ebook img

SomestudiesonalgebraicintegersinQ(i,√3)byusingcosetdiagram PDF

2018·0.43 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview SomestudiesonalgebraicintegersinQ(i,√3)byusingcosetdiagram

BeitrAlgebraGeom https://doi.org/10.1007/s13366-018-0395-5 ORIGINAL PAPER √ Some studies on algebraic integers in Q(i, 3) by using coset diagram SaimaAnis1 · Seok-ZunSong2 · YoungBaeJun3 · FlorentinSmarandache4 Received:19January2018/Accepted:10April2018 ©TheManagingEditors2018 Abstract Inthispaper,westudiedthe(cid:2)acti√on(cid:3)ofPicardmodulargroup PSL(2,Z[i]) denotedby(cid:2)onthebiquadraticfieldQ i, 3 .Wefoundpaternofalgebraicintegers for(cid:2)me√dby(cid:3)thisaction.Toproveresultsweusedcosetdiagramsfortheactionof(cid:2)on Q i, 3 ,propondedbyGrahamHigman. Keywords Algebraicintegers·Cosetdiagram·Biquadraticfield MathematicsSubjectClassification Primary05C38·15A15;Secondary05A15· 15A18 Picardmodulargroup denotedby(cid:2)isPSL(2,Z[i])orPSL(2,O ),whereO isthe 1 1 ringofGaussianintegers.Specifically,itisthegroupoflinearfractionaltransforma- B SaimaAnis [email protected] Seok-ZunSong [email protected] YoungBaeJun [email protected] FlorentinSmarandache [email protected] 1 DepartmentofMathematics,COMSATSInstituteofInformationTechnology,Abbottabad, Pakistan 2 DepartmentofMathematics,JejuNationalUniversity,Jeju63243,Korea 3 DepartmentofMathematicsEducation,GyeongsangNationalUniversity,Jinju52828,Korea 4 DepartmentofMathematics,UniversityofNewMexico,Gallup,NM87301,USA 123 BeitrAlgebraGeom az+b tionsT(z)= withad−bc=1anda,b,c,d ∈Z[i],fordetailsseeAnisand cz+d Hanif(2011),Mushtaqan(cid:2)dA√ni(cid:3)s(2016),Öz√gür(2003). AbiquadraticfieldQ i, 3 hasi and 3asrootsofanirreduciblepolynomial (t2−3)(t2+1)overQ. (cid:2) √ (cid:3) (cid:2) (cid:2) √ (cid:3)(cid:3) If (cid:2) acts on projective line overQ i, 3 , that is, PL Q i, 3 then the stabilizer (cid:2)α of α is the subgroup o(cid:2)f (cid:2)√de(cid:3)fined by (cid:2)α = {g ∈(cid:2): g(α)=α} and theorbit(cid:2)α ofα isthesubsetofQ i, 3 definedby(cid:2)α = {g(α): g ∈(cid:2)}.Any (cid:2) √ (cid:3) elementofQ i, 3 whichsatisfiesamonicequationofdegreegreaterthanorequal (cid:2) √ (cid:3) to1withrationalintegralcoefficientsiscalledanalgebraicintegerofQ i, 3 . (cid:2) √ (cid:3) Inthispaper,westudiedtheactionof(cid:2)onQ i, 3 becauseitcontainsstablizers √ √ i ± 3 −1± 3i of ,±1, and ±i. There is a natural one-to-one correspondence 2 2 between the set (cid:2)(cid:2)(cid:2)α of cosets and the orbit (cid:2)α. We studied patern of algebraic integersfo(cid:2)rme√db(cid:3)ythisaction.Toproveresultsweusedcosetdiagramsfortheaction of(cid:2)onQ i, 3 (MushtaqandAnis2016). ItisshowninFine(1989)that(cid:2)hasfinitepresentation (cid:4) (cid:5) A,B,C,D : A3 = B2 =C3 = D2 =(AC)2 =(AD)2 =(BC)2 =(BD)2 =1 1 where A,B,C and Darelinearfractionaltransformationsdefinedby A(z)= , z−i 1 1+z −1 B(z)= ,C(z)= and D(z)= . z −z z √ √ i ± 3 −1± 3i Fixedpointsofgeneratorsof(cid:2),namely,A,B,CandDare ,±1, (cid:2) √ (cid:3) 2 (cid:2) √ (cid:3) 2 and±i respectively.TheyalllieinQ i, 3 .TheelementsofQ i, 3 areofthe √ √ √ a+bi +c 3+d 3i form u +v 3 where u,v ∈ Q(i). They can be written as , (cid:2) √ (cid:3) e wherea,b,c,d,e ∈ Z.AnyelementofQ i, 3 whichsatisfiesamonicequation of degree greater than(cid:2)or√equ(cid:3)al to 1 with rational integral coefficients is called an algebraicintegerofQ i, 3 . 1 CosetdiagramforPicardgroup A(cid:2)diag√ram(cid:3)atic argument, called coset diagrams for the action of Picard group (cid:2) on Q i, 3 ,isusedtoproveresultsinthispaper.HigmanandMushtaqhavedefined cosetdiagramsformodulargroupinHigmanandMushtaq(1983).MushtaqandAnis definedcosetdiagramsforthePicardgroupinMushtaqandAnis(2016).Thecoset diagrams are extensively used by many authors to solve identification problems of 123 BeitrAlgebraGeom Fig.1 CosetdiagramforPicard group groupsAnisandMushtaq(2008),AshiqandImran(2015),Everitt(1997),Torstensson (2010)aswellasinsignalprocessing[9]. (cid:2) √ (cid:3) The coset diagram for the action of Picard group (cid:2) on Q i, 3 is defined in detailinMushtaqandAnis(2016).Thegroup(cid:2) consistsoffourgenerators,twoof order3andtwooforder2soitispossibletoavoidusingcolours.Thegenerators A and C both have orders 3, so the 3-cycles of A and C are represented by triangles. Buttodistinguishgenerator Afrom generatorC wehavedenotedthe3-cyclesofthe generatorC bythreeunbrokenedgesofatrianglepermutedanti-clockwisebyC.The 3-cyclesofthegenerator Aaredenotedbythreebrokenedgesofatrianglepermuted anti-clockwiseby A. As generators B and D are involutions so we have represented them by edges without orientation. To distinguish generator B from generator D, the 2-cycles of generator Bisrepresentedasaboldedgeandtwoverticeswhichareinterchangedby D are joined by an hairline edge. Fixed points of A,B,C and D, if they exist, are denotedbyheavydots. This fragment of coset diagram explains beautifully and clearly the amalgam structureof(cid:2) thatis(cid:2) = (A ∗ S ) ∗ (S ∗ D ),here M ismodulargroupwhose 4 3 3 2 (cid:6) Z3 M (cid:7) Z2 finitepresentationis D,C : D2 =C3 =1.Thecosetdiagramof(cid:2)willbeasfollows MushtaqandAnis(2016)(Fig.1). Thisdiagramis3-dimens(cid:6)ional.Thegenerators A andC(cid:7)togetherformadiagram of alternating group A = A,C : A3 =C3 =(AC)2 =1 as shown in the Fig. 2 4 MushtaqandAnis(2016). Ifm an√dn aretw√odistinctsquare-freeratio(cid:8)n√alin√tege(cid:9)rs,thenthefieldformedby adjoining m and√n to Q√is denoted by Q m, n and is called a biquadratic fieldoverQ,where(cid:8)√man√d (cid:9)narezerosofanirreduc√iblequart√icpolyno√mialoverQ. TheelementsofQ m, n areofthe(cid:8)f√orm√a0+(cid:9) a1 m+a2 n+a3 mn,where a ,a ,a ,a ∈ Q. Any element of Q m, n which satisfies a monic equation 0 1 2 3 of degree ≥ 1 with rational integral coefficients is called an algebraic integer of 123 BeitrAlgebraGeom Fig.2 DiagramofA4 (cid:8)√ √ (cid:9) Q m, n .InWilliams(1970)(cid:8),√theex√pli(cid:9)citformofthealgebraicintegers,anintegral basisandthediscriminantofQ(cid:8)√ m,√ n(cid:9) isgiv(cid:8)e√n.T(cid:9)hese(cid:8)fi√eld(cid:9)shaved(cid:8)e√gree4(cid:9) over Q.SomeofthesubfieldsofQ m, n areQ m ,Q n andQ mn .The authorsupposedthatl isthegreatestcommondivisorofm andn,thatis,l =(m,n), sothatm =lm ,n =ln and(m ,n )=1. 1 1 1 1 Theorem1 [Williams(197(cid:8)0√),The√ore(cid:9)m1]Lettinga,b,c,d denoterationalintegers, thealgebraicintegersofQ m, n aregivenasfollows: (i) if(m,n)≡(m ,n )≡(1,1)(mod4),thenthealgebraicintegersare 1 1 1(cid:8) √ √ √ (cid:9) a+b m+c n+d m n ,wherea ≡b ≡c ≡d(mod2),a−b+c− 1 1 4 d ≡0(mod4); (ii) if(m,n)≡(1,1),(m ,n )≡(3,3)(mod4),thenthealgebraicintegersare 1 1 1(cid:8) √ √ √ (cid:9) a+b m+c n+d m n ,wherea ≡b ≡c ≡d(mod2),a−b−c− 1 1 4 d ≡0(mod4); (iii) if(m,n)≡(1,2)(mod4),thenthealgebraicintegersare 1(cid:8) √ √ √ (cid:9) a+b m+c n+d m n ,wherea ≡b,c≡d(mod2); 1 1 2 (iv) if(m,n)≡(2,3)(mod4),thenthealgebraicintegersare 1(cid:8) √ √ √ (cid:9) a+b m+c n+d m n ,wherea ≡c≡0,b≡d(mod2); 1 1 2 (v) if(m,n)≡(3,3)(mod4),thenthealgebraicintegersare 1(cid:8) √ √ √ (cid:9) a+b m+c n+d m n ,wherea ≡d,b≡c(mod2). 1 1 2 (cid:2) √ (cid:3) 1(cid:8) √ √ Remark1 ThealgebraicintegersofQ i, 3 areoftheform a+b m+c n+ √ (cid:9) 2 d m n ,wherea ≡d,b≡c(mod2). 1 1 az+b Proposition1 ThefixedpointsofalinearfractionaltransformationT(z)= cz+d d−a b wherea,b,c,d ∈Z[i],arealgebraicintegerswhen and ∈Z. c c Proof Letk ∈CbeafixedpointofalinearfractionaltransformationT ∈(cid:2),thatis, az+b T (k) = k, where T(z) = , a,b,c,d ∈ Z[i]. This implies that ck2 +(d − cz+d 123 BeitrAlgebraGeom Fig.3 Diagramhavingfixed -1+2i+ 3i pointsofgeneratorsAandC 2 -2+i- 3 -i 2 -1+ 3i i+ 3 -1- 3i 2 2 2 -1+2i- 3i -2+i+ 3i 2 2 d−a b d−a b a)k −b = 0, or k2 +( )k − = 0. If and ∈ Z, then the roots are c c c c algebraicintegers. (cid:7)(cid:8) Thefixedpointsofthegenerators A,B,C and D of(cid:2)arealgebraicintegers.Ifα andα¯ areconjugates,then T (α)and T (α¯)arealsoconjugates,where T isalinear fractionaltransformation.Thismeansthediagramformedbyapplyingelementsof(cid:2) on α is same as the diagram formed by applying the same elements of (cid:2) on α¯. We denote thelatterdiagram as “conjugate diagram”. Ifan edge joinstwovertices of a triangle,thenwedenotethisedgebya“cap”. Proposition2 Thefragmentofthecosetdiagramcontainingthefixedpointsofgen- erators AandC havefourverticesandallofthemarealgebraicintegers. √ √ i ± 3 −1± 3i Proof ThefixedpointsofgeneratorsAandCare and respectively, √2 2 whichareofcoursethealgebraicintegersofQ(i, 3)(Fig.3). √ i + 3 First,considerafragmentofthecosetdiagramwhichcontains .Byapplying √ √ (cid:10) √ (cid:11) 2 √ i + 3 −2+i − 3 i + 3 −1+2i − 3i generatorCon ,weget andC2 = . 2 2 2 2 Also,(cid:10)byapplying√gen(cid:11)erator Aonabov√evalues,that(cid:10)is, √ (cid:11) √ −2+i − 3 −1+2i − 3i −2+i − 3 −1+ 3i A = and A2 = , 2 2 2 2 which is the fixed point ofC. Further applications of A andC on these v√alues give the same elements. This means that we get only four eleme√nts of Q(i, 3√) in the i + 3 −1+ 3i diagramcontainingthefixedpointsof AandC,namely, and .So 2 2 theCayley’sdiagramof A4 isredu(cid:10)cedto√ad(cid:11)iagramh√avingfourverticesbeca√useof i + 3 i − 3 i + 3 thefixedpointsof AandC.As D = isconjugateof ,so 2 2 2 √ i − 3 thediagramformedbyapplyinggenerators AandCon isconjugatediagram. 2 √ i + 3 Itissametothediagramformedbyapplyinggenerators AandC on because 2 if α and α¯ are conjugates, then T (α) and T (α¯) are also conjugates, where T is a 123 BeitrAlgebraGeom Fig.4 DiagramofS3 linearfractional√transformation√.Similarly,itcanbeprovedthattheconjugatediagram i − 3 −1− 3i containing and alsocontainsfourelementsasshowninFig.4.(cid:7)(cid:8) 2 2 Proposition3 The triangles in dia√gram of S3, generated by A and D, in the coset diagramfortheactionof(cid:2)onQ(i, 3),havethesamenumberofalgebraicintegers. √ 1 Proof Letα beanalgebraicintegerofQ(i, 3).ByTheorem1,α = ((a+bi)+ √ 2 (c+di) 3)wherea ≡d(mod2),b≡c(mod2).ByapplyingtransformationDAon √ 1 α,wegetDA(α)=−α+i = {−a−(b−2)i−(c+di) 3},whereb−2≡c(mod2) 2 sinceb≡c(mod2).Thismeansthat DA(α)isagainanalgebraicinteger.Soifαisa vertexofatrianglehavingbrokenedges,thentheapplicationoftransformation DA onα yieldsanalgebraicintegerβ inanothertrianglehavingbrokenedgessuchthat DA(α)=β (Fig.4). ThesetwotrianglesarejoinedbythreeedgeswhichrepresentgeneratorD.Hence, if all the three vertices of a triangle with broken edges are labelled by algebraic integers,thenthetrianglejoinedwiththistrianglebyedgesalsocontainthreealgebraic integers. (cid:7)(cid:8) Proposition4 The triangles in dia√gram of S3, generated by B and C, in the coset diagramfortheactionof(cid:2)onQ(i, 3),havethesamenumberofalgebraicintegers. √ 1 Proof Letα ∈ Q(i, 3)beanalgebraicinteger.ByTheorem1,α = ((a+bi)+ √ 2 (c+di) 3), where a ≡ d(mod2), b ≡ c(mod2). Now CB(α) = C(B(α)) = √ 1 −1 − α = {(−(2 + a) − bi) − (c + di) 3}. Then a + 2 ≡ d(mod2) since 2 a ≡ d(mod2). This implies that CB(α) is also an algebraic integer. Similarly, for otherverticesofthetrianglewithunbrokenedges,thatis,ifallthethreeverticesof a triangle with unbroken edges are labelled by algebraic integers, then the triangle with unbroken edges joined with this triangle by bold edges, also labelled by three algebraicintegers. (cid:7)(cid:8) Proposition5 Thereareexactlyfourdiagramsof A ,whichcontainssixalgebraic 4 integersineachdiagram,intheorbitcontainingfixedpointsof AandC. Proof ItisclearfromProposition2andFig.5thatoneportionofthediagramcon- tainingthefixedpointsofgenerators AandC containsfourverticesortwotriangles, 123 BeitrAlgebraGeom Fig.5 Fragmentofcoset diagram onehavingbrokenedgesandtheotherhavingunbrokenedges.Eachofthetriangles islabelledbythreealgebraicintegers.ByProposition3,thethreealgebraicintegers ofthetrianglehavingbrokenedgesaremappedtothetrianglehavingbrokenedges ofanotherdiagramof A byedges,whoseverticesarealsolabelledbyalgebraicinte- 4 gers. By Proposition 4, the three algebraic integers of the triangle having unbroken edges are mapped to the triangle having unbroken edges of another diagram of A 4 byboldedges,whoseverticesarealsolabelledbyalgebraicintegers.SinceCAmaps an algebraic integer to an algebraic integer, so there are six algebraic integers in a diagram of A . Consider the same argument for another fragment having the fixed 4 pointsof AandC.Sothisfragmentisconnectedtotwootherdiagramsof A having 4 six algebraic integers. So, in total there are four diagrams of A which contain six 4 algebraicintegers. (cid:7)(cid:8) √ Remark2 Thefragmentofacosetdiagramfortheactionof(cid:2)onQ(i, 3)whoseall verticesarelabelledbyalgebraicintegers. Proposition6 Ifatriangleinadiagramof S doesnothaveanyalgebraicintegers, 3 thentheothertrianglejoinedwithitbyedgesdoesnothaveanyalgebraicintegers. Proof Letα,βandγ beverticesofatrianglehavingbrokenedgesrepresentingt√hree cyclesofgenerator Aandtheybenotalgebraicintegers,whereα,β,γ ∈ Q(i, 3). √ 1 Letα = {(a+bi)+(c+di) 3},wherea (cid:9)≡d(mod2)orb(cid:9)≡c(mod2). e 1 Leta (cid:9)≡d(mod2),b≡c(mod2)ande=2.ThenDA(α)= {(−a−(b−2)i) √ 2 −(c+di) 3}.Sincea (cid:9)≡d(mod2),soDA(α)isnotanalgebraicinteger.Leta ≡d (mod2),b (cid:9)≡ c(mod2)ande = 2.Then(b−2) (cid:9)≡ c(mod2).So DA(α)isnotan algebraicinteger.Similarly,β andγ arenotalgebraicintegers. (cid:7)(cid:8) 2 2 Theorem2 Thealg(cid:12)ebraicintegers√intheorbitcontainingthefixedpointsof(cid:13)A and (±k±li)± 3i C are of the form : k is odd integer, l is even integer and 2 √ (±k±li)± 3 { :k isevenandl isoddinteger}. 2 √ √ i ± 3 −1± 3i Proof The Fixed points of A and C are and respectively. By √ 2 2 √ i ± 3 ±k+i ± 3 applyingCD and DC2 repeatedlyon ,wegettheseries such 2 2 123 BeitrAlgebraGeom √ √ i ± 3 li ± 3 that k is even. By applying A2B or BA on , we get such that l is √ 2 2 ±k±li ± 3 odd. So we get the series , where k is even and l is odd integer. By 2 √ √ −1± 3i ±k∓ 3i applyingCDand DC2 repeatedlyon ,weget wherek isodd. √ 2 √2 −1± 3i −1±li ± 3i Byapplying A2B or BA on ,weget suchthatl iseven. 2 2 √ ±k±li ± 3i Bycombiningabovetwoformswegettheseries ,wherekisoddand 2 l iseveninteger. (cid:7)(cid:8) Proposition7 Inadiagramof A ,algebraicintegersarepresentinpairs. 4 √ (a+bi)+(c+di) 3 Proof Ifα = isanalgebraicinteger,wherea ≡ d(mod2), 2 √ {−(2+a)+(2−b)i}−(c+di) 3 b≡c(mod2),thenCA(α)=−1+i−α = . 2 Sinced ≡a+2(mod2)andc≡2−b(mod2),thereforeCA(α)isalsoanalgebraic integer. (cid:7)(cid:8) Proposition8 Ifthereisonediagramof A havingtwoalgebraicintegers,thenthere 4 areinfinitediagramsof A havingtwoalgebraicintegersinanorbit. 4 Proof Supposeα,βexistinadiagramof A ,whereα,βarealgebraicintegers.Then 4 CA(α) = β or CA(β) = α, where α is a vertex of a triangle representing three cycles of A as well as a vertex of a triangle representing three cycles of C. Thus, by Propositions 3 and 4, we get two different diagrams of A each containing one 4 algebraic integer. Application of transformation CA gives another algebraic integer inthesamediagramof A .Byapplying DAand BC onβwegettwomorediagrams 4 of A each containing one algebraic integer and by the transformation CA, we get 4 another algebraic integer in the same diagram of A . In the same way by applying 4 transformations DA, BC andCA onotherdiagramsof A whichcontainalgebraic 4 integers,wegetinfinitediagramsof A whichhavetwoalgebraicintegersinthem.(cid:7)(cid:8) 4 √ Proposition9 The fragment of the coset diagram for the action of (cid:2) on Q(i, 3), containingfixedpointsofthegenerators B and D hassixverticesandfourofthem arealgebraicintegers. Proof The fixed points of ge√nerators B and D are ±1 and ±i respectively which lie in the orbit Q(i) of Q(i, 3). The diagram containing the fixed points of both generators Band D,thatis,−1andi,havesixverticesintotal.Startingfrom−1and applyingtransformationsC andC2,thatis,C(−1)=0andC2(−1)=∞.Nowby −1+i consideringi,C(i) = (−1+i)andC2(i) = .Also A(−1+i) = −1and 2 −1+i A2(−1+i)= .Wehave A(0)=i and A2(0)=∞. 2 Sowegetsixverticesintotaland0,−1,−1+i andi arealgebraicintegers. (cid:7)(cid:8) 123 BeitrAlgebraGeom Fig.6 Diagramhavingfixed pointsofgeneratorsBandD 0 oo i -1+i -1+i 2 -1 Proposition10 Therearethreediagramsof A ,intheorbitcontainingfixedpoints 4 ofgenerators B and D,whichcontainfouralgebraicintegers. Proof By Proposition 9, the fragment containing fixed points of both generators B and D havefouralgebraicintegers,namely0,−1,−1+i andi.Eachtrianglewith unbrokenedgescontainstwoalgebraicintegersasshowninFig.6.Thesetwotriangles are joined with two more diagrams of A by bold edges, so in total we have three 4 diagramsof A .ByProposition4,eachtrianglesofotherdiagramsof A whichare 4 4 joinedbyboldedges,alsohavetwoalgebraicintegers.SincethetransformationCA mapsanalgebraicintegertoanalgebraicinteger,sobothofthediagramsofA contain 4 fouralgebraicintegers. (cid:7)(cid:8) References Anis,S.,Mushtaq,Q.:Thenumberofsubgroupsof PSL(2,Z)whenactingon Fp ∪{∞}.Commun. Algebra36(11),4276–4283(2008) Anis,S.,Hanif,H.:ClosedPathsbytheactionofaSubgroupofthePicardGroup.J.Adv.Res.Dyn.Control Syst.3(2),1–8(2011) Ashiq,M.,Imran,T.:TheCoxetergroupG5,5,12.QuasigroupsRel.Syst.23,175–180(2015) Everitt,B.:Alternatingquotientsofthe(3,q,r)trianglegroups.Commun.Algebra 25(6),1817–1832 (1997) Fine,B.:AlgebraictheoryofBianchigroups.MarcelDekker,NewYork(1989) Higman,G.,Mushtaq,Q.:CosetdiagramsandrelationsforPSL(2,Z).ArabGulfJ.Sci.Res.1(1),159–164 (1983) √ Mushtaq,Q.,Anis,S.:CosetDiagramfortheactionofPicardgrouponQ(i, 3).AlgebraColloquium 23(1),33–44(2016) Özgür,N.Y.:OnthesubgroupsofthePicardgroup.BeiträgeAlgebraGeom.44(2),383–387(2003) Razaq,A.,Yousaf,A.,Shuaib,U.,Siddiqui,N.,Ullah,A.,Waheed,A.:Anovelconstructionofsubstitution box involving coset diagram and a bijective map, Security and Communication Networks, 2017, 5101934,16 Torstensson,A.:Cosetdiagramsinthestudyoffinitelypresentedgroupswithanapplicationtoquotients ofthemodulargroup.J.CommutativeAlgebra2(4),501–514(2010) Williams,K.S.:Integersofbiquadraticfields.Canad.Math.Bull.13(4),519–526(1970) 123

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.