ebook img

Sound Propagation Theory for Linear Ray Acoustic Modelling PDF

114 Pages·2011·0.53 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Sound Propagation Theory for Linear Ray Acoustic Modelling

AB HELSINKI UNIVERSITY OF TECHNOLOGY Department of Computer Science and Engineering Telecommunications Software and Multimedia Laboratory Sami Kiminki Sound Propagation Theory for Linear Ray Acoustic Modelling Supervisor: ProfessorLauriSavioja Instructor: TapioLokki,D.Sc. (Tech.) HELSINKI UNIVERSITY ABSTRACT OF THE OF TECHNOLOGY MASTER’S THESIS Author: SamiKiminki Nameofthethesis: SoundPropagationTheoryforLinearRayAcousticModelling Date: March7,2005 Numberofpages: 100+14 Department: ComputerScienceandEngineering Professorship: T-111 Supervisor: ProfessorLauriSavioja Instructor: TapioLokki,D.Sc. (Tech.) Inthiswork,alinearrayacousticmodellingtheoryisconstructed. Thetheoryformsabase for linear ray acoustic modellingmethods. As such, the theory can be used to derive and analyseraymethods. Threeexistingraymodellingmethods(theimagesourcemethod,the radiosity method, and the ray tracing method) are shown to be derivable from the theory. Itisalsosuggestedthatthetheorycanbeusedtoderiveacousticcharacteristicsestimators such as the average reverberation time of a room. To the author’s knowledge, this is the (cid:2)rstattempttocreate atheoryfor acousticraymodelling. The theory is divided into two parts: general and acoustic. The general theory consists of general de(cid:2)nitions, time-dependent energy propagationequations, and detection equa- tions. The general part yieldstime-independentray modellingtheoryby eliminatingtime dependency, thus linking the acoustic and the graphic ray modelling. The acoustic part speci(cid:2)esthegeneralde(cid:2)nitionsasacousticde(cid:2)nitions. Thetheorylackssub-surfacescat- tering re(cid:3)ection and edge diffraction. A well-de(cid:2)ned extension path for the inclusion is considered,however. The general de(cid:2)nitions consist of mathematical and physical de(cid:2)nitions. Energy propa- gationequationsare constructedindetail, resultingin the re(cid:3)ection-iterativeconstruction and the acoustic rendering equation. The (cid:2)rst is a straightforward construction, and the second is a balance equation (cid:151) extension of the Kajiya’s rendering equation. The equa- tionsevaluateimpulseenergyresponsesandareshowntobeequivalentusinglinearoper- atoranalysis. Anexamplede(cid:2)nitionforauralizationofenergyresponsesisconstructed. Keywords: generalmodellingtheory,imagesourcemethod(ISM),radiosity,raytracing,rayacous- ticmodelling ii TEKNILLINEN KORKEAKOULU DIPLOMITY(cid:214)N TIIVISTELM˜ Tekij(cid:228): SamiKiminki Ty(cid:246)nnimi: ˜(cid:228)nenetenemisteoria lineaarisessa s(cid:228)deakustiikassa P(cid:228)iv(cid:228)m(cid:228)(cid:228)r(cid:228): 7.3.2005 Sivuja: 100+14 Osasto: Tietotekniikan osasto Professuuri: T-111 Ty(cid:246)nvalvoja: ProfessoriLauriSavioja Ty(cid:246)nohjaaja: TkTTapioLokki Ty(cid:246)ss(cid:228) rakennetaan pohjateoria lineaariselle s(cid:228)deakustiselle mallinnukselle. Teoriaa voi- daank(cid:228)ytt(cid:228)(cid:228)s(cid:228)demenetelmienjohtoonjaanalyysiin.Kolmeolemassaolevaas(cid:228)deakustista mallinnusmenetelm(cid:228)(cid:228) osoitetaan olevan johdettavissa teoriasta (kuval(cid:228)hde-, radiositeetti- jas(cid:228)teenseurantamenetelm(cid:228)).Lis(cid:228)ksiehdotetaan,ett(cid:228)teoriaavoitaisiink(cid:228)ytt(cid:228)(cid:228)my(cid:246)sakus- tisten tunnuslukujen estimointiin, esimerkkin(cid:228) j(cid:228)lkikaiunta-aika. T(cid:228)m(cid:228) on tekij(cid:228)n tiet(cid:228)- myksenmukaanensimm(cid:228)inenyritysluodakattavas(cid:228)deakustisenmallinnuksenteoria. Teoriajaetaankahteenosaan,yleiseenjaakustiseen.Yleinenosak(cid:228)sitt(cid:228)(cid:228)yleisetm(cid:228)(cid:228)ritel- m(cid:228)t,aikariippuvatenergiankulkuyht(cid:228)l(cid:246)tsek(cid:228)havainnointiyht(cid:228)l(cid:246)t.Teorianyleisest(cid:228)osasta saadaan lis(cid:228)ksi teoria s(cid:228)degra(cid:2)ikalle, kun eliminoidaan aikariippuvuudet. Akustinen osa spesi(cid:2)oiyleisetm(cid:228)(cid:228)ritelm(cid:228)takustisiksim(cid:228)(cid:228)ritelmiksi.Teoriastapuuttuupinnanalaissiron- taheijastuksissasek(cid:228)reunadiffraktio.Teorianlaajennettavuusn(cid:228)idenpuutteidenosaltaon otettuhuomioon. Yleiset m(cid:228)(cid:228)ritelm(cid:228)t koostuvat matemaattisista ja fysikaalisista m(cid:228)(cid:228)ritelmist(cid:228). Energian- kulkuyht(cid:228)l(cid:246)t konstruoidaan yksityiskohtaisesti. T(cid:228)m(cid:228) johtaa heijastusiteratiiviseen kons- truktioonsek(cid:228)akustiseenmallinnusyht(cid:228)l(cid:246)(cid:246)n.Ensimm(cid:228)inenonsuoraviivainenkonstruktio. J(cid:228)lkimm(cid:228)inen on tasapainoyht(cid:228)l(cid:246), joka on Kajiyan mallinnusyht(cid:228)l(cid:246)n laajennus. Yht(cid:228)l(cid:246)t tuottavat energiaimpulssivasteita ja konstruktiot osoitetaan yht(cid:228)l(cid:228)isiksi lineaarioperaatto- rianalyysilla. Ty(cid:246)ss(cid:228) rakennetaan esimerkinomainenm(cid:228)(cid:228)ritys energiavasteiden auralisaa- tioon. Avainsanat:yleinenmallinnusteoria,kuval(cid:228)hdemenetelm(cid:228),radiositeetti,s(cid:228)teenseuranta,akustiikan s(cid:228)demallinnus iii Acknowledgments FirstofallIthankmysupervisingprofessorLauriSaviojaandmyinstructorTapio Lokki. Theymadeitpossibleformetoconductthisworkandprovidedinvaluable insightsintothevast(cid:2)eldofacousticmodelling. Ialsothankmyclosestassociate Heli Nironen for providing lots of background information and reference mate- rial,andespeciallyforthetirelessconversationaleffortsonvarioussound-related topics. I thank professor Timo Eirola for very useful mathematical discussions, and for allowing me to present the work in his seminar in computational science and en- gineering. I also thank Jaakko Lehtinen for helping me in radiance calculus, and JanneKontkanenforvaluableinformationoncomputergraphics. Additional thanks should go to Vesa Hirvisalo, Jan Jukka Kainulainen, and Juha Tukkinen for support and otherwise important in(cid:3)uence on my work. Finally, I thank Maarit Tirri for numerous comments on the textual layout. Any remaining linguisticanomaliesare duetomypersonalstubbornnessandobsessions. iv Contents Preface xiii 1 Introduction 1 1.1 OrganizationoftheThesis . . . . . . . . . . . . . . . . . . . . . 5 2 Background 7 2.1 SoundandAcoustics . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.1 PhysicsofSound . . . . . . . . . . . . . . . . . . . . . . 8 2.1.2 EnergyofSound . . . . . . . . . . . . . . . . . . . . . . 12 2.2 AcousticModelling . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 ImpulseResponses . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4 RayMethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4.1 ImageSourceMethod . . . . . . . . . . . . . . . . . . . 17 2.4.2 RadiosityMethod . . . . . . . . . . . . . . . . . . . . . . 19 2.4.3 RayTracingMethods . . . . . . . . . . . . . . . . . . . . 21 3 Simpli(cid:2)ed GeneralEnergy PropagationTheory 24 3.1 Environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.1 FundamentalDe(cid:2)nitions . . . . . . . . . . . . . . . . . . 25 3.1.2 PolyhedralEnvironments . . . . . . . . . . . . . . . . . . 29 3.1.3 DiscreteEnvironments . . . . . . . . . . . . . . . . . . . 29 3.1.4 VisibilityComputation . . . . . . . . . . . . . . . . . . . 30 3.2 RadiationandRe(cid:3)ection . . . . . . . . . . . . . . . . . . . . . . 30 3.2.1 EnergyFlow . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2.2 TheEnergySource . . . . . . . . . . . . . . . . . . . . . 37 3.2.3 TheObserver . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2.4 Radiance . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2.5 Re(cid:3)ection . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2.6 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.3 EnergyPropagationEquations . . . . . . . . . . . . . . . . . . . 48 3.3.1 TemporalIntensityAlgebra . . . . . . . . . . . . . . . . 48 3.3.2 GeometryTermandRe(cid:3)ectionKernel . . . . . . . . . . . 52 v 3.3.3 Re(cid:3)ection-iterativeConstruction . . . . . . . . . . . . . . 55 3.3.4 AcousticRenderingEquation . . . . . . . . . . . . . . . 60 3.3.5 EquivalencyofRe(cid:3)ection-iterativeConstructionandARE 62 3.3.6 RemarkonDetection . . . . . . . . . . . . . . . . . . . . 64 3.4 RadiationatVariousFrequencies . . . . . . . . . . . . . . . . . . 64 3.4.1 MathematicalDiscussion . . . . . . . . . . . . . . . . . . 65 3.5 ConsiderationsonExtensions . . . . . . . . . . . . . . . . . . . . 67 3.5.1 ExtendingforEdgeDiffraction . . . . . . . . . . . . . . 67 3.5.2 ExtendingforSub-surface Scattering . . . . . . . . . . . 68 4 AcousticEnergy PropagationTheory 70 4.1 AdaptationoftheGeneralEnergyPropagationTheory . . . . . . 71 4.2 AuralizationofEnergyResponse . . . . . . . . . . . . . . . . . . 72 4.3 SpecializationsoftheTheory . . . . . . . . . . . . . . . . . . . . 73 4.3.1 ImageSourceMethod . . . . . . . . . . . . . . . . . . . 74 4.3.2 RadiosityMethod . . . . . . . . . . . . . . . . . . . . . . 77 4.3.3 RayTracingMethod . . . . . . . . . . . . . . . . . . . . 78 4.4 ConsiderationsonUsingtheTheory . . . . . . . . . . . . . . . . 79 5 Conclusion 81 5.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.2 FurtherWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 A SomeEssentialMathematics 86 A.1 EuclideanSpace . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 A.2 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 A.3 LinearOperatorAnalysis . . . . . . . . . . . . . . . . . . . . . . 93 B ABriefNoteon BDRFsand Lambertian DiffuseRe(cid:3)ections 96 Bibliography 98 vi List of Figures 2.1 A2-dimensionalspring-masssystemwithdisplacement . . . . . . 11 2.2 Direct,(cid:2)rst,andsecondorderimagesources . . . . . . . . . . . . 17 3.1 Possibleraypathsinspecularre(cid:3)ectingenvironment . . . . . . . 32 3.2 Possibleraypathsindiffusere(cid:3)ectingenvironment . . . . . . . . 33 3.3 Incidentenergy fromapointsourcetoa smallsurface patch . . . 34 3.4 Radiantincidentenergytoa smallsurface patch . . . . . . . . . . 35 3.5 Energy(cid:3)owofincidentradiation . . . . . . . . . . . . . . . . . . 40 3.6 Re(cid:3)ectionofplanarbeam . . . . . . . . . . . . . . . . . . . . . . 42 3.7 Intensitymeasurementofplanarpropagatingwavefront . . . . . . 49 3.8 Parametersofthere(cid:3)ectionkernel . . . . . . . . . . . . . . . . . 54 3.9 Diffractionalbendingofrays . . . . . . . . . . . . . . . . . . . . 68 4.1 Re(cid:3)ectingbeam . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 A.1 Mirrorre(cid:3)ection. . . . . . . . . . . . . . . . . . . . . . . . . . . 88 vii Notations Latin alphabets A variableusedinderivationsandproofs a m3 pointinsurface geometry area m2 surfacearea operator(p.77) (cid:2) (cid:3) B re(cid:3)ectionoperator(p.62) (cid:2) (cid:3) B allre(cid:3)ectionsoperator(p.66) c m speedofwavefront(p.36) b s card cardinality,sizeofset(p.21) (cid:2) (cid:3) D delaypattern(p.72) D linearsystemresponseoperator(p.14) d totaldetection(p.48,64) b representation function of linear system response op- erator(p.14) d detectionofdirectsourcetoobserverradiation(p.55) 0 d detectionofradiance,detectionoftotalre(cid:3)ectedradi- r ationviaanynumberofre(cid:3)ections(p.57) det matrixdeterminant dtf directionaltransferfunctionforobservation(p.39,47) exitant(pre(cid:2)x)(p.37) e F patchemissionvector(p.20,78) f 1 frequency(p.42) s f generalfunction (cid:2) (cid:3) viii f 1 bidirectional re(cid:3)ection distribution function (BRDF) r sr (p.41) (cid:2) (cid:3) f BRDF ofanidealdiffusere(cid:3)ection(p.45) r;d f BRDF ofanidealspecularre(cid:3)ection (p.47) r;s G environmentalsurface geometry(p.27) g Kajiyangeometrytermwithpropagationdelay(p.53) g(cid:136) Kajiyan geometry term without propagation delay (p.53) Ha mediumabsorptionoperator(p.51) I W intensity, irradiance, energy (cid:3)ow per surface area m2 h i (p.36) I identitymatrix,identityoperator incident(pre(cid:2)x) (p.37) i (cid:17)(cid:136)(t) impulseresponse(p.72) L(W) W radiance(p.40,60) m2 L (W) hWi primaryradiance (p.60) 0 m2 ‘(t) h i time-dependent radiance in non-absorptive medium (p.52) totalpropagatedradiance(p.60,61) ‘ primaryradiance (p.54,57(cid:150)58) 0 ‘ primaryradiance afterk re(cid:3)ections(p.57,60) k ‘(cid:136) time-dependent intensity in non-absorptive medium (p.50) M mirrorre(cid:3)ection operator(p.45,87) n surfacenormal(p.27) O() asymptoticcomplexityclass P vectorofenergy(cid:3)owsofpatches(p.20,77) P patch,smallbutnotin(cid:2)nitesimalsurfacearea (p.19) k p patternofemittance(p.38) e R re(cid:3)ectionkernel(p.53) r distance,radiusofa sphere ix S losslesspropagationoperatorfor distancer (p.50) r S(cid:136) propagationoperatorwithmediumabsorptionfordis- r tancer. UsedintheconstructionofTIA(p.49) s noisesignalwithaverageunitintensity(p.72) T triangle(p.89) t time v m 3 velocity(vectorquantity) s 3 x [m] pointinspace (cid:2) (cid:3) x locationoftheobserver(p.39,55) o x raypath(p.10) p x locationoftheenergy source(p.37,55) s Lower-case Greekalphabets b re(cid:3)ectance factor,totalre(cid:3)ectance (p.42) g sensitivitypattern(p.72) d Diracdeltafunctional(p.15,45,91) q elevation angle (cid:151) angle between W and surface nor- mal(p.26) n visibilityfunction(p.27) n 1 visiblegeometry(p.28) (cid:0) n inverseprojection(p.28) p r biconicalre(cid:3)ectance factor (p.42) probabilitydensity(p.92) s energypro(cid:2)leofsub-band(cid:2)lteredimpulse(p.66,72) signal(p.14) t generalscalarorvector f azimuthangleofW(p.26) j angle y waverepresentationofafundamentalparticle(p.13) w [sr] solidangle,setofdirections(p.26) x

Description:
an acoustic energy or a light energy propagation theory. We begin the construction by the environmental Radiant incident energy to a small surface patch
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.