ebook img

Some Recent Advances in Bound-State Quantum Electrodynamics PDF

0.16 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Some Recent Advances in Bound-State Quantum Electrodynamics

1 Some Recent Advances in Bound–State Quantum Electrodynamics U. D. Jentschura and J. Evers 5 0 0 2 Abstract: Wediscuss recent progress invarious problems relatedtobound-state quantum electrodynamics: thebound-electron g factor, two-loop self-energycorrections and thelaser- n dressed Lamb shift.Theprogress relieson various advances inthebound-state formalism, a J including ideasinspired byeffective fieldtheoriessuch asNonrelativisticQuantum Electrodynamics. Radiative correctionsindynamical processes represent apromising fieldfor 4 further investigations. 2 Keywords:Calculationsandmathematicaltechniquesinatomicandmolecularphysics, 1 quantumelectrodynamics–specificcalculations; v PACSnumbers:31.15.-p,12.20.Ds. 0 2 2 1 1. Introduction 0 5 Thisisabriefsummaryofanumberofrecentadvancesinourunderstandingofbound-statequan- 0 tum electrodynamic (QED) effects. The topics are (i) two-loop corrections to the bound-electron g / h factor,(ii)higher-ordertwo-loopcorrectionstotheself-energyofaboundelectron,and(iii)thelaser- p dressedLambshift. - Thefirsttwooftheseratherdiversetopicsarerelatedtotwo-loopeffects.Theinvestigationofthese p e is simplified considerably by the use of effective field-theory techniques inspired by Nonrelativistic h QED (NRQED) [1–3]. The Wilson coefficients multiplying the effective operators in the NRQED : v Lagrangianarematchedagainstthoseofthefullrelativistictheory,providingasimplifiedframework i forthecalculationofbound-stateeffects.Scale-separationparameterssuchasthephotonmassµare X cancelled at the end of the calculation. The analysis of higher-order corrections to the g factor of r a the bound electron is simplified further by a transformation to the length gauge, which results in a lessernumberoftermstobeconsideredthanwouldbenecessaryinthevelocitygauge.Thisfacthas inspired the developmentof Long-wavelengthQED (LWQED) [4], a theory which is obtained after Power–Zienauand Foldy–Wouthuysentransformationsof the first-quantizedLagrangian;the second quantizationiscarriedoutbyformulatingthepathintegral.Consequently,animprovedunderstanding andatremendoussimplificationresultsforthecalculationofanumberofQEDcorrectionsforbound states,suchasthegfactorandhigher-ordercorrectionstotheself-energy. Afurtherfieldofrecentstudieshasbeenconcernedwiththeinteractionofa laser-dressedbound electronwiththeradiationfield[5–8].Thisprocessentailscorrectionswhichcanonlybeunderstood iftheanalysisiscarriedoutrightfromthestartintheframeworkofthelaser-dressedstates,whichare theeigenstatesofthequantizedatom-laserHamiltonianintherotating-waveapproximation[9]. U.D.JentschuraandJ.Evers.Max–Planck–Institutfu¨rKernphysik,Saupfercheckweg1,69117Heidelberg, Germany CanadianJournalofPhysics1:1–12(2004) 2004NRCCanada 2 CanadianJournalofPhysicsVol.1,2004 2. Bound-electron g factor Inthissection,webrieflysummarizetheresultsofarecentinvestigation[10]ofthebound-electron g factor,whichisbasedonNRQED.Thecentralresultofthisinvestigationisthefollowingsemiana- lyticexpansioninpowersofZαandln(Zα)forthebound-electrongfactor(nSstate)inthenon-recoil limit,whichisthelimitofaninfinitenuclearmass: 2(Zα)2 (Zα)4 1 2 g(nS)=2 + + (Zα)6 − 3n2 n3 (cid:18)2n − 3(cid:19) O Breit(1928),Diractheory | {z } α 1 (Zα)2 (Zα)4 + 2 1+ + a ln[(Zα)−2]+a + (Zα)5 π (cid:26) × 2(cid:18) 6n2 (cid:19) n3 (cid:26) 41 40(cid:27) O (cid:27) one-loopcorrection | {z } α 2 (Zα)2 (Zα)4 + 0.656958 1+ + b ln[(Zα)−2]+b + (Zα)5 (cid:16)π(cid:17) (cid:26)− (cid:18) 6n2 (cid:19) n3 (cid:26) 41 40(cid:27) O (cid:27) two-loopcorrection | {z } + (α3). (1) O This expansion is valid through the order of two loops (terms of order α3 are neglected). The notation is in part inspired by the usual conventions for Lamb-shift coefficients: the (lower case) a terms denote the one-loop effects, with a denoting the coefficient of a term proportional to kj α(Zα)klnj[(Zα)−2].Thebtermsdenotethetwo-loopcorrections,withb multiplyingatermpro- kj portionaltoα2(Zα)klnj[(Zα)−2]. In[10],completeresultsarederivedforthecoefficientsa ,a 41 40 andb . 41 Ingeneral,theexpressioncorrespondingto(1)forafreeelectronisobtainedbylettingtheparam- eterZα 0ineverytermoftheloopexpansion(expansioninpowersofα).Inthislimit,theknown → free-electrontwo-loopresultisrecovered[11–17]. Uptotherelativeorder(Zα)2,thefree-electroncontributioninone-,two-,andhigher-looporder ismultipliedbyarelativefactor (Zα)2 1+(Zα)2a =1+(Zα)2b =1+ . (2) 20 20 6n2 This result consequently holds for the three-loop and the four-loop term not shown in Eq. (1). The applicability of the relative factor (2) to the two-loop term, valid through (Zα)2, had been stressed previouslyin[18].TheresultinEq.(2)hadbeenobtainedoriginallyin[19–23](forthe1Sstate).As isevidentfromEq.(1),thecorrectionofrelativeorder(Zα)2 isdifferentonthelevelofthetree-level diagramsandreadsg(nS) 2 [1 (Zα)2/(3n2)]. ∼ × − Explicitresultsforthecoefficientsin(1),restrictedtotheone-loopself-energy,read[10] 32 a (nS)= , (3a) 41 9 73 5 8 8 a (nS)= lnk (nS) lnk (nS). (3b) 40 0 3 54 − 24n − 9 − 3 2004NRCCanada JentschuraandEvers 3 (cid:1) (cid:2) (cid:3) (cid:4) (cid:5) (cid:6) (cid:7) (cid:8) (cid:9) Fig. 1. Feynman diagrams for the two-loop self-energy corrections to the bound-electrong-factor. Here, lnk (nS) is the Bethe logarithm for an nS state, and lnk (nS) is a generalization of the 0 3 Bethe logarithm to a perturbativepotentialof the form 1/r3. Vacuum polarization adds a further n- independentcontributionof( 16/15)toa [24].TheBethelogarithmsfor1Sand2S[25]read 40 − lnk (1S) = 2.984128555, (4a) 0 lnk (2S) = 2.811769893, (4b) 0 andthecorrespondingvaluesforlnk read[10] 3 lnk (1S) = 3.272806545, (5a) 3 lnk (2S) = 3.546018666. (5b) 3 Thequantitylnk (nS)isdefinedas, 3 ǫ 1 1 1 (Zα)3 µ 5 dkk2 φr r φ = 4 ln + lnk (6) Z h | E H k r3 E H k | i − n3 (cid:20) (Zα)2 6 − 3(cid:21) 0 − S − − S − where theultravioletcutoffǫ is to beunderstoodin the sense of[2],and thematchingofthe nonco- variantcutoffǫtothecovariantphotonmassµisgivenas(see[26],pp.361–362) 2ǫ µ 5 ln ln + . (7) (cid:18)m(cid:19)→ (cid:16)m(cid:17) 6 However, this replacement is not unique and the constant term depends on the actual form of the integrand.Adifferentreplacementhastobeusedforsomeofthelow-energyphotoncorrectionstothe gfactor[10]. 2004NRCCanada 4 CanadianJournalofPhysicsVol.1,2004 Theresultsforthetwo-loopcoefficientsread 56 b (nS)= , (8a) 41 9 b (1S)= 18.5(5.5). (8b) 40 − Here, the result for b is an estimate based on an explicit calculation of a large contribution due 40 to low-energyvirtualphotons, and an estimate of the remaining,unknowncontributiondue to high- energyvirtualphotons.Thedominantlogarithmictwo-looptermb iscausedexclusivelybythetwo- 41 loopself-energydiagramsinFig.1alone.Theothertwo-loopdiagrams,whichincludeclosedfermion loops,canbefoundinFig.21of[27].Thelogarithmictermb is,however,exclusivelyrelatedtothe 41 gauge-invariantsubsetdisplayedinFig.1. Thenewlycalculateda ,a andb arebound-statecorrectionstotheelectrong-factoroforder 41 40 41 (α/π)(Zα)4and(α/π)2(Zα)4,multipliedbylogarithmicterms.Thesecorrectionsare(atZ =1)for- mallyoforderα5 andα6 andthereforeofthesameorderofmagnitudeasthetenth-andtwelfth-order correctionstothe free-electronanomaly,whichbarelyareofexperimentalortheoreticalsignificance atthecurrentlevelofaccuracy.Onemaythereforeaskwhythesebindingcorrectionsareofanyphe- nomenologicalsignificance.ThereasonisthatatsomewhathigherZ,thesituationchangesdrastically, due to Z4 scaling of the binding corrections. In addition, due to numerically large coefficients and logarithmicfactors,the“hierarchy”ofthecorrectionschangesdrastically.Roughly,onemaysaythat atZ = 1,the bound-electronanomalousmagneticmomentisapproximatelyindependentofbinding correctionsoforder(α/π)(Zα)4 andhigher,whereasforhigherZ,thesituationisreversed,andthe bindingcorrectionstotheone-andtwo-loopcontributionsarenumericallymuchmoresignificantthan thehigher-loopfree-electroncorrections.This“transitionfromfreetobound-statequantumelectrody- namics”asafunctionofZ isasomewhatpeculiarfeatureofthebound-electrong-factor. For,example,weconsidertheratio α (Zα)4 ln[(Zα)−2] π r (Z)= (cid:16) (cid:17) , (9) 1 (α/π)4 whichgivesanorder-of-magnitudeestimateforthetheratiooftheone-loopself-energybindingcor- rectiontotheeighth-orderanomalousmagneticmomentofthefreeelectron.Wehave r (Z =1) 2, r (Z =10) 104 1. (10) 1 1 ≈ ≈ ≫ Forthetwo-looplogarithmicbindingcorrection,wehave α 2 (Zα)4 ln[(Zα)−2] π r (Z)= (cid:16) (cid:17) (11) 2 (α/π)4 andconsequently r (Z =1) 0.2<1, r (Z =10) 2 103 1. (12) 2 2 ≈ ≈ × ≫ As is evident from these considerations, the (Zα)4 one-loop and two-loop binding corrections are roughlyof the same order of magnitudeas the highly problematicfour-loopcorrections[28–30] for the free electron. However, the situation changes drastically even at very moderate nuclear charge numbers, and the binding corrections to the one-loop and two-loop contributions become dominant overthehigher-loopeffects. 2004NRCCanada JentschuraandEvers 5 The NRQED one-loopcalculation[10] is dividedinto three parts, the first of which entails fully relativistic form-factor corrections including lower-order terms, the second of which correspondsto a spin-dependentscattering amplitude, and the third of which is a low-energy Bethe-logarithm type correctionthatcontainslnk andlnk .Theone-loopcorrectioninEq.(1)canthereforebewrittenin 0 3 anaturalwayasδg(1) =g(1)+g(1)+g(1),where 1 2 3 α (Zα)2 (Zα)4 7 5 16 g(1) = 1+ + + lnµ , (13a) 1 π(cid:20) 6n2 − n3 (cid:18)6 24n 3 (cid:19)(cid:21) α (Zα)4 16 g(1) = 4+ lnµ , (13b) 2 π n3 9 (cid:16) (cid:17) α (Zα)4 32 µ 5 lnk 3 g(1) = ln 0 lnk . (13c) 3 π n3 9 (cid:20) (Zα)2 − 12 − 4 − 4 3(cid:21) The new contribution of order (Zα)4 can be compared with the numerical results for the self- energycorrection[31,32]completetoallordersinZα.Assumingcorrectnessofthelogarithmicterm inEq.(13),afittonumericaldatayieldsa(1)(1S)= 10.2(1)anda(1)(2S)= 10.6(1.2)forthecon- 40 − 40 − stantterm,inexcellentagreementwiththeanalyticresultswhichreada(1)(1S)= 10.236524318(1) 40 − anda(1)(2S)= 10.707715607(1). 40 − Havingverifiedtheconsistencyoftheanalytic[10]andnumericalresults[31,32],aninterpolation procedure[33]maynowbeusedtoextractamoreaccuratetheoreticalpredictionatlowandinterme- diatenuclearchargenumbers,ifcombinedwithnumericalresultsathigherZ [31].Thus,theresultsin Eqs.(3)and(8)maybeusedinordertoinferimprovedtheoreticalpredictionsforthebound-electron g factor,notablyinthe experimentallyimportantspecialcases ofhydrogenlikecarbon[34]andoxy- gen[35].Alternatively,theimprovedstatusofthetheorymaybeusedinordertoinferamoreaccurate value of the electronmass. Specifically,the value fromthe carbonmeasurement[34],using the new theory,reads m(12C5+)=0.00054857990941(29)(3)u. (14) The first error comes from the experiment [34], and the second error corresponds to the theoretical uncertainty. The conclusion is that a further improvement of the experiment could lead to a much better determination of the electron mass; the new theory provides room for at least an improved determinationbyoneorderofmagnitude. Forthecalculationofyethigher-orderbindingcorrectionstotheone-loopandtwo-loopcontribu- tions, a detailed understandingof the two-loop form-factors,including their slopes, is required. The mostrecentcalculationsoftheseeffects,inbothdimensionalandphoton-massregularizations,canbe foundin[36–38]. 3. Two-loop Bethe logarithms Asiswellknown[39–46],thetwo-loopLambshift∆E(2),inthelimitofaninfinitenuclearmass, maybewrittenas α 2 (Zα)4m c2 ∆E(2) = e H(Zα). (15) π n3 (cid:16) (cid:17) 2004NRCCanada 6 CanadianJournalofPhysicsVol.1,2004 (2LSE) (SVPE) (SEVP) Fig. 2. Thetwo-loop corrections totheLambshift inhydrogenlike systemsfall naturallyintothree gauge- invariantsubsets,whicharethepuretwo-loopself-energyterms(2LSE),thevacuum-polarizationcorrectionto thevirtual-photonlineintheself-energy(SVPE),andtheself-energyvacuum-polarizationandpuretwo-loop vacuum-polarizationcorrections(SEVP).Thetwo-loopBethelogarithmisanumericallylargecorrectiontothe nonlogarithmictermoforderα2(Zα)6anditisexclusivelyrelatedtothe2LSEsubset;however,foracomplete resultinthisorder,contributionsfromtheothergauge-invariantsubsetswillhavetobeconsideredaswell. ForSstates,thedimensionlessfunctionH(Zα),hasasemianalyticexpansionoftheform H(Zα)=B +(Zα)B 40 50 +(Zα)2 B ln3[(Zα)−2]+B ln2[(Zα)−2]+B ln[(Zα)−2]+B , (16) 63 62 61 60 (cid:2) (cid:3) where we ignore higher-order terms, and upper case is used for the B coefficients that multiply ij termsoforderα2(Zα)i lnj[(Zα)−2]m c2.Thecoefficients,restrictedtothetwo-photonself-energy e diagrams(Fig.2),readasfollows 8 B(2LSE)(nS) = = 0.296296, (17a) 63 −27 − 16 16 B(2LSE)(1S) = ln(2)= 0.639669, (17b) 62 27 − 9 − 16 3 1 1 B(2LSE)(nS) = B(2LSE)(1S)+ + ln(n)+Ψ(n)+C . (17c) 62 62 9 (cid:18)4 4n2 − n − (cid:19) 2004NRCCanada JentschuraandEvers 7 Then-dependenceofB hasbeenclarifiedin[46,47] 61 4 B(2LSE)(nS) = B(2LSE)(1S)+ [N(nS) N(1S)] 61 61 3 − 80 32 3 1 1 + ln(2) + ln(n)+Ψ(n)+C , (18) (cid:18)27 − 9 (cid:19)(cid:18)4 4n2 − n − (cid:19) whereC =0.577216... isEuler’sconstant,Ψ(n)isthelogarithmicderivativeoftheGammafunction, andN(nS)isrelatedtoacorrectiontotheBethelogarithminducedbyaDirac-deltapotential.Explicit valuesforN(nS)canbefoundin[47](n=1,...,8). ω 2 6 mixed relativistic integration integration region(bM) region(bF+bH) ǫ 2 nonrelativistic mixed integration integration region(bL) region(bM) - ǫ ω 1 1 Fig. 3. The integration regions for the two virtual photons in the two-loop self-energy problem comprise a low-energy regime with two low-energy photons, which gives rise to bL. Themiddle-energyregionswithonelow-energyandaonehigh- energy photon give rise to bM. The high-energy contribution bF +bH isasyetunknown. TheB coefficientsarethesumofseveralcontributions 60 B(2LSE)(nS) = b +b + b +b +b , (19a) 60 L M { F H VP} b = b (nS) two-loopBethelogarithm,twosoftphotons, (19b) L L ∼ 10 b = b (nS) = N(nS) onesoft,onehardphoton, (19c) M M 9 ∼ b softelectronmomenta,twohardphotons, (19d) F ∼ b hardelectronmomenta,twohardphotons, (19e) H ∼ b vacuum-polarizationcorrections. (19f) VP ∼ 2004NRCCanada 8 CanadianJournalofPhysicsVol.1,2004 Only the terms b + b are currently known [48,49] (see also Fig. 2). The contributions in curly L M bracketsinEq.(19a)remaintobeevaluated.However,anestimateforthetotalvalueofB maybe 60 obtained, B (nS) = b +b + b +b +b , 60 L M F H VP { } B (nS) b +b 15%. (20) 60 L M ≈ ± Thisestimate[48,49]is basedoncorrespondingone-loopcalculations,wherethe low-energyvirtual photonsgive the by far dominantcontributionto the constant term [2]. The results for the two-loop BethelogarithmsofSstatesread[48,49] b (1S) = 81.4(3), (21a) L − b (2S) = 66.6(3), (21b) L − b (3S) = 63.5(6), (21c) L − b (4S) = 61.8(8), (21d) L − b (5S) = 60.6(8), (21e) L − b (6S) = 59.8(8). (21f) L − A few clarifying remark might be in order. The B coefficient multiplies a correction of order 60 α2(Zα)6, which is effectively an order-α8 contribution to the energy levels of hydrogen (Z = 1). Inordertocompletethecalculationatthisorderofmagnitude,itwouldalsobenecessarytoconsider the four-loopDirac form-factorslope of the electron,as well as the three-loopbindingcorrectionof orderα3(Zα)5m c2 [50].Thethree-loopslopehasrecentlybeenevaluatedin [51],completingthe e theoryofenergylevelsinhydrogenuptotheorderofα7. 4. Laser-dressed Lamb shift In the recentpast, seminaladvanceshavebeen obtainedboth in the techniquesof high-precision spectroscopy(e.g.,[52]),andinthecoherentpreparationandmanipulationofmediabyexternalelec- tromagneticfields[53,54].Thusitisdesirabletostudytheboundelectronsinteractingsimultaneously bothwiththequantizedradiationfieldandwith anexternaldrivingfield.An accuratetheoryofsuch systems, includingall dynamic effects, mighteventuallyopen a possibility for a whole new class of high-precisionexperiments,providedthat technical problemsrelated to the required highly accurate intensity stabilization of the laser (and others) can be solved. Traditionally, radiative and relativistic correctionsare treatedwith methodsof QED, whereasstudiesrelated to the dynamicalnatureof the interaction of matter with driving laser fields are the domain of Quantum Optics (QO). Obviously, a treatment of bound electrons in the presence of both the radiation field and external driving fields requires a combinationof ideas from both subject areas: While, a priori, the essential-state approx- imation of QO [53] is not sufficient to obtain the accuracy of QED, a perturbative treatment of the interactionoftheboundelectronwithastrongexternal(laser)fieldasinQEDishopelessbecauseof thelargecouplingparameter. In[5–7],anatomwithtworelevantenergylevelsdrivenbyastrongnear-resonantmonochromatic laser field is studied as the easiest model system for the above problem. The incoherent part of the resonance fluorescence spectrum emitted by this system in QO is known as the Mollow spectrum, wherethecouplingstrengthischaracterizedbythetheRabifrequencyΩdefinedas(~=ǫ =c=1) 0 Ω= q ex ǫ g , (22) L L − h | · | iE 2004NRCCanada JentschuraandEvers 9 foradrivinglaserfieldE (t) = ǫ cos(ω t)withfrequencyω ,macroscopicclassicalamplitude L L L L L E andpolarizationǫ .Here,q = q istheelementarycharge.Thecorrespondingcouplingconstant L L E −| | g fortheinteractionofaquantizeddrivinglaserfieldwiththemainatomictransitionisdefinedby L g = q g ǫ xe (γ), (23) L − h | L· | iEL where (γ) = ω /2V is the electric laser field perphotonandV is the quantizationvolume.The EL L matchingofthepelectricfieldperphotonwiththecorrespondingclassicalmacroscopicelectricfield L E isthengivenby 2√n+1 (γ) . (24) EL ←→ EL IfΩislargerthanthenaturaldecaywidthΓofthetransition,thentheMollowspectrumapproxi- matelyconsistsofonecentralandtwosidebandpeaksofLorentzianshape,whicharelocatedsymmet- ricallyaroundthedrivinglaserfieldfrequency.Thesidebandpeaksareshiftedfromthedrivingfield frequencybythegeneralizedRabifrequencyΩ =√Ω2+∆2,where∆=ω ω isthedetuningof R L R − thelaserfieldfrequencyω withregardtotheatomictransitionfrequencyω .TheshapeoftheMollow L R spectrummayeasilybeexplainedintermsofthedressedstates, whicharedefinedastheeigenstates ofthequantumopticalinteractionpictureHamiltoniandescribingthematter-lightinteraction.Intrans- ferring to the dressed state picture, the interaction with the driving laser field is accountedfor to all orders. Thus,whenevaluatingradiativeandrelativisticcorrectionstotheMollowspectrum,itisnaturalto start the analysisfrom the dressed-state basis as opposedto the unperturbedatomic bare-state basis. In [5,6], it was shown that this distinction in fact has to be made. It is not sufficient to modify the energies(whichenterintheformulaforthedressedstates)accordingtotheusualbare-stateLambshift inordertoobtainthecorrectresultforthecorrectionstotheMollowspectrum.Instead,atnonvanishing detuningandnonvanishingRabifrequency,atreatmentstartingfromthedressed-statebasisleadstoan additionalnontrivialcorrectionterm.ThistermgivesrisetoashiftoftheMollowsidebandsrelativeto thecentralpeakgivenby Ω2 δω(C) = , (25) ± ∓C √Ω2+∆2 where α p2 + p2 = ln[(Zα)−2] g e (26) C π (cid:10) (cid:11) m2(cid:10) (cid:11) is a dimensionlessconstant. Here, the notation . and . denotesthe expectationvalue evaluated g e hi hi withthegroundorexcitedatomicstate,respectively. Inspired by the interpretation of the bare Lamb shift correction in terms of a “summed” shift as in[5,6],thisadditionalcorrectioncanbeinterpretedasamodificationtotheRabifrequency: δω(C) = Ω2(1 )2+∆2 Ω2+∆2 , (27) ± ±(cid:16)p −C −p (cid:17) withδω(C) δω(C)becauseofthesmallnessofthecorrection.Itshouldbenotedthatthisinterpreta- ± ± ≈ tionintermsofasummationisnottrivialandwasshowntobevaliduptofirstorderinthecorrection. In[5,7],theleadingrelativisticandradiativecorrectionsuptorelativeorders(Zα)2 andα(Zα)2, respectively, have been evaluated, as well as all other relevant correction terms up to the specified orderofapproximation.Itturnsoutthatallcorrectionsmaybeinterpretedaseithercorrectionstothe 2004NRCCanada 10 CanadianJournalofPhysicsVol.1,2004 Rabi frequency Ω or as corrections to the detuning ∆, such that one can define the fully corrected generalizedRabifrequencyΩ(j) by C 2 2 Ω(j) = Ω2 1+Ωˆ(j) + ∆ ∆(j) . (28) C r ·(cid:16) rad(cid:17) (cid:16) − rad(cid:17) Here,Ωˆ(j) containsallcorrectionstotheRabifrequency,namelytherelativisticandradiativecorrec- rad tionstothetransitiondipolemoment,field-configurationdependentcorrections,higher-ordercorrec- tionstotheself-energy,andcorrectionstothesecularapproximation.∆(j) consistsofallcorrections rad to the detuning,i.e. the bare Lamb shift, Bloch-Siegertshifts, and off-resonantradiativecorrections. The superscript (j) indicates the dependence of the result on the total angular momentum quantum number. Equation(28)summarizesthemainresultofthisstudy:Inthepresenceofdrivinglaserfields,the usualbarestateLambshiftoftheatomicstatesisaugmentedbyadditionalcorrectionterms.Thesein partdependonthelaserfieldparametersΩand∆,whichspanatwo-dimensionalparametermanifold determiningtheactualvalueofthedynamicalLambshift. A promising candidate for the experiment are the hydrogen 1S 2P and 1S 2P 1/2 ↔ 1/2 1/2 ↔ 3/2 transitions.Weconsiderhereasaspecificexamplethe1S 2P transitionwithΩ = 1000 Γ 1/2 ↔ 1/2 · 1/2 and ∆ = 50 Γ as the laser field parameters. The Rabi frequency is shifted with respect to the · 1/2 leading-orderexpressionΩ =√Ω2+∆2byrelativisticandradiativecorrectionsasfollows, R Ω(1/2) Ω = 738.282(60) 106Hz. (29) C R ±(cid:16) − (cid:17) ± · Thisdrivinglaserfieldparametersetisexpectedtobewithinreachofimprovementsofthecurrently availableLyman-αlasersources[55]inthenextfewyears.Thecorrespondingresultforthe1S 1/2 ↔ 2P transitionwithΩ=1000 Γ ,∆=50 Γ is 3/2 · 3/2 · 3/2 Ω(3/2) Ω = 734.871(60) 106Hz. (30) C R ±(cid:16) − (cid:17) ± · Allgivenuncertaintiesareduetounknownhigher-orderterms[7]. By a comparison to experimental data, one may verify the presence of dynamical leading- logarithmic correction to the dressed-state radiative shift in Eq. (25), which cannot be explained in termsofthebareLambshiftalone.Thisallowstoaddressquestionsrelatedtothephysicalrealityof the dressed states. On the other hand, the comparison with experimental results could also be used to interpret the nature of the evaluated radiative corrections in the sense of the summation formulas whichleadtotheinterpretationoftheshiftsasarisingfromrelativisticandradiativecorrectionstothe detuningandtheRabifrequency. 5. Conclusions One of the obvious conclusions to be drawn from the recent advances in bound-state quantum electrodynamicsisasfollows.A widespreadopinionhasbeeninvalidatedwhichsuggestedthattwo- loopcorrectionsto the bound-electrong factor,and two-loopcorrectionstothe Lambshiftin higher ordermightbeasevere,if notinsurmountable,obstacleagainstfurthertheoreticalprogress.Quiteto the contrary, the recent advances have shown that an understanding of these effects is feasible to a goodaccuracy.Whilesomeimportantcontributionsremaintobeevaluated,thefurtherprogram(e.g., theevaluationoftheremaininghigh-energyparts)isclearlydefined,anddecisivefirststepstowarda muchimprovedunderstandinghavebeenaccomplished. Further advances are possible both on the experimental as well as on the theoretical side: con- cerningtheg factor,therecenttheoreticalprogressallowsforanorder-of-magnitudeimprovementof 2004NRCCanada

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.