ebook img

Sound Topology, Duality, Coherence and Wave-mixing : An Introduction to the Emerging New Science of Sound PDF

374 Pages·2017·10.669 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Sound Topology, Duality, Coherence and Wave-mixing : An Introduction to the Emerging New Science of Sound

Springer Series in Solid-State Sciences 188 Pierre Deymier Keith Runge Sound Topology, Duality, Coherence and Wave-Mixing An Introduction to the Emerging New Science of Sound Springer Series in Solid-State Sciences Volume 188 Serieseditors BernhardKeimer,Stuttgart,Germany RobertoMerlin,AnnArbor,MI,USA Hans-JoachimQueisser,Stuttgart,Germany KlausvonKlitzing,Stuttgart,Germany The Springer Series in Solid-State Sciences consists of fundamental scientific books prepared by leading researchers in the field. They strive to communicate, in a systematic and comprehensive way, the basic principles as well as new developmentsintheoreticalandexperimentalsolid-satephysics. Moreinformationaboutthisseriesathttp://www.springer.com/series/682 Pierre Deymier • Keith Runge Sound Topology, Duality, Coherence and Wave-Mixing An Introduction to the Emerging New Science of Sound PierreDeymier KeithRunge Dept.ofMaterialsScience Dept.ofMaterialsScienceandEngineering andEngineering UniversityofArizona UniversityofArizona Tucson,Arizona Tucson,Arizona USA USA ISSN0171-1873 ISSN2197-4179 (electronic) SpringerSeriesinSolid-StateSciences ISBN978-3-319-62379-5 ISBN978-3-319-62380-1 (eBook) DOI10.1007/978-3-319-62380-1 LibraryofCongressControlNumber:2017946710 ©SpringerInternationalPublishingAG2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilarmethodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthis book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained hereinor for anyerrors oromissionsthat may havebeenmade. Thepublisher remainsneutralwith regardtojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland To Le´onard Dobrzynski Preface Anewscienceofsoundisemergingbasedonthescientificprinciplesofsymmetry breaking and interactions. This new science of sound focuses on aspects of wave phenomenathathavenotbeenemphasized intraditionalinstructionandinpartic- ular the four paradigm-changing scientific notions of sound topology, duality, coherence,andwavemixing. Topology Whensoundwavespropagateinmediaundersymmetrybreakingcon- ditions,theymayexhibitamplitudesA(k)¼A eiη(k)thatacquireageometricphaseη 0 leading to non-conventional topology. Broken symmetry phenomena lead to the concept of symmetry-protected topological order. Topological acoustic waves promise designs and new device functionalities for acoustic systems that are unique,robust,andavoidthelossofcoherence. Duality The self-interaction of a wave through its supporting medium creates acoustic wave states determined by self-interference phenomena. In the phonon representation of sound waves, these self-interference phenomena uncover the notionofdualityinthequantumstatistics(i.e.,bosonversusfermioncharacterized by the symmetry of multiple particle states). It also enables the development of analogieswithquantummechanicsandQuantumFieldTheory. Coherence Interactions in nonlinear elastic media cause multiple scattering and resonances of sound waves. Individually, these resonances may lead to sound waveswithnon-conventionaltopologies.However,inthecaseofmultiplechannels for phonon scattering, nonlinearity leads to the loss of phase coherence while retaining a broken time-reversalsymmetry demonstrated byacousticwaveampli- tudedegradation.Mechanicalenergycanbedirectedinaone-way,irreversible,and targeted fashion from a linear system to a nonlinear system in coupled nonlinear andlinearvibrationalsystems.Targetedenergytransferoffersstrategiesforvibra- tionandsoundmanagement. Wave Mixing Media supporting different types of waves and their sources can coherentlyconvertenergybetweensoundandotherphysicalandbiologicalwaves. vii viii Preface Topological effects have been shown for biological waves (calcium signals) resulting fromacoustic wave-drivenspatiotemporalmodulation ofcell membrane conductance in biological tissue. Coherent phonons can bestow non-conventional topologicalcharacteristicstoelectronicwavefunctionsandtopologicalspinwaves can arise from the spatiotemporal modulation of the spin coupling constant in ferromagneticmediaduetophonons. These notions are taken further and related to the development of acoustic analogues of other physical phenomena ranging from quantum mechanics to generalrelativity.Theseanaloguesofferperspectivesforapplicationsandtechno- logicaldevelopmentsofthenewscienceofsound. This book gives an introduction to these scientific notions and analogues by attempting to present a number of “simple” models. The authors have developed these models in the spirit of Jacques Friedel’s approach to theoretical research. Friedel’s research utilized extensively approximate but simple models that can be understoodbynon-specialists:“J’aiessaye´dede´velopperdesmode`lesapproximatifs maissimples,compre´hensiblesetmeˆmeutilisablespardesnon-spe´cialistes”[1]. This book is not an exhaustive review of models relative to the four notions introduced above. These models serve as demonstrations of these notions and provideonlyapartialfoundationfortheirunificationintoanewscienceofsound. Mostofthe simple models presented hererepresent contributions ofthe authors andmanyoftheircollaborators,studentsandpostdoctoralfellows,whomwewould liketoacknowledgeatthistime.Inparticular,Prof.JeromeVasseur,whoproofread portionsofseveralchapters.Thisbookpaintsapictureoftheemergingnewscience ofsoundthatreflectsthe biasedperception andunderstandingoftheauthorsalone. We would also like to acknowledge partial support from the US National Science Foundation(NSF)aswellastheFrenchCentreNationaldelaRechercheScientifique (CNRS)throughtheLaboratoireInternationalAssocie´ “MaterialsandOptics.” The book is divided into six chapters with their own set of references, each of whichisintendedtobeself-containedandabletobereadindependently.Incasethere areoverlappingconcepts,werefertotheappropriatesubsectionofotherchapters. We hope that this book will stimulate future interest in the emerging field of soundandwillinitiatenewdevelopmentsinthefourscientificnotionsoftopology, duality,coherence,andwavemixing. Tucson,AZ PierreA.Deymier KeithRunge Reference [1] Entrevue avec Jacques Friedel, Paris, 17 octobre 2001, Herve´ Arribart et Bernadette Bensaude-Vincent. http://authors.library.caltech.edu/5456/1/hrst. mit.edu/hrs/materials/public/index.html Contents 1 IntroductiontoSpringSystems. . . . .. . . . .. . . . . .. . . . . .. . . . . .. 1 1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 One-DimensionalMonatomicHarmonicCrystal. . . . . . . . . . . . . 1 1.3 PhaseandGroupVelocity. . . .. . . . . .. . . . . .. . . . . . .. . . . . .. 3 1.4 One-DimensionalDiatomicHarmonicCrystal. . . . . . . . . . . . . . . 4 1.5 One-DimensionalMonatomicCrystalwithSpatiallyVarying Stiffness.. . . .. . . .. . . .. . . .. . . . .. . . .. . . .. . . .. . . .. . . .. 6 1.6 Green’sFunctionApproach. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.7 MonatomicCrystalwithaMassDefect. . . . . . . . . . . . . . . . . . . . 10 1.7.1 MonatomicHarmonicCrystalwithaGeneralPerturbation.... 12 1.7.2 LocallyResonantStructure. . . . . . . . . . . . . . . . . . . . . . . 13 1.8 InterfaceResponseTheory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.8.1 FundamentalEquationsoftheInterfaceResponse Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.8.2 Green’sFunctionoftheCleaved1-DMonatomic Crystal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.8.3 FiniteMonatomicCrystal. . . . . . . . . . . . . . . . . . . . . . . . 20 1.8.4 1-DMonatomicCrystalwithOneSideBranch. . . . . . . . . 22 1.8.5 1-DMonatomicCrystalwithMultipleSideBranches. . . . 24 1.9 Conclusion. . .. . . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . . .. . 28 Appendix1:CodeBasedonGreen’sFunctionApproach. . . . . . . . . . . 28 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2 PhaseandTopology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.3 HarmonicOscillatorModelSystems. . . . . . . . . . . . . . . . . . . . . . 40 2.3.1 GeometricPhaseandDynamicalPhaseoftheDamped HarmonicOscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.3.2 GeometricPhaseoftheDrivenHarmonicOscillator. . . . . 42 ix x Contents 2.3.3 TopologicalInterpretationoftheGeometricPhase. . . . . . 44 2.4 ElasticSuperlatticeModelSystem. . . .. . .. . . .. . . .. . . .. . . .. 48 2.4.1 GeometricPhaseofaOne-DimensionalElastic Superlattice:ZakPhase. . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.4.2 TopologicalInterpretationoftheZakPhase. . . . . . . . . . . 52 2.5 Green’sFunctionApproach. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.5.1 Green’sFunctionsandBerryConnection. . . . . . . . . . . . . 53 2.5.2 TheOne-DimensionalHarmonicCrystal. .. . . . . .. . . . .. 55 2.5.3 TheOne-DimensionalHarmonicCrystalwithSide Branches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2.6 TopologicalModesatInterfacesBetweenMediawithDifferent ZakPhases. . . . . . . . . . . . .. . . . . . . . . . . . .. . . . . . . . . . . . .. . 63 2.7 Conclusion. . .. . . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . . .. . 65 Appendix1:EigenValuesandEigenVectorsinOne-Dimensional ElasticSuperlattice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Appendix2:DiscreteOne-DimensionalMonatomicCrystalwithSpatially VaryingStiffness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Appendix3:IntroductiontoGreen’sFunctionFormalism. . . . . . . . . . . 74 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 3 TopologyandDualityofSoundandElasticWaves. . . . . . . . . . . . . . 81 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.3 IntrinsicTopologicalPhononicStructures. . . . . . . . . . . . . . . . . . 83 3.3.1 TwoCoupledMass-SpringHarmonicCrystalsinthe Long-WavelengthLimit. . . .. . . . . . . . . .. . . . . . . . . .. . 83 3.3.2 SingleHarmonicCrystalGroundedtoaRigidSubstrate intheLong-WavelengthLimit. . . . . . . . . . . . . . . . . . . . . 88 3.3.3 SingleDiscreteHarmonicCrystalGroundedtoaRigid SubstrateBeyondtheLong-WavelengthLimit. . . . . . . . . 92 3.4 ExtrinsicTopologicalPhononicStructure. . . . . . . . . . . . . . . . . . 109 3.4.1 Time-DependentElasticSuperlattice. . . . . . . . . . . . . . . . 109 3.4.2 MultipletimeScalePerturbationTheoryofthe Time-DependentSuperlattice. . . . . . . . . . . . . . . . . . . . . . 112 3.4.3 TopologyofElasticWaveFunctions. . . . . . . . . . . . . . . . 115 3.5 MixedIntrinsicandExtrinsicTopologicalPhononicStructure. . . 120 3.5.1 One-DimensionalMass-SpringHarmonicCrystalGrounded toaSubstratewithSpatio-TemporalModulation. . . . . . . . 120 3.6 SeparableandNon-separableStatesinElasticStructures. . . . . . . 127 3.6.1 SeparabilityofSystemsComposedofHarmonic Oscillators. . . . .. . . .. . . .. . . . .. . . .. . . .. . . . .. . . .. 128 3.6.2 PartitioningofaHarmonicCrystalintoNormalModes. . . 129 3.6.3 Uncoupled1-DHarmonicCrystals. . . . . . . . . . . . . . . . . . 130 3.6.4 SeparabilityandNon-separabilityoftheStatesofCoupled HarmonicCrystals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.