ebook img

Some symmetric $q$-congruences PDF

0.12 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Some symmetric $q$-congruences

SOME SYMMETRIC q-CONGRUENCES HE-XIA NI AND HAO PAN 6 1 0 Abstract. We prove some symmetric q-congruences. 2 n a J 1. Introduction 5 ] Suppose that f0,f1,f2,... are a sequence of integers. Let T N k k fˆ(q) = (−1)j f . . k j h j t Xj=0 (cid:18) (cid:19) a m In [2, Theorem 2.4], Sun proved the following symmetric congruence: [ p−1 α −1−α p−1 α −1−α 1 f ≡ (−1)hαip fˆ (mod p2), (1.1) k k v k k k k k=0(cid:18) (cid:19)(cid:18) (cid:19) k=0(cid:18) (cid:19)(cid:18) (cid:19) 4 X X 3 where p is an odd prime, α ∈ Q is p-integral and hαi is the least non-negative p 9 residue of α modulo p. With the help of (1.1), Sun obtained many interesting 3 0 congruences modulo p. . 1 In this paper, we shall give a q-analogue of (1.1). Define 0 6 (1−x)(1−xq)···(1−xqn−1), if n ≥ 1, 1 (x;q) = n : (1, if n = 0. v i X Define the q-binomial coefficient r a α (qα−k+1;q)k = . k (q;q) (cid:20) (cid:21)q k In particular, we set α = 0 if k < 0. Suppose that f (q),f (q),... are a sequence k q 1 2 of polynomials in q with integral coefficients. Let (cid:2) (cid:3) k k fˆk(q) = (−1)jq(j+21) fj(q) j j=0 (cid:20) (cid:21)q X for 0 ≤ k ≤ n. 2010 Mathematics Subject Classification. Primary 11B65; Secondary 05A10, 05A30, 11A07. Key words and phrases. congruence; q-binomial coefficient. 1 2 HE-XIANIAND HAOPAN Theorem 1.1. Letn ≥ 2 andd ≥ 1 with(n,d) = 1. Supposethat f (q),...,f (q) ∈ 1 n Z[q] and r is an integer. Then if n is odd, qd(a+21)+(ad+r)(n2−1−2a) n−1 (qr;q(dq)kd(;qqdd−)2r;qd)k ·qdkfk(qd) k=0 k X n−1 (qr;qd) (qd−r;qd) ≡(−1)a k k ·qdkfˆ(qd) (mod Φ (q)2), (1.2) (qd;qd)2 k n k=0 k X where a = h−r/di and Φ is the n-th cyclotomic polynomial. And when n is even, n n qd(a+21)+(ad+r)(n2−1−2a) n−1 (qr;q(dq)kd(;qqdd−)2r;qd)k ·qdkfk(qd) k=0 k X n−1 (qr;qd) (qd−r;qd) ≡(−1)a+adn+r (qkd;qd)2 k ·qdkfˆk(qd) (mod Φn(q)2). (1.3) k=0 k X Now for odd n ≥ 3, replacing q by q−1 in (1.4) and noting that Φ (q−1) = q−φ(n)Φ (q) n n where φ is the Euler totient function, we get q−d(a+21)−(ad+r)(n2−1−2a) n−1 (q−r;q(−qd−)dk;(qq−r−d)d2;q−d)k ·q−dkfk(q−d) k=0 k X n−1 (q−r;q−d) (qr−d;q−d) ≡(−1)a k k ·q−dkfˆ(q−d) (mod Φ (q)2). (q−d;q−d)2 k n k=0 k X Notice that k k k k fˆk(q−1) = (−1)jq−(j+21) fj(q−1) = (−1)jq(2j)−kj fj(q−1) j j j=0 (cid:20) (cid:21)q−1 j=0 (cid:20) (cid:21)q X X and (q−r;q−d) (qr−d;q−d) (qr;qd) (qd−r;qd) k k = qdk · k k. (q−d;q−d)2 (qd;qd)2 k k We have n−1 (qr;qd) (qd−r;qd) k k ·g (qd) (qd;qd)2 k k=0 k X ≡(−1)aqd(a+21)+(ad+r)(n2−1−2a) n−1 (qr;q(dq)kd(;qqdd−)2r;qd)k ·g˜k(qd) (mod Φn(q)2), k=0 k X SOME SYMMETRIC q-CONGRUENCES 3 where k k g˜k(q) = (−1)jq(2j)−kj gj(q). j j=0 (cid:20) (cid:21)q X The similar discussion is also valid when n is even. Thus Theorem 1.2. Letn ≥ 2 andd ≥ 1 with(n,d) = 1. Supposethat f (q),...,f (q) ∈ 1 n Z[q] and r is an integer. Then if n is odd, n−1 (qr;qd) (qd−r;qd) k k ·f (qd) (qd;qd)2 k k=0 k X ≡(−1)aqd(a+21)+(ad+r)(n2−1−2a) n−1 (qr;q(dq)kd(;qqdd−)2r;qd)k ·f˜k(qd) (mod Φn(q)2), (1.4) k=0 k X where a = h−r/di and Φ is the n-th cyclotomic polynomial. And when n is even, n n n−1 (qr;qd) (qd−r;qd) k k ·f (qd) (qd;qd)2 k k=0 k X ≡(−1)a+adn+rqd(a+21)+(ad+r)(n2−1−2a) n−1 (qr;q(dq)kd(;qqdd−)2r;qd)k ·f˜k(qd) (mod Φn(q)2). k=0 k X (1.5) 2. Proof of Theorem 1.1 Below we slightly extend the notion of congruence. Let s X(q) = c qβj : s ≥ 1, c ,...,c ∈ C, β ,...,β ∈ R . j 1 s 1 s nXj=1 o For f(q),g(q),h(q) ∈ X(q), we say f(q) ≡ g(q) (mod h(q)), provided f(q)−g(q) ∈ X(q). h(q) Theorem 2.1. Suppose that n ≥ 2, α ∈ Q and the denominator of α is prime to n. Then when n is odd, n−1 α −1−α (−1)aq(a+21)+sna−s(n2) qk2+k fk(q) k k k=0 (cid:20) (cid:21)q(cid:20) (cid:21)q X n−1 α −1−α ≡ qk2+k fˆ(q) (mod Φ (q)2), k n k k k=0 (cid:20) (cid:21)q(cid:20) (cid:21)q X 4 HE-XIANIAND HAOPAN where a = hαi and s = (α−a)/n. And if n is even, then n n−1 α −1−α (−1)a+sq(a+21)+sna−s(n2) qk2+k fk(q) k k k=0 (cid:20) (cid:21)q(cid:20) (cid:21)q X n−1 α −1−α ≡ qk2+k fˆ(q) (mod Φ (q)2). k n k k k=0 (cid:20) (cid:21)q(cid:20) (cid:21)q X Let k k fˆk(q) = (−1)iq(i+21) fi(q). i i=0 (cid:20) (cid:21)q X Suppose that p is an odd prime and α are positive integer,0 ≤< α > ≤ p−1. Let p a = hαi . Then n Proof. Using the q-Chu-Vandemonde identity, we have k a+sn sn a = q(sn−j)(k−j) k j k −j (cid:20) (cid:21)q j=0 (cid:20) (cid:21)q(cid:20) (cid:21)q X k a sn a ≡ qsnk + q−j(k−j) (mod Φ (q)2). n k j k −j (cid:20) (cid:21)q j=1 (cid:20) (cid:21)q(cid:20) (cid:21)q X Notice that sn [sn] sn−1 q = ≡ 0 (mod Φ (q)) n j [j] j −1 (cid:20) (cid:21)q q (cid:20) (cid:21)q and sn−1 −1 ≡ = (−1)j−1q−(2j) (mod Φn(q)). j −1 j −1 (cid:20) (cid:21)q (cid:20) (cid:21)q So k a+sn a [sn] a ≡ qsnk + q ·(−1)j−1q−(2j)−j(k−j) (mod Φn(q)2). k k [j] k −j (cid:20) (cid:21)q (cid:20) (cid:21)q j=1 q (cid:20) (cid:21)q X Similarly, we also have −1−a−sn k (cid:20) (cid:21)q k −1−a [−sn] −1−a ≡q−snk + q ·(−1)j−1q−(2j)−j(k−j) (mod Φn(q)2). k [j] k −j (cid:20) (cid:21)q j=1 q (cid:20) (cid:21)q X SOME SYMMETRIC q-CONGRUENCES 5 Thus n−1 α −1−α qk2+k ((−1)aq(a+21)fk(q)−fˆk(q)) k k k=0 (cid:20) (cid:21)q(cid:20) (cid:21)q X n−1 a −1−a ≡ qk2+k ((−1)aq(a+21)fk(q)−fˆk(q)) (2.1) k k k=0 (cid:20) (cid:21)q(cid:20) (cid:21)q X n−1 k a [n] −1−a −s qk2+k fk(q) (−1)a+j−1q(a+21)−(2j)−j(k−j)· q (2.2) k [j] k −j k=1 (cid:20) (cid:21)q j=1 q(cid:20) (cid:21)q X X n−1 k a [n] −1−a +s qk2+k fˆk(q) (−1)j−1q−(2j)−j(k−j)· q (2.3) k [j] k −j k=1 (cid:20) (cid:21)q j=1 q(cid:20) (cid:21)q X X n−1 k −1−a [n] a +s qk2+k fk(q) (−1)a+j−1q(a+21)−(2j)−j(k−j)· q (2.4) k [j] k −j k=1 (cid:20) (cid:21)q j=1 q(cid:20) (cid:21)q X X n−1 k −1−a [n] a −s qk2+k fˆk(q) (−1)j−1q−(2j)−j(k−j) · q (mod Φn(q)2). k [j] k −j k=1 (cid:20) (cid:21)q j=1 q(cid:20) (cid:21)q X X (2.5) First, we consider (2.1). Clearly n−1 a −1−a qk2+k fˆ(q) k k k k=0 (cid:20) (cid:21)q(cid:20) (cid:21)q X a k a −1−a k = qk2+k (−1)jq(j+21)fj(q) k k j k=0 (cid:20) (cid:21)q(cid:20) (cid:21)q j=0 (cid:20) (cid:21)q X X a a a −1−a −1−a−j = (−1)jq(j+21)fj(q) qk2+k k j k −j j=0 k=j (cid:20) (cid:21)q(cid:20) (cid:21)q(cid:20) (cid:21)q X X a a −1−a a −1−a−j = (−1)jq(j+21)fj(q) qa2+a q(a−k)(−1−a−k) j a−k k −j j=0 (cid:20) (cid:21)q k=j (cid:20) (cid:21)q(cid:20) (cid:21)q X X a −1−a −1−j = (−1)jq(j+21)fj(q) qa2+a j a−j j=0 (cid:20) (cid:21)q (cid:20) (cid:21)q X a −1−a a = (−1)aqj2+j+(a+21)fj(q) , j j j=0 (cid:20) (cid:21)q(cid:20) (cid:21)q X where we use the q-Chu-Vandemonde identity in the fourth equality. So (2.1) always vanishes. 6 HE-XIANIAND HAOPAN Note that k k [n] −1−a n−1 [n] −1−a (−1)j−1q−(2j)−j(k−j)· q ≡ ·q−j(k−j)· q [j] k −j j −1 [j] k −j j=1 q(cid:20) (cid:21)q j=1 (cid:20) (cid:21)q q(cid:20) (cid:21)q X X k n −1−a n−1−a −1−a ≡ q(n−j)(k−j) = −qnk (mod Φ (q)2). n j k −j k k j=1 (cid:20) (cid:21)q(cid:20) (cid:21)q (cid:20) (cid:21)q (cid:20) (cid:21)q X Hence n−1 a n−1−a −1−a (2.2) ≡−s(−1)aq(a+21) qk2+k fk(q)· −qnk k k k k=1 (cid:20) (cid:21)q (cid:18)(cid:20) (cid:21)q (cid:20) (cid:21)q(cid:19) X (2.6) n−1 a n−1−a ≡−s(−1)aq(a+21) qk2+k fk(q) (2.7) k k k=0 (cid:20) (cid:21)q(cid:20) (cid:21)q X n−1 a −1−a +s(−1)aq(a+21) qk2+k+nk fk(q) (mod Φn(q)2). (2.8) k k k=0 (cid:20) (cid:21)q(cid:20) (cid:21)q X Similarly, we have k [n] a−n (−1)j−1q−(2j)−j(k−j) q [j] k −j j=1 q(cid:20) (cid:21)q X k n a−n a a−n ≡ q(n−j)(k−j) = −qnk (mod Φ (q)2). n j k −j k k j=1 (cid:20) (cid:21)q(cid:20) (cid:21)q (cid:20) (cid:21)q (cid:20) (cid:21)q X So n−1−a k n−1−a [n] a−n (2.4) ≡s qk2+k+(a+21) fk(q) (−1)a+j−1q−(2j)−j(k−j)· q k [j] k −j k=1 (cid:20) (cid:21)q j=1 q(cid:20) (cid:21)q X X n−1−a n−1−a a ≡s(−1)aq(a+21) qk2+k fk(q) (2.9) k k k=0 (cid:20) (cid:21)q(cid:20) (cid:21)q X n−1−a n−1−a a−n −s(−1)aq(a+21) qk2+k+nk fk(q) (mod Φp(q)2). k k k=0 (cid:20) (cid:21)q(cid:20) (cid:21)q X (2.10) SOME SYMMETRIC q-CONGRUENCES 7 On the other hand, clearly n−1 k a [n] −1−a qk2+k fˆk(q) (−1)j−1q−(2j)−j(k−j)· q k [j] k −j k=1 (cid:20) (cid:21)q j=1 q(cid:20) (cid:21)q X X n−1 k k a k [n] −1−a = qk2+k (−1)iq(i+21) fi(q) (−1)j−1q−(2j)−j(k−j)· q k i [j] k −j k=1 (cid:20) (cid:21)q i=0 (cid:20) (cid:21)q j=1 q(cid:20) (cid:21)q X X X = a (−1)iq(i+21) a fi(q) a (−1)j−1q−(2j)[n]q a qk2+k−j(k−j) a−i −1−a i [j] a−k k −j i=0 (cid:20) (cid:21)q j=1 q k=j (cid:20) (cid:21)q(cid:20) (cid:21)q X X X = a (−1)iq(i+21) a fi(q) a (−1)j−1q−(2j)[n]q ·qa2+a+j2−aj −1−i , i [j] a−j i=0 (cid:20) (cid:21)q j=1 q (cid:20) (cid:21)q X X where in the last step we use the q-Chu-Vandemonde identity. Thus (2.3) =s a (−1)iq(i+21) a fi(q) a (−1)j−1qa2+a+j2−aj−(2j)[n]q −1−i i [j] a−j i=0 (cid:20) (cid:21)q j=1 q (cid:20) (cid:21)q X X a a a n −1−i ≡s (−1)iq(i+21) fi(q) qa2+a+j2−aj i j a−j i=0 (cid:20) (cid:21)q j=1 (cid:20) (cid:21)q(cid:20) (cid:21)q X X a a a n −1−i ≡sqa2+a (−1)iq(i+21) fi(q) q(n−j)(a−j) i j a−j i=0 (cid:20) (cid:21)q j=1 (cid:20) (cid:21)q(cid:20) (cid:21)q X X a a n−1−i =sqa2+a (−1)iq(i+21) fi(q)· (2.11) i a i=0 (cid:20) (cid:21)q (cid:20) (cid:21)q X a a −1−i −sqa2+a (−1)iq(i+21) fi(q)·qna (mod Φn(q)2). (2.12) i a i=0 (cid:20) (cid:21)q (cid:20) (cid:21)q X Similarly, noting that n−1−a n−1−a−i a qk2+k−j(k−j) k −i k −j k=j (cid:20) (cid:21)q(cid:20) (cid:21)q X n−1−a n−1−a−i a ≡ qa2+a+j2+j+aj+(n−1−a−k)(a−k+j) n−1−a−k k −j k=j (cid:20) (cid:21)q(cid:20) (cid:21)q X n−1−i =qa2+a+j2+j+aj (mod Φ (q)), n n−1−a−j (cid:20) (cid:21)q 8 HE-XIANIAND HAOPAN we can get (2.5) ≡−sn−1−a n−1−a fˆ(q) k (−1)j−1q−(2j)[n]q ·qk2+k−j(k−j) a k k [j] k −j k=1 (cid:20) (cid:21)q j=1 q (cid:20) (cid:21)q X X n−1−a n−1−a n−1−a n n−1−i ≡−s (−1)iq(i+21) fi(q) ·qa2+a+j2+j+aj i j n−1−a−j i=0 (cid:20) (cid:21)q j=1 (cid:20) (cid:21)q (cid:20) (cid:21)q X X n−1−a n−1−a n−1−a n −1−i ≡−s (−1)iq(i+21) fi(q) qa2+a+(n−j)(n−1−a−j) i j n−1−a−j i=0 (cid:20) (cid:21)q j=1 (cid:20) (cid:21)q(cid:20) (cid:21)q X X n−1−a n−1−a n−1−i =−s (−1)iqa2+a+(i+21) fi(q)· (2.13) i n−1−a i=0 (cid:20) (cid:21)q (cid:20) (cid:21)q X n−1−a n−1−a −1−i +s (−1)iqa2+a+(i+21) fi(q)·qn(n−1−a) (mod Φn(q)2). i n−1−a i=0 (cid:20) (cid:21)q (cid:20) (cid:21)q X (2.14) Clearly (2.7)+(2.9) = 0. (2.15) And we also get (2.11)+(2.13) = 0, (2.16) since a n−1−i n−1−i n−1−2i = i a i a−i (cid:20) (cid:21)q(cid:20) (cid:21)q (cid:20) (cid:21)q(cid:20) (cid:21)q n−1−i n−1−2i n−1−a n−1−i = = . i n−1−a−i i n−1−a (cid:20) (cid:21)q(cid:20) (cid:21)q (cid:20) (cid:21)q(cid:20) (cid:21)q Noting that −1−k a+k a+k −1−a (−1)aqak+(a+21) = = = (−1)kqak+(k+21) , a a k k (cid:20) (cid:21)q (cid:20) (cid:21)q (cid:20) (cid:21)q (cid:20) (cid:21)q we have n−1 a −1−a (2.8)+(2.12) = s(−1)aq(a+21) qk2+k fk(q)·(qnk −qna). (2.17) k k k=0 (cid:20) (cid:21)q(cid:20) (cid:21)q X Similarly, from (−1)n−1−aq(n−2a) −1−k = (−1)kq(k+21) a−n , n−1−a k (cid:20) (cid:21)q (cid:20) (cid:21)q SOME SYMMETRIC q-CONGRUENCES 9 it follows that (2.10)+(2.14) n−1−a n−1−a a−n =s(−1)aq(a+21) qk2+k fk(q)·((−1)n−1q(n2) −qnk). k k k=0 (cid:20) (cid:21)q(cid:20) (cid:21)q X (2.18) Noting that 1−qn n 1+q2 = n ≡ 0 (mod Φn(q)) 1−q 2 for those even n, we always have (−1)n−1q(n2) ≡ 1 (mod Φn(q)). Thus by (2.15), (2.16), (2.17) and (2.18), we get n−1 α −1−α qk2+k ((−1)aq(a+21)fk(q)−fˆk(q)) k k k=0 (cid:20) (cid:21)q(cid:20) (cid:21)q X n−1 −1−a a ≡(−1)asq(a+21) qk2+k((−1)n−1q(n2) −qna) fk(q) k k k=0 (cid:20) (cid:21)q(cid:20) (cid:21)q X n−1 −1−α α ≡(−1)asq(a+21) qk2+k(1−(−1)n−1qna−(n2)) fk(q) (mod Φn(q)2). k k k=0 (cid:20) (cid:21)q(cid:20) (cid:21)q X When n is odd, we have s(1−qna−s(n2)) ≡ 1−qsna−s(n2) (mod Φn(q)2). So n−1 α −1−α (−1)aq(a+21)+sna−s(n2) qk2+k fk(q) k k k=0 (cid:20) (cid:21)q(cid:20) (cid:21)q X n−1 α −1−α ≡ qk2+k fˆ(q) (mod Φ (q)2). k n k k k=0 (cid:20) (cid:21)q(cid:20) (cid:21)q X Suppose that n is even. Then s(1−(−1)n−1qna−s(n2)) ≡ 1−(−1)sqsna−s(n2) (mod Φn(q)2). 10 HE-XIANIAND HAOPAN Then we have n−1 α −1−α (−1)a+sq(a+21)+sna−s(n2) qk2+k fk(q) k k k=0 (cid:20) (cid:21)q(cid:20) (cid:21)q X n−1 α −1−α ≡ qk2+k fˆ(q) (mod Φ (q)2). k n k k k=0 (cid:20) (cid:21)q(cid:20) (cid:21)q X (cid:3) Remark. Let f (q) = xk. k Then k k fˆk(q) = (−1)jq(j+21) xj = (xq;q)k. j j=0 (cid:20) (cid:21)q X Then Theorem 1.1 implies a conjecture of Guo and Zeng [1, Conjecture 7.1]. Remark. Let qk(x;q) k f (q) = . k (q;q) k Then it is not difficult to prove that k k qj(x;q) (xq−1;q−1) f˜k(q) = (−1)jq(2j)−kj · j = k. j (q;q) (q−1;q−1) j=0 (cid:20) (cid:21)q j k X Define n−1 α −1−α (x;q) P (α,x;q) = qk2+k · k. n k k (q;q) k=0 (cid:20) (cid:21)q(cid:20) (cid:21)q k X Then in view of Theorem 1.2, we can get Pn(−r/d,x;qd) ≡ (−1)aqd(a+21)+(ad+r)(n2−1−2a)Pn(−r/d,xq−d;q−d) (mod Φn(q)2) for odd n ≥ 3, where a = h−r/di . This is a q-analogue of [2, Theorem 2.2]. n References [1] VictorJ.W.Guo andJ.Zeng,Some q-analogues of supercongruences of Rodriguez-Villegas, J. Number Theory, 145(2014), 301–316. [2] Z.-H. Sun, Generalized Legendre polynomials and related supercongruences, J. Number The- ory, 143(2014), 293–319.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.