SOME q-ANALOGS OF CONGRUENCES FOR CENTRAL BINOMIAL SUMS ROBERTO TAURASO 2 1 Abstract. We establish q-analogs for four congruences involving central binomial coeffi- 0 cients. The q-identitiesnecessary for this purposeare shown viathe q-WZ method. 2 n a J 1. Introduction 0 3 Recently, a number of papers have appeared concerning congruences for central binomial sums (see through the references). Here we would like to draw the attention to one aspect of ] the matter which has been partly neglected so far: q-analogs. In [5, 11], the authors identified T N a first group of such congruences which have a q-counterpart. Among them we mention: for any prime p > 2 . h t ma p−1 2k ≡ p (mod p2), p−1qk 2k ≡ p q⌊p32⌋ (mod [p]q), k 3 k 3 [ Xkp−=10(cid:18) (cid:19) (cid:16) (cid:17) Xkp−=10 (cid:20) (cid:21)q (cid:16) (cid:17) v1 (−1)k 2kk ≡ p5 (mod p), (−1)kq−(k+21) 2kk ≡ p5 q−⌊p54⌋ (mod [p]q), 2 Xk=0 (cid:18) (cid:19) (cid:16) (cid:17) Xk=0 (cid:20) (cid:21)q (cid:16) (cid:17) 15 p−1 21k 2kk ≡ (−1)p−21 (mod p2), p−1 (−qq;kq) 2kk ≡ (−1)p−21q⌊p42⌋ (mod [p]q), 6 k=0 (cid:18) (cid:19) k=1 k(cid:20) (cid:21)q . X X 1 0 where · denotes the Legendre symbol. It has been conjectured in [5] that the first q- · 2 congruence holds modulo [p]2, and we claim that the same can be said for the third one. 1 (cid:0) (cid:1) q However, in this short note, we are not going to refine these q-congruences. Instead, we will : v presentafewmoreexamples of thisphenomena. Moreprecisely weshowthatthecongruences i X r p−1 (1/2)k 2k 3 p−1 (−1/2)k 2k −1 a (1) ≡ − ≡ Q (2) (mod p), p k k 2 k k k=1 (cid:18) (cid:19) k=1 (cid:18) (cid:19) X X p−1 1 2k (2) ≡ 0 (mod p2), k k k=1 (cid:18) (cid:19) X 5 p−1 (−1)k 2k p−1 1 (3) ≡ − (mod p3), 2 k2 k k2 k=1 (cid:18) (cid:19) k=1 X X 2000 Mathematics Subject Classification. 11B65, 11A07 (Primary) 05A10, 05A19, 05A30 (Secondary). Key words and phrases. q-analogs, Gaussian q-binomial coefficients, central binomial coefficients, congruences. 1 2 ROBERTOTAURASO where p > 5 is a prime and Q (2) = (2p−1 − 1)/p is the usual Fermat’s quotient, have as p q-analogs respectively p−1 qk 2k 1 p−1 (−1)k(1+qk +q2k) 2k −1 (4) ≡ − ≡ Q (2;q) (mod [p] ), p q (−q;q) [k] k 2 (−q;q) [k] k k=1 k q(cid:20) (cid:21)q k=1 k q (cid:20) (cid:21)q X X (5) p−1 (1+qk +q2k)q−(k2) 2k ≡ [p]q(p2−1)(1−q)2 (mod [p]2), (1+qk)2[k] k 24 q k=1 q (cid:20) (cid:21)q X (6) p−1 (−1)k(1+3qk +q2k)q−(k2) 2k ≡ −p−1 qk − [p]2q(p4−1)(1−q)4 (mod [p]3). (1+qk)[k]2 k [k]2 240 q k=1 q (cid:20) (cid:21)q k=1 q X X where Q (2;q) = ((−q;q) −1)/[p] . Proofs of (1), (2), (3) can be found in [12, Theorem p p−1 q 3.1] ((2) appeared first in [10]). We are optimistically hopeful that there are plenty of interesting q-analogs to discover. For example, recently in [8], the authors proved that for 0 < q < 1 ∞ (1+2qk)qk2 2k −1 ∞ qk = . [k]2 k [k]2 k=1 q (cid:20) (cid:21)q k=1 q X X By letting q → 1, it gives a well known series identity which then happened to have a congruence version: in [12] we showed that for any prime p > 3 p−1 −1 p−1 1 2k 1 1 ≡ − (mod p3). k2 k 6 k2 k=1 (cid:18) (cid:19) k=1 X X Is there a q-analog for the above congruence? 2. Notations a preliminary results The first two results of this section yield a family of q-analogs of the classical congruence for the harmonic sums: for any prime p > d+2 where d is a positive integer, p−1 1 0 (mod p2) if d is odd, H (d) := ≡ p−1 kd 0 (mod p) if d is even. k=1 (cid:26) X This family depends on two integer parameters a,b and it concerns the sum p−1 qbk [ak]d q k=1 X where 1−qn [n] = = 1+q+···+qn−1. q 1−q Several special cases have already been discussed by numerous authors (see [3, 4, 7, 9]). In particular, K. Dilcher found in [4] a determinant expression in the case when a = 1 and b ∈ {0,1}. We point out that, in this paper, two rational functions in q are congruent modulo [p]r for r ≥ 1 if the numerator of their difference is congruent to 0 modulo [p]r in the q q polynomial ring Z[q] and the denominator is relatively prime to [p] . q SOME q-ANALOGS OF CONGRUENCES FOR CENTRAL BINOMIAL SUMS 3 Theorem 2.1. For any prime p > 2, if a,b,d are integers such that a,d > 0, b ≥ 0 and gcd(a,p) = 1 then p−1 qbk (1−q)d d−1 r +sp d d sp (7) ≡ (−1)dp c 0 − (−1)s (mod [p] ) [ak]d pd s d s 2d q k=1 q s=0 (cid:18) (cid:19) s=0 (cid:18) (cid:19)(cid:18) (cid:19)! X X X where r ≡−b/a (mod p) such that r ∈ {0,1,...,p−1} and 0 0 s r +kp+d−1 d c = (−1)s−k 0 . s d−1 s−k k=0 (cid:18) (cid:19)(cid:18) (cid:19) X Proof. Let q be a p-root of unity such that q 6= 1. Since p−1 p if p | (aj +b), qk(aj+b) = −1+ 0 otherwise, k=1 (cid:26) X it follows that p−1 qbk p−1 j+d−1 = qbk qakjzj (1−qakz)d d−1 k=1 k=1 j≥0(cid:18) (cid:19) X X X p−1 j +d−1 = zj qk(aj+b) d−1 j≥0(cid:18) (cid:19) k=1 X X r +sp+d−1 1 = p 0 zr0+sp− d−1 (1−z)d s≥0(cid:18) (cid:19) X p d−1c zr0+sp 1 = s=0 s − . (1−zp)d (1−z)d P Let z =1+w, then p−1 qbk p ds=−01cs(1+w)r0+sp− 1−(−1+ww)p d = lim (1−qak)d w→0 P (1−(1+w)p)(cid:16)d (cid:17) k=1 X p d−1c r0+sp wd+o(wd)−(−1)d d (−1)s d sp wd+o(wd) = lim s=0 s d s=0 s 2d w→0 (−pw+o(w))d P (cid:0) (cid:1) P (cid:0) (cid:1)(cid:0) (cid:1) d−1 d 1 r +sp d sp = (−1)dp c 0 − (−1)s . pd s d s 2d ! s=0 (cid:18) (cid:19) s=0 (cid:18) (cid:19)(cid:18) (cid:19) X X (cid:3) 4 ROBERTOTAURASO Thefollowing specialcases areworth mentioning. By letting d= 1,2,3 in (7), weobtain these q-congruences which hold modulo [p] : q p−1 qbk p−1 (8) ≡ (1−q) −r , 0 [ak] 2 k=1 q (cid:18) (cid:19) X p−1 qbk (p−1)(p−5) r (p−2−r ) (9) ≡ (1−q)2 − + 0 0 , [ak]2 12 2 k=1 q (cid:18) (cid:19) X p−1 qbk (p−1)(p−3) r (p2−9p+12−3r (p−3)+2r2) (10) ≡ (1−q)3 − − 0 0 0 . [ak]3 8 12 k=1 q (cid:18) (cid:19) X Theorem 2.2. Let b,b,a,d be non-negative integers such that ad = b+b > 0. Then for any prime p > 2 such that gcd(a,p) = 1, p−1 (−1)d−1qbk +qbk p−1 qbk p−1 qbk (11) ≡b(1−q)[p] −ad[p] (mod [p]2) [ak]d q [ak]d q [ak]d+1 q k=1 q k=1 q k=1 q X X X and (12) p−1 (−1)k((−1)dqbk +qbk) p−1 (−1)kqbk p−1 (−1)kqbk ≡ b(1−q)[p] −ad[p] (mod [p]2). [ak]d q [ak]d q [ak]d+1 q q q q k=1 k=1 k=1 X X X Moreover, let b ,b ,b ,b be non-negative integers. 1 1 2 2 If d = b +b > 0 and d = b +b >0 then 1 1 1 2 2 2 (13) qb1j+b2k +(−1)d1+d2qb1j+b2k p−1 qb1j p−1 qb2k p−1 q(b1+b2)k ≡ · − (mod [p] ). [j]d1[k]d2 [j]d1 [k]d2 [k]d1+d2 q 1≤j<k≤p−1 q q k=1 q k=1 q k=1 q X X X X Proof. As regards (11) and (12), it suffices to note that (−1)dqb(p−k) (−1)dqb(p−k)+adk qbp+bk = = [a(p−k)]d ([ap] −[ak] )d [ak]d(1−[ap] /[ak] )d q q q q q q qbk(1−b(1−q)[p] ) [p] q q ≡ 1+d [ak]d [ak] q (cid:18) q(cid:19) qbk b(1−q)[p] qbk ad[p] qbk (14) ≡ − q + q (mod [p]2). [ak]d [ak]d [ak]d+1 q q q q Moreover p−1 qb1j p−1 qb2k p−1 q(b1+b2)k qb1j+b2k qb1j+b2k · − = + [j]d1 [k]d2 [k]d1+d2 [j]d1[k]d2 [j]d1[k]d2 k=1 q k=1 q k=1 q 1≤j<k≤p−1 q q 1≤k<j≤p−1 q q X X X X X and by (14) we get qb1j+b2k qb1(p−j)+b2(p−k) (−1)d1+d2qb1j+b2k = ≡ (mod [p] ). [j]d1[k]d2 [p−j]d1[p−k]d2 [j]d1[k]d2 q 1≤k<j≤p−1 q q 1≤j<k≤p−1 q q 1≤j<k≤p−1 q q X X X Hence the proof of (13) is complete. (cid:3) SOME q-ANALOGS OF CONGRUENCES FOR CENTRAL BINOMIAL SUMS 5 By letting a = 1, d = 1 and b = 0 in (11), and by using (7), we easily find [9, Theorem 1]: for any prime p > 3: p−1 1 1 p−1 1−qk 1 p−1 1+qk (1−q)(p−1) (p2−1)(1−q)2[p] = ≡ + q (mod [p]2). [k] 2 [k] 2 [k] 2 24 q q q q k=1 k=1 k=1 X X X In a similar way, for a = 1, d= 3 and b = 1, (11) yields (15) p−1 qk +q2k p−1 q2k p−1 q2k [p] (1−q)4(p4−1) ≡ (1−q)[p] −3[p] ≡ − q (mod [p]2). [k]3 q [k]3 q [k]4 240 q q q q k=1 k=1 k=1 X X X Inorder to show theq-congruences stated in theintroduction, we needsuitable q-identities. Such identities are not easy to find, but ones they are guessed correctly hopefully they can be proved via the q-WZ method (see for example [6, 13]). For n ≥ k ≥ 0, a pair (F(n,k),G(n,k)) is called q-WZ pair if F(n+1,k)/F(n,k), F(n,k+1)/F(n,k), G(n+1,k)/G(n,k), G(n,k+1)/G(n,k) are all rational functions of qn and qk, and F(n+1,k)−F(n,k) = G(n,k+1)−G(n,k). Let N−1 S(n) = F(n,k) k=0 X then n−1 S(n+1)−S(n) = F(n+1,n)+ (F(n+1,k)−F(n,k)) k=0 X n−1 = F(n+1,n)+ (G(n,k+1)−G(n,k)) k=0 X = F(n+1,n)+G(n,n)−G(n,0) and, by summing over n from 0 to N −1, we get the identity N−1 N−1 N−1 (16) F(N,k) = (F(n+1,n)+G(n,n))− G(n,0) k=0 n=0 n=0 X X X which can be considered as the finite form of [6, Theorem 7.3]. The q-identities we are interested in involves Gaussian q-binomial coefficients n (q;q) (q;q)−1(q;q)−1 if 0 ≤ k ≤n, = n k n−k (cid:20)k(cid:21)q ( 0 otherwise, where (a;q) = n−1(1−aqj) (note that n is a polynomial in q). The next lemma allows n j=0 k q us to reduce a special class of q-binomial coefficients modulo a power of [p] . Q (cid:2) (cid:3) q 6 ROBERTOTAURASO Lemma 2.3. Let p be a prime and let a be a positive integer. For k = 1,...,p−1 we have k (17) apk−1 ≡ (−1)kq−(k+21)1−a[p]q [j1] (mod [p]2q), (cid:20) (cid:21)q j=1 q X p−1+k [p] k−1 qj (18) ≡ q 1+[p] (mod [p]3), k [k] q [j] q (cid:20) (cid:21)q q j=1 q X (19) p−1+k p−1 −1 ≡ (−1)kq(k+21)[p]q 1+ [p]q +[p] k−1 1+qj (mod [p]3). k k [k] [k] q [j] q (cid:20) (cid:21)q(cid:20) (cid:21)q q q j=1 q X Proof. Since [ap] ≡ a[p] (mod [p]2), it follows that q q q k k apk−1 = (−1)kq−(k+21) 1− [a[jp]]q ≡ (−1)kq−(k+21)1−a[p]q [j1] (mod [p]2q). (cid:20) (cid:21)q j=1(cid:18) q (cid:19) j=1 q Y X Moreover p−1+k [p] k−1 qj[p] [p] k−1 qj = q 1+ q ≡ q 1+[p] (mod [p]3). k [k] [j] [k] q [j] q (cid:20) (cid:21)q q j=1(cid:18) q (cid:19) q j=1 q Y X Conguences (17) and (18) easily yield (19). (cid:3) It should be noted that when p is an odd prime, by using (18) for k = p−1, we recover the q-congruence [3, (3.2)]: (20) p−1 app−−11 ≡ q−(p2)1−a[p]q [j1] ≡ q−(p2) 1− a[p]q(p−21)(1−q) ≡ q(a−1)(p2) (mod [p]2q). (cid:20) (cid:21)q j=1 q (cid:18) (cid:19) X 3. Proof of (4) By [2, (5.17)] (see [5, (4.1)] for a generalization), if n is odd then by n (−1)n−kq(n−2k) n 2k = 0. (−q;q) k k k=0 k (cid:20) (cid:21)q(cid:20) (cid:21)q X Hence for n = p we have that p−1 (−1)k−1q(p−2k)−(p2) p−1 2k = 1 (−q;q)p−1−q−(p2) 2p−1 . (−q;q) [k] k−1 k (−q;q) [p] p−1 k=1 k q (cid:20) (cid:21)q(cid:20) (cid:21)q p−1 q (cid:20) (cid:21)q! X By (17) and (20) we get p−1 qk 2k p−1 q−pk+k 2k (−q;q) −1 p−1 ≡ ≡ ≡Q (2;q) (mod [p] ), p q (−q;q) [k] k (−q;q) [k] k (−q;q) [p] k=1 k q(cid:20) (cid:21)q k=1 k q(cid:20) (cid:21)q p−1 q X X and the first congruence is proved. As regards the second one, we take (−1)k n+k+1 −1 qn+1F(n,k) F(n,k) = and G(n,k) = . (−q;q) [k+1] k+1 1+qn+1 n q(cid:20) (cid:21)q SOME q-ANALOGS OF CONGRUENCES FOR CENTRAL BINOMIAL SUMS 7 This pair can be found in [1][Subsection 2.1] in connection with the irrationality proof of the q-series ∞ (−1)k Ln (2) := q qn−1 k=1 X for |q| 6∈ {0,1}. Hence by (16) we obtain the identity n (−1)k(1+qk +q2k) 2k −1 1 n (−1)k n+k −1 n qk (21) = − (−q;q) [k] k (−q;q) [k] k (−q;q) [k] k=1 k q (cid:20) (cid:21)q n k=1 q (cid:20) (cid:21)q k=1 k q X X X Let n = p−1. Now by (17) and [7, (1.5)] 1 p−1 (−1)k n+k −1 p−1 (−1)k k−1 qj ≡ 1−[p] q (−q;q) [k] k [p] [j] p−1 k=1 q (cid:20) (cid:21)q k=1 q j=1 q X X X p−1 k−1 qj p−1q2j−1 ≡ − (−1)k ≡− [j] [2j −1] q q k=1 j=1 j=1 X X X p−1 (p−1)/2 (p−1)(1−q) 1 1 ≡ − + ≡ −Q (2;q) (mod [p] ). p q 2 [j] [2j] q q k=1 k=1 X X By the q-binomial theorem, n k−1 n (x−qj)= xn k k=0(cid:20) (cid:21)qj=0 X Y and for n = p, x = −1 together with (17), we get p−1 q−(k2)(−q;q)k−1 p−1 (−1)k−1(−q;q)k−1 p−1 ≡ = −Q (2;q). p [k] [k] k−1 k=1 q k=1 q (cid:20) (cid:21)q X X Hence (see the dual congruence [7, (5.4)]) p−1 qk p−1 qp−k p−1 q−(k2)(−q;q)k−1 ≡ ≡ ≡ −Q (2;q) (mod [p] ) p q (−q;q) [k] (−q;q) [p−k] [k] k q p−k q q k=1 k=1 k=1 X X X where we used [p−k]q = −q−k[k]q and (−q;q)−p−1k ≡ q−(k2)(−q;q)k−1 (mod [p]q). Therefore, by identity (21), p−1 (−1)k(1+qk +q2k) 2k −1 ≡ −2Q (2;q) (mod [p] ) p q (−q;q) [k] k k=1 k q (cid:20) (cid:21)q X and we are done. 8 ROBERTOTAURASO 4. Proof of (5) Let q−(k+21) n+k+2 n+1 −1 F(n,k) = [k+1] n+1 k+1 q(cid:20) (cid:21)q(cid:20) (cid:21)q and qn+2(1−qk+1)(1−qn+1−k)F(n,k) G(n,k) = − (1+qn+2)(1−qn+2)2 then (16) gives the identity n (1+qk +q2k)q−(k2) 2k n q−(k2) n+k n −1 n qk (22) = − . (1+qk)2[k] k [k] k k [2k] k=1 q (cid:20) (cid:21)q k=1 q (cid:20) (cid:21)q(cid:20) (cid:21)q k=1 q X X X Let n = p−1 then by (19) and (12), we obtain p−1 q−(k2) p−1+k p−1 −1 p−1 (−1)kqk ≡[p] ≡ 0 (mod [p]2). [k] k k q [k]2 q k=1 q (cid:20) (cid:21)q(cid:20) (cid:21)q k=1 q X X Moreover, (11) and (9) implies that p−1 qk p−1 qk [p] (p2−1)(1−q)2 ≡ −[p] ≡ − q (mod [p]2), [2k] q [2k]2 24 q q q k=1 k=1 X X and (5) follows easily from (22). Note that by letting q → 1 in (22) we obtain the identity n n −1 n 3 1 2k 1 n+k n 1 1 = − . 4 k k k k k 2 k k=1 (cid:18) (cid:19) k=1 (cid:18) (cid:19)(cid:18) (cid:19) k=1 X X X which can be exploited to prove an improvement of [12, Theorem 4.2]: p−1 1 2k 8 ≡− H (1)+2p4B (mod p5) p−1 p−5 k k 3 k=1 (cid:18) (cid:19) X for any prime p > 3. 5. Proof of (6) By taking (−1)kq−(k+21)(1+qk+1) n+k+2 n+1 −1 F(n,k) = [k+1]2 n+1 k+1 q (cid:20) (cid:21)q(cid:20) (cid:21)q and qn+2(1−qk+1)2(1−qn+1−k)F(n,k) G(n,k) = , (1+qk+1)(1−qn+2)3 (16) yields the identity (23) n (−1)k(1+3qk +q2k)q−(k2) 2k n (−1)k(1+qk)q−(k2) n+k n −1 n qk = − . (1+qk)[k]2 k [k]2 k k [k]2 k=1 q (cid:20) (cid:21)q k=1 q (cid:20) (cid:21)q(cid:20) (cid:21)q k=1 q X X X SOME q-ANALOGS OF CONGRUENCES FOR CENTRAL BINOMIAL SUMS 9 Let n = p−1. Now by (19) p−1 (−1)k(1+qk)q−(k2) p−1+k p−1 −1 p−1 qk +q2k p−1 qk +q2k ≡ [p] +[p]2 [k]2 k k q [k]3 q [k]4 k=1 q (cid:20) (cid:21)q(cid:20) (cid:21)q k=1 q k=1 q X X X (1+qj)(qk +q2k) +[p]2 (mod [p]3). q [j] [k]3 q q q 1≤j<k≤p−1 X Then the q-congruence (6) follows from (23) by using (15) and p−1 qk +q2k (1+qj)(qk +q2k) (1−q)4(p2−1)(p2 −4) ≡ − ≡ (mod [p] ), [k]4 [j] [k]3 360 q q q q k=1 1≤j<k≤p−1 X X which is a straightforward application of (7) and (13). References [1] T.Amdeberhan,D.Zeilberger,q-Ap´eryirrationalityproofsbyq-WZpairs,Adv.inAppl.Math.20(1998), 275–283. [2] G. E. Andrews, Applications of basic hypergeometric functions, SIAMRev.16 (1974), 441–484. [3] G.E.Andrews,q-Analogs ofthebinomialcoefficientcongruences ofBabbage, WolstenholmeandGlaisher, Discrete Math. 204 (1999), 15–25. [4] K.Dilcher,Determinant expressions forq-harmonic congruences and degenerate Bernoulli numbers,Elec- tron. J. Combin. 15 (2008), 1–18. [5] V. J. W. Guo, J. Zeng, Some congruences involving central q-binomial coefficients, Adv. in Appl. Math. 45 (2010), 303–316. [6] M. Mohammed, The q-Markov-WZ method, Ann.Comb. 9 (2005), 205-221. [7] H.Pan, A q-analogue of Lehmer’s congruence, Acta Arith.128 (2007), 303–318. [8] Kh. Hessami Pilehrood, T. Hessami Pilehrood, A q-analogue of the Bailey-Borwein-Bradley identity, J. Symbolic Comput. 46 (2011), 699–711. [9] L.L.Shi,H.Pan,A q-analogue ofWolstenholme’sharmonicseriescongruenc,Amer.Math.Monthly114 (2007), 529–531. [10] Z.W.Sun,R.Tauraso,New congruences forcentral binomialcoefficients,Adv.inAppl.Math.45(2010), 125–148. [11] R.Tauraso, q-Analogs of some congruences involving Catalan numbers, toappearinAdv.inAppl.Math. [12] R.Tauraso,Morecongruences forcentral binomialcoefficients,J.NumberTheory130(2010),2639–2649. [13] D. Zeilberger, Closed form (pun intended!), Contemp. Math. 143 (1993), 579–607. E-mail address: [email protected] Dipartimento di Matematica, Universita` di Roma “Tor Vergata”, via della Ricerca Scien- tifica, 00133 Roma, Italy