasreceived theAllendoerfer prize, the Wisconsin MAAteaching award, and the MAAHaimo awardfordistinguishedmathematicsteaching. CoverimagebyNFNKalyan;CoverdesignbyDavidLevy. Sources in the Development of Mathematics Infinite Series and Products from the Fifteenth to the Twenty-first Century RANJAN ROY BeloitCollege cambridge university press Cambridge,NewYork,Melbourne,Madrid,CapeTown, Singapore,SãoPaulo,Delhi,Tokyo,MexicoCity CambridgeUniversityPress 32AvenueoftheAmericas,NewYork,NY10013-2473,USA www.cambridge.org Informationonthistitle:www.cambridge.org/9780521114707 ©RanjanRoy2011 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2011 PrintedintheUnitedStatesofAmerica AcatalogrecordforthispublicationisavailablefromtheBritishLibrary. ISBN978-0-521-11470-7Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyofURLsforexternalor third-partyInternetWebsitesreferredtointhispublicationanddoesnotguaranteethatanycontentonsuch Websitesis,orwillremain,accurateorappropriate. Contents Preface page xvii 1 PowerSeriesinFifteenth-CenturyKerala 1 1.1 PreliminaryRemarks 1 1.2 TransformationofSeries 4 1.3 JyesthadevaonSumsofPowers 5 1.4 ArctangentSeriesintheYuktibhasa 7 1.5 DerivationoftheSineSeriesintheYuktibhasa 8 1.6 ContinuedFractions 10 1.7 Exercises 12 1.8 NotesontheLiterature 14 2 SumsofPowersofIntegers 16 2.1 PreliminaryRemarks 16 2.2 JohannFaulhaberandSumsofPowers 19 2.3 JakobBernoulli’sPolynomials 20 2.4 ProofofBernoulli’sFormula 24 2.5 Exercises 25 2.6 NotesontheLiterature 26 3 InfiniteProductofWallis 28 3.1 PreliminaryRemarks 28 3.2 Wallis’sInfiniteProductforπ 32 3.3 BrounckerandInfiniteContinuedFractions 33 3.4 Stieltjes:ProbabilityIntegral 36 3.5 Euler:SeriesandContinuedFractions 38 3.6 Euler:ProductsandContinuedFractions 40 3.7 Euler:ContinuedFractionsandIntegrals 43 3.8 Sylvester:ADifferenceEquationandEuler’sContinuedFraction 45 3.9 Euler:Riccati’sEquationandContinuedFractions 46 3.10 Exercises 48 3.11 NotesontheLiterature 50 v vi Contents 4 TheBinomialTheorem 51 4.1 PreliminaryRemarks 51 4.2 Landen’sDerivationoftheBinomialTheorem 57 4.3 Euler’sProofforRationalIndices 58 4.4 Cauchy:ProofoftheBinomialTheoremforRealExponents 60 4.5 Abel’sTheoremonContinuity 62 4.6 HarknessandMorley’sProofoftheBinomialTheorem 66 4.7 Exercises 67 4.8 NotesontheLiterature 69 5 TheRectificationofCurves 71 5.1 PreliminaryRemarks 71 5.2 Descartes’sMethodofFindingtheNormal 73 5.3 Hudde’sRuleforaDoubleRoot 74 5.4 VanHeuraet’sLetteronRectification 75 5.5 Newton’sRectificationofaCurve 76 5.6 Leibniz’sDerivationoftheArcLength 77 5.7 Exercises 78 5.8 NotesontheLiterature 79 6 Inequalities 81 6.1 PreliminaryRemarks 81 6.2 Harriot’sProofoftheArithmeticandGeometricMeansInequality 87 6.3 Maclaurin’sInequalities 88 6.4 Jensen’sInequality 89 6.5 Reisz’sProofofMinkowski’sInequality 90 6.6 Exercises 91 6.7 NotesontheLiterature 96 7 GeometricCalculus 97 7.1 PreliminaryRemarks (cid:1) 97 7.2 Pascal’sEvaluationof sinxdx 100 7.3 Gregory’sEvaluationof(cid:1)aBetaIntegral 101 7.4 Gregory’sEvaluationof(cid:1) secθdθ 104 7.5 Barrow’sEvaluationof (cid:1)s√ecθdθ 106 7.6 BarrowandtheIntegral x2+a2dx 108 7.7 Barrow’sProofof d tanθ =sec2θ 110 dθ 7.8 Barrow’sProductRuleforDerivatives 111 7.9 Barrow’sFundamentalTheoremofCalculus 114 7.10 Exercises 114 7.11 NotesontheLiterature 118 8 TheCalculusofNewtonandLeibniz 120 8.1 PreliminaryRemarks 120 8.2 Newton’s1671CalculusText 123 8.3 Leibniz:DifferentialCalculus 126 Contents vii 8.4 LeibnizontheCatenary 129 8.5 JohannBernoulliontheCatenary 131 8.6 JohannBernoulli:TheBrachistochrone 132 8.7 Newton’sSolutiontotheBrachistochrone 133 8.8 NewtonontheRadiusofCurvature 135 8.9 JohannBernoulliontheRadiusofCurvature 136 8.10 Exercises 137 8.11 NotesontheLiterature 138 9 DeAnalysiperAequationesInfinitas 140 9.1 PreliminaryRemarks 140 9.2 AlgebraofInfiniteSeries 142 9.3 Newton’sPolygon 145 9.4 NewtononDifferentialEquations 146 9.5 Newton’sEarliestWorkonSeries 147 9.6 DeMoivreonNewton’sFormulaforsinnθ 149 9.7 Stirling’sProofofNewton’sFormula 150 9.8 Zolotarev:LagrangeInversionwithRemainder 152 9.9 Exercises 153 9.10 NotesontheLiterature 156 10 FiniteDifferences:InterpolationandQuadrature 158 10.1 PreliminaryRemarks 158 10.2 Newton:DividedDifferenceInterpolation 163 10.3 Gregory–NewtonInterpolationFormula 165 10.4 Waring,Lagrange:InterpolationFormula 165 10.5 Cauchy,Jacobi:LagrangeInterpolationFormula 166 10.6 NewtononApproximateQuadrature 168 10.7 Hermite:ApproximateIntegration 170 10.8 ChebyshevonNumericalIntegration 172 10.9 Exercises 173 10.10 NotesontheLiterature 175 11 SeriesTransformationbyFiniteDifferences 176 11.1 PreliminaryRemarks 176 11.2 Newton’sTransformation 181 11.3 Montmort’sTransformation 182 11.4 Euler’sTransformationFormula 184 11.5 Stirling’sTransformationFormulas 187 11.6 Nicole’sExamplesofSums 190 11.7 StirlingNumbers 191 11.8 Lagrange’sProofofWilson’sTheorem 194 11.9 Taylor’sSummationbyParts 195 11.10 Exercises 196 11.11 NotesontheLiterature 199 viii Contents 12 TheTaylorSeries 200 12.1 PreliminaryRemarks 200 12.2 Gregory’sDiscoveryoftheTaylorSeries 206 12.3 Newton:AnIteratedIntegralasaSingleIntegral 209 12.4 BernoulliandLeibniz:AFormoftheTaylorSeries 210 12.5 TaylorandEulerontheTaylorSeries 211 12.6 Lacroixond’Alembert’sDerivationoftheRemainder 212 12.7 Lagrange’sDerivationoftheRemainderTerm 213 12.8 Laplace’sDerivationoftheRemainderTerm 215 12.9 CauchyonTaylor’sFormulaandl’Hôpital’sRule 216 12.10 Cauchy:TheIntermediateValueTheorem 218 12.11 Exercises 219 12.12 NotesontheLiterature 220 13 IntegrationofRationalFunctions 222 13.1 PreliminaryRemarks 222 13.2 Newton’s1666BasicIntegrals 228 13.3 Newton’sFactorizationofxn±1 230 13.4 CotesanddeMoivre’sFactorizations 231 13.5 Euler:IntegrationofRationalFunctions 233 13.6 Euler’sGeneralizationofHisEarlierWork 234 13.7 Hermite’sRationalPartAlgorithm√ 237 13.8 JohannBernoulli:Integrationof ax2+bx+c 238 13.9 Exercises 239 13.10 NotesontheLiterature 243 14 DifferenceEquations 245 14.1 PreliminaryRemarks 245 14.2 DeMoivreonRecurrentSeries 247 14.3 Stirling’sMethodofUltimateRelations 250 14.4 DanielBernoullionDifferenceEquations 252 14.5 Lagrange:NonhomogeneousEquations 254 14.6 Laplace:NonhomogeneousEquations 257 14.7 Exercises 258 14.8 NotesontheLiterature 259 15 DifferentialEquations 260 15.1 PreliminaryRemarks 260 15.2 Leibniz:EquationsandSeries 268 15.3 NewtononSeparationofVariables 270 15.4 JohannBernoulli’sSolutionofaFirst-OrderEquation 271 15.5 EuleronGeneralLinearEquationswithConstantCoefficients 272 15.6 Euler:NonhomogeneousEquations 274 15.7 Lagrange’sUseoftheAdjoint 276 15.8 JakobBernoulliandRiccati’sEquation 278 15.9 Riccati’sEquation 278

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.