Mathematical Lectures from Peking University Michel Broué Some Topics in Algebra An Advanced Undergraduate Course at PKU Mathematical Lectures from Peking University Forfurthervolumes: www.springer.com/series/11574 Michel Broué Some Topics in Algebra An Advanced Undergraduate Course at PKU MichelBroué InstitutUniversitairedeFrance UniversitéParisDiderot—Paris7 Paris,France ISSN2197-4209 ISSN2197-4217(electronic) ISBN978-3-642-41268-4 ISBN978-3-642-41269-1(eBook) DOI10.1007/978-3-642-41269-1 SpringerHeidelbergNewYorkDordrechtLondon MathematicsSubjectClassification: 11-01,12-01,13-01 ©Springer-VerlagBerlinHeidelberg2014 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpub- lication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforany errorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespect tothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Never, before I had lectured in front of second and third years students of Peking University, did I feel that strongly how much mathematics are universal, a world wherehumanmindsthinkalike.AndneverbeforehadIenjoyeditsomuch. The course I was supposed to give (an advanced undergraduate introduction to Algebra) had no specific syllabus. I decided to let it go, pushed or pulled by the student’s reactions and my own feelings. It turned out to become an amazing and delightfulencounterbetween,ononehand,ideasanddiscoveriesofGermanmath- ematicians from the end of the XIXth and the beginning of the XXth centuries1 revisitedandtaughtbysomeFrenchmathematiciansfromtheXXthcentury2,and, ontheotherhand,youngbrilliantChinesestudentsoftheXXIstcentury. The pleasure of these students while discoveringthese concepts,results, exam- ples,hasbeenobviousallalongthecourse,andevensometimesexpressedloudly. Moreover,thespeedoftheirunderstandingandhandlingnotionswhichweremostly newtothemwasamazing.Acoupleoftimes,attheintermission,oneofthemcame and politely told me that he thought he had found a more elegant proof than the oneIhadjustgiven—andeachtimehewasindeedright,hisproofwasbetter,more elegant,morenatural. Elegant, efficient, natural, pertinent, beautiful, clever, exciting: these are words sometimesheardwhenamathematiciandiscoversanewapproach,anewproof,or even a new version of an old result. Whatever country, origin, culture that mathe- maticianmaybefrom:whatisbeautifulandpertinentforaGermanHerrProfessor of the XIXth Century is also beautiful and pertinent for a young Chinese student of2013.Ofcourse,universalityisnotthepeculiarityofmathematics,itiscertainly shared by most of the arts, and partly by philosophy. But the essence of the uni- versality of mathematics is not directly connected with feelings and events of any humanlife,painorjoy,loveordisaster,war,freedom,deathorfuture.Besides,the 1IdealswerefirstdefinedbyRichardDedekindin1876inthethirdeditionofhisbook“Vorlesun- genüberZahlentheorie”(LecturesonNumberTheory),afterErnstKummerhadintroducedthe conceptof“idealnumbers”.ThenotionwaslaterexpandedbyDavidHilbertandEmmyNoether. 2LikeNicolasBourbaki. v vi Preface universalityofmathematicsisarule,almostatheorem:whatisconsideredbyallas goodisindeedgood.Idothinkthisisoneofthewondersoftheworldwelivein. Themoreelegantproofsofthestudentsareintegratedinthisbook,withoutquo- tationtotheirauthorssinceIdidnotknowtheirnames.Thisisoneofthereasons whythebookisdedicatedtothestudentsofPKU. CONVERSATIONBETWEENMATHEMATICIANS—©AnoukGrinberg Preface vii Abstract During the Springs of 2011 and 2012, I was invited by the Beijing International CenterforMathematicsResearchtogiveanadvancedundergraduatealgebracourse (once a week over two months each year). This is part of the Everest project of ChineseEducationMinistryonfirstclassstudentstraining. Thisbookhasbeenwrittenduringandforthatcourse.Bynowaydoesitpretend toanytypeofexhaustivity.Itisa quickandcontingentintroductiontoAlgebrain front of an extremely pleasant and passionate audience, heterogeneous but persis- tent.Itcertainlyreflectssomeofmyowntastes,andmainlytheconstraintsofsuch ashortperiodofteaching. Aremarkaboutthelasttwosections:followingawellestablishedtradition,we hadplannedtoconcludebylecturingonthestructureoffinitelygeneratedmodules overprincipalidealdomains.Butduringtheprocessofthecourse,afterexplaining thatthenotionofprojectivemoduleissomehowmorenaturalthanthenotionoffree module,itbecameratherinevitabletoreplaceprincipalidealdomainsbyDedekind rings;thisislesstraditionalintheliterature—butnotreallymoredifficult. viii Preface Prerequisites Thisbookrequiresacertainfamiliaritywiththenotionsofgroups,rings,fields,and speciallywiththeundergraduateknowledgeoflinearalgebra.Morespecifically,let kbeacommutativefield.Weassumethereaderknows • thedefinitionoftheringofpolynomialk[X ,...,X ]innindeterminates, 1 n • the Euclidean division in Z and in k[X], as well as some of the consequences, like: both these rings are principal ideal domains, hence for p a prime number andP(X)anirreduciblepolynomial,bothquotientsZ/pZandk[X]/(P(X))are fields; • themainresultsofanundergraduatecourseonk-linearalgebra; • matricesandtheirdeterminants. Thefollowingidentitywillnotbeproved:letMbeann×nmatrixwithentries in k, let tCom(M) denote the transpose of its matrix of cofactors, let 1 be the n identityn×nmatrix;then tCom(M).M=det(M).1 . n WetakeforgrantedthatthereaderisfamiliarwiththestandardnotationN(for “numbers”)—note that by convention N={0,1,2,...}, Z for “Zahlen”), Q (for “quotients”), R (for “reals”), C (for “complexes”), as well as F = Z/pZ (for p “finite”)—see[7],p.3. Byconvention,afield isacommutativeringwhereallnonzeroelementsarein- vertible.Anoncommutativeringwhereallnonzeroelementsareinvertibleiscalled adivisionring. Weshallalsousethefollowingnotation. • ForΩ anyfiniteset,|Ω|willdenotethenumberofitselements. • Foranysequenceξ ,...,ξ ,oranyproductξ ···ξ ,andforallj =1,...,n,we 1 n 1 n set(withobviousadhocconventionforξ0 andξn+1): (ξ1,...,(cid:2)ξj,...,ξn):=(ξ1,...,ξj−1,ξj+1,...,ξn), and ξ1···(cid:2)ξj···ξn:=ξ1···ξj−1ξj+1···ξn. (cid:2) A subset (subgroup, subring, submodule,...) Ω of a set (group, ring, mod- ule,...)Ω issaidtobeproperifΩ(cid:2)(cid:3)=Ω. Acknowledgements IwarmlythankYanjunLiu,XiongHuan,andspeciallyGunterMalle,fortheircare- fulandpatientreadingsandcorrectionsofthemanuscript.Mythanksgoalsotothe students who attended the courses which motivated these notes, for their interest, theirattention,theirquestions,theirwonderforMathematics. ix Contents 1 RingsandPolynomialAlgebras . . . . . . . . . . . . . . . . . . . . 1 1.1 FirstDefinitions . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 CanonicalMorphisms . . . . . . . . . . . . . . . . . . . 9 1.1.3 Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.1.4 Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.1.5 Fields,DivisionRings . . . . . . . . . . . . . . . . . . . 20 1.2 PrimeandMaximalIdeals,IntegralDomains . . . . . . . . . . . 36 1.2.1 DefinitionandFirstExamples . . . . . . . . . . . . . . . 36 1.2.2 ExamplesinPolynomialRings . . . . . . . . . . . . . . 37 1.2.3 NilradicalandRadical . . . . . . . . . . . . . . . . . . . 39 1.2.4 IntegralDomains,FieldsofFractions . . . . . . . . . . . 42 1.3 DivisibilityandIrreducibleElements . . . . . . . . . . . . . . . 47 1.3.1 DivisorsandIrreducibleElements. . . . . . . . . . . . . 47 1.3.2 EuclideanRings . . . . . . . . . . . . . . . . . . . . . . 49 1.3.3 GCDandLCM . . . . . . . . . . . . . . . . . . . . . . 51 1.3.4 CaseofZ[i]andApplication . . . . . . . . . . . . . . . 52 1.3.5 IrreducibilityCriteriainR[X] . . . . . . . . . . . . . . . 54 1.4 PolynomialRingsinSeveralIndeterminates . . . . . . . . . . . 66 1.4.1 UniversalProperty,Substitutions . . . . . . . . . . . . . 66 1.4.2 TransferProperties. . . . . . . . . . . . . . . . . . . . . 70 1.4.3 SymmetricPolynomials . . . . . . . . . . . . . . . . . . 71 1.4.4 ResultantandDiscriminant . . . . . . . . . . . . . . . . 76 2 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 2.1 DefinitionsandConventions . . . . . . . . . . . . . . . . . . . . 87 2.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 87 2.1.2 Submodules . . . . . . . . . . . . . . . . . . . . . . . . 90 2.1.3 TorsionElements,TorsionSubmodule . . . . . . . . . . 96 2.1.4 FreeandGeneratingSystems,FreeModules . . . . . . . 98 2.1.5 Constructions:DirectSums,Products,TensorProducts . 102 xi