SOME INTERSECTIONS OF LORENTZ SPACES 5 F.ABTAHI,H.G.AMINI,H.A.LOTFIANDA.REJALI 1 0 2 n Abstract. Let (X,µ) be a measure space. For p,q ∈ (0,∞] and arbitrary a J subsets P,Q of (0,∞], we introduce and characterize some intersections of Lorentzspaces,denoted byILp,Q(X,µ),ILJ,q(X,µ)andILJ,Q(X,µ). 1 3 0. Introduction ] A Let (X,µ) be a measure space. For 0<p≤∞, the space Lp(X,µ) is the usual Lebesgue space as defined in [3] and [6]. Let us remark that for 1≤p<∞ F . 1/p h kfk := |f(x)|pdµ(x) t p a (cid:18)ZX (cid:19) m defines a norm on Lp(X,µ) such that (Lp(X,µ),k.k ) is a Banach space. Also for p [ 0<p<1, 1 kfk := |f(x)|pdµ(x) p v ZX 9 defines a quasi norm on Lp(X,µ) such that (Lp(X,µ),k.k ) is a complete metric p 5 space. Moreover for p=∞, 1 0 kfk∞ =inf{B >0:µ({x∈X :|f(x)|>B})=0} 0 defines a norm on L∞(X,µ) such that (L∞(X,µ),k.k ) is a Banach space. In [1], . ∞ 2 we considered an arbitrary intersection of the Lp−spaces denoted by Lp(G), p∈J 0 where G is a locally compact group with a left Haar measure λ and J ⊆ [1,∞]. 5 T Then we introduced the subspace IL (G) of Lp(G) as 1 J p∈J : v IL (G)={f ∈ Lp(G):kfTk =supkfk <∞}, J J p i p∈J X p∈J \ r and studied ILJ(G) as a Banach algebra under convolution product, for the case a where 1 ∈ J. Also in [2], we generalized the results of [1] to the weighted case. In fact for an arbitrary family Ω of the weight functions on G and 1 ≤ p < ∞, we introduced the subspace IL (G,Ω) of the locally convex space Lp(G,Ω) = p Lp(G,ω). Moreover,we providedsome sufficient conditions on G and also Ω ω∈Ω to construct a norm on IL (G,Ω). The fourth section of [2] has been assigned to p T someintersectionsofLorentzspaces. Indeedforthecasewherepisfixedandqruns through J ⊆(0,∞), we introduced IL (G) as a subspace of ∩ L (G), where p,J q∈J p,q L (G) is the Lorentz space with indices p and q. As the main result, we proved p,q that IL (G)=L (G), in the case where m =inf{q:q ∈J} is positive. p,J p,mJ J In the present work, we continue our study concerning the intersections of Lorentz spaces on the measure space (X,µ), to complete our results in this di- rection. Precisely,we verifymost the results givenin the secondand thirdsections of [1], for Lorentz spaces. 2000 Mathematics Subject Classification. Primary43A15,Secondary43A20. Key words and phrases. Lp−spaces,Lorentzspaces. 1 2 F.ABTAHI,H.G.AMINI,H.A.LOTFIANDA.REJALI 1. Preliminaries In this section, we give some preliminaries and definitions which will be used throughout the paper. We refer to [3], as a good introductory book. Let (X,µ) be a measure space and f be a complex valued measurable function on X. For each α>0, let d (α)=µ({x∈X :|f(x)|>α}). f The decreasing rearrangementof f is the function f∗ :[0,∞)→[0,∞] defined by f∗(t)=inf{s>0:d (s)≤t}. f We adopt the convention inf∅ = ∞, thus having f∗(t) = ∞ whenever d (α) > t f for all α≥0. For 0<p≤∞ and 0<q <∞, define (1.1) kfkLp,q = ∞ tp1f∗(t) q dtt 1/q, (cid:18)Z0 (cid:16) (cid:17) (cid:19) where dt is the Lebesgue measure. In the case where q =∞, define (1.2) kfkLp,∞ =suptp1f∗(t). t>0 The setofall f with kfk <∞is denotedby L (X,µ)andis calledthe Lorentz p,q p,q space with indices p and q. As in Lp−spaces, two functions in L (X,µ) are p,q considered equal if they are equal µ−almost everywhere on X. It is worth noting that by [3, Proposition 1.4.5] for each 0<p<∞ we have ∞ (1.3) |f(x)|pdµ(x)= f∗(t)pdt. ZX Z0 ItfollowsthatL (X,µ)=Lp(X,µ). Furthermorebythe definitiongiveninequa- p,p tion (1.2), one can observe that L (X,µ) = L∞(X,µ). Note that in the case ∞,∞ where p = ∞, one can conclude that the only simple function with finite k.k L∞,q normis the zerofunction. For this reason,L (X,µ)={0},forevery0<q <∞; ∞,q see [3, page 49]. In [2], for locally compact group G and 0<p<∞ and also an arbitrary subset Q of (0,∞) with m =inf{q :q ∈Q}>0, Q we introduced IL (G) as a subset of ∩ L (G) by p,Q q∈Q p,q (1.4) IL (G)={f ∈ L (G):kfk = supkfk <∞}. p,Q p,q Lp,Q Lp,q q∈Q q∈Q \ As the main result of the third section in [2], we proved the following theorem. Theorem 1.1. [2, Theorem 12] Let G be a locally compact group, 0<p<∞ and Q be an arbitrary subset of (0,∞) such that m >0. Then IL (G)=L (G). Q p,Q p,mQ Moreover, for each f ∈L (G), p,mQ m 1/mQ Q (1.5) kfk ≤kfk ≤max 1, kfk . Lp,mQ Lp,Q ( (cid:18) p (cid:19) ) Lp,mQ Note that in the definition of IL (G) given in (1.4), one can replace G by an p,Q arbitrary measure space (X,µ). Precisely if let (1.6) IL (X,µ)={f ∈ L (X,µ):kfk = supkfk <∞}, p,Q p,q Lp,Q Lp,q q∈Q q∈Q \ 3 then IL (X,µ)=L (X,µ). Moreover for each f ∈L (X,µ), (1.5) is sat- p,Q p,mQ p,mQ isfied. Furthermore, Theorem [2, Theorem 12] is also valid for IL (X,µ). In the p,Q presentwork,inasimilarway,weintroduceandcharacterizethespacesIL (X,µ) J,q andalsoIL (X,µ), as otherintersections ofLorentzspaces. Moreoverwe obtain J,Q some results about Lorentz space related to a Banach spaces E, introduced in [4]. 2. Main Results At the beginning of the present section we recall [3, Exercise 1.4.2], which will be used several times in our further arguments. A simple proof is given here. Proposition 2.1. Let (X,µ) be a measure space and 0<p <p ≤∞. Then 1 2 L (X,µ) L (X,µ)⊆ L (X,µ). p1,∞ p2,∞ p,s \ p1<p<p\2,0<s≤∞ Proof. Let f ∈ L (X,µ) ∩ L (X,µ). If kfk = 0, one can readily p1,∞ p2,∞ Lp1,∞ obtained that f ∈ L (X,µ), for all p < p < p and 0 < s ≤ ∞. Now let p,s 1 2 kfk 6=0 and first suppose that p <∞. We show that f ∈L (X,µ), for all Lp1,∞ 2 p,s p <p<p and 0<s<∞. It is clear that for each α>0 1 2 kfkp1 kfkp2 (2.1) d (α)≤min Lp1,∞, Lp2,∞ . f αp1 αp2 ! Set 1 kfkp2 p2−p1 B = Lp2,∞ . kfkp1 Lp1,∞! Thus kfkLp,s = p ∞(df(α)1p α)sdαα s1 = p ∞df(α)sp αs−1dα s1 (cid:18) Z0 (cid:19) (cid:18) Z0 (cid:19) 1 1 B kfkp1 ps s ∞ kfkp2 ps s ≤ p αs−1 Lp1,∞ dα + p αs−1 Lp2,∞ dα Z0 αp1 ! ZB αp2 ! = p1s kfkpp1 Bαs−1−spp1dαs1 +p1s kfkpp2 ∞αs−1−spp2dαs1 Lp1,∞ Z0 ! Lp2,∞ (cid:18)ZB (cid:19) 1 1 1 p1 Bs−spp1 s 1 p2 Bs−spp2 s = ps kfkLpp1,∞ s− spp1 ! +ps kfkLpp2,∞ spp2 −s! 1 = p s kfkpp1.(pp22−−pp1) kfkpp2 (pp2−−pp11) (s− spp1)! Lp1,∞ Lp2,∞ 1 + p s kfkpp1.(pp22−−pp1) kfkpp2 (pp2−−pp11) (spp2 −s)! Lp1,∞ Lp2,∞ 1 1 = p s + p s kfkpp1(pp22−−pp1) kfkpp2(pp2−−pp11) (s− spp1)! (spp2 −s)! Lp1,∞ Lp2,∞ < ∞. 4 F.ABTAHI,H.G.AMINI,H.A.LOTFIANDA.REJALI Thus f ∈ L (X,µ). For p = ∞, since d (α) = 0 for each α > kfk , inequality p,s 2 f ∞ (2.1) implies that kfksLp,s ≤ s−psp1kfkps1pp,1∞kfks∞−spp1, p which implies f ∈L (X,µ). In the case where s=∞, by [3, Proposition 1.1.14], p,s for p <r <p we have 1 2 L (X,µ)∩L (X,µ)⊆Lr(X,µ)⊆L (X,µ). p1,∞ p2,∞ r,∞ This gives the proposition. (cid:3) Proposition2.2. Let(X,µ)beameasurespace, 0<q ≤∞and0<p <p ≤∞. 1 2 Then L (X,µ)=L (X,µ)∩L (X,µ). r,q p1,q p2,q p1≤\r≤p2 Moreover for each f ∈L (X,µ)∩L (X,µ) and p <r <p , p1,q p2,q 1 2 kfk ≤21/qmax{kfk ,kfk }. Lr,q Lp1,q Lp2,q Proof. By [3, Proposition 1.4.10] and Proposition 2.1 we have L (X,µ)∩L (X,µ) ⊆ L (X,µ)∩L (X,µ) p1,q p2,q p1,∞ p2,∞ ⊆ L (X,µ). r,s p1<r<p\2,0<s≤∞ It follows that L (X,µ)∩L (X,µ)⊆ L (X,µ). p1,q p2,q r,q p1≤\r≤p2 The converse of the inclusion is clearly valid. Thus L (X,µ)∩L (X,µ)= L (X,µ). p1,q p2,q r,q p1≤\r≤p2 Now let q <∞. For each f ∈L (X,µ)∩L (X,µ), we have p1,q p2,q kfkq = ∞ t1rf∗(t) q dt Lr,q t Z0 (cid:16) (cid:17) ≤ 1 tp12f∗(t) q dt + ∞ tp11f∗(t) q dt t t ≤ Zkf0kq(cid:16) +kf(cid:17)kq Z1 (cid:16) (cid:17) Lp2,q Lp1,q ≤ 2 max{kfkq ,kfkq } Lp2,q Lp1,q Also for q =∞ we have kfkLr,∞ = suptr1f∗(t) t>0 ≤ max{ sup tp12f∗(t),suptp11f∗(t)} 0<t<1 t≥1 ≤ max{kfk ,kfk }. Lp2,∞ Lp1,∞ This completes the proof. (cid:3) Weareinapositiontoprove[1,Proposition2.3]forLorentzspaces. Itisobtained in the following proposition. Recall from [1] that for a subset J of (0,∞), M =sup{p:p∈J}. J Proposition 2.3. Let (X,µ) be a measure space, 0<q ≤∞ and J be a subset of (0,∞) such that 0<m . Then the following assertions hold. J 5 (i) If m ,M ∈J, then J J L (X,µ)= L (X,µ)=L (X,µ)∩L (X,µ). p,q p,q mJ,q MJ,q p∈[m\J,MJ] p\∈J (ii) If m ∈J and M ∈/ J, then L (X,µ)= L (X,µ). J J p∈J p,q p∈[mJ,MJ) p,q (iii) If m ∈/ J and M ∈J, then L (X,µ)= L (X,µ). J J Tp∈J p,q Tp∈(mJ,MJ] p,q (iv) If m ,M ∈/ J, then L (X,µ)= L (X,µ). J J p∈J p,Tq p∈(mJ,MTJ) p,q Proof. (i). It is clearly obtainTby Proposition 2.2T. (ii). Letf ∈ L (X,µ)andtakem <t<M . Thenthereexistt ,t ∈J p∈J p,q J J 1 2 such that t <t<t . So by Proposition 2.2 1 2 T f ∈L (X,µ)∩L (X,µ)= L (X,µ) t1,q t2,q p,q t1≤\p≤t2 and thus f ∈L (X,µ). It follows that t,q L (X,µ)⊆L (X,µ), p,q t,q p∈J \ for each t∈[m ,M ). Consequently J J L (X,µ)⊆ L (X,µ). p,q p,q p\∈J p∈[m\J,MJ) The converse of the inclusion is clear. (iii) and (iv) are proved in a similar way. (cid:3) Similar to the definition of IL (X,µ) given in (1.6), for J,Q⊆(0,∞) let p,Q IL (X,µ)={f ∈ L (X,µ): kfk =sup kfk <∞} J,q p∈J p,q LJ,q p∈J Lp,q and T IL (X,µ)={f ∈ L (X,µ): kfk =sup kfk <∞}. J,Q p∈J,q∈Q p,q LJ,Q p∈J,q∈Q Lp,q Proposition 2.4. LeTt (X,µ) be a measure space, 0<q ≤∞ and J ⊆(0,∞) such that m >0. Then J IL (X,µ)⊆L (X,µ)∩L (X,µ). J,q mJ,q MJ,q Proof. First, let q <∞. We follow a proof similar to the proof of [2, Theorem 12]. Suppose that M < ∞ and (x ) is a sequences in J such that lim x =M . For J n n n J f ∈IL (X,µ) by Fatou’s lemma, we have J,q kfkqLMJ,q == Z0∞∞l(cid:16)imtM1iJn.ff∗t(xt1n)(cid:17).fq∗d(ttt) q dt n t ≤ Zlim0 inf ∞(cid:16)tx1n.f∗(t)(cid:17)q dt n t = liminfkZf0kq(cid:16) (cid:17) n Lxn,q ≤ kfkq J,q < ∞. If M =∞ and f ∈IL (X,µ), then J J,q ∞f∗(t)qdt 1/q = ∞liminf tx1nf∗(t) q dt 1/q t n t (cid:18)Z0 (cid:19) (cid:18)Z0 (cid:16) (cid:17) (cid:19) ≤ liminfkfk ≤kfk <∞. Lxn,q J,q n 6 F.ABTAHI,H.G.AMINI,H.A.LOTFIANDA.REJALI On the other hand, as we mentioned in section 1, since q < ∞ then L (X,µ)= ∞,q {0} and since ∞f∗(t)qdt < ∞, so we have f = 0, µ−almost every where on X. 0 t Thus IL (X,µ)=L (X,µ)={0}. It follows that IL (X,µ)⊆L (X,µ). J,q R ∞,q J,q MJ,q Now suppose that q =∞ and f ∈IL (X,µ). Then J,q kfkLMJ,∞ = st>up0tM1J f∗(t)=stu>p0 linmtx1n.f∗(t) (cid:16) (cid:17) ≤ sup limkfk =kfk <∞, t>0 n Lxn,∞ LJ,∞ (cid:16) (cid:17) and so f ∈ L (X,µ). Thus we proved that IL (X,µ) ⊆ L (X,µ), for MJ,∞ J,q MJ,q each0<q ≤∞. Usingsomesimilararguments,onecanobtainthatIL (X,µ)⊆ J,q L (X,µ). Consequently the proof is complete. (cid:3) mJ,q ThefollowingpropositionisobtainedimmediatelyfromPropositions2.2,2.3and 2.4. Proposition 2.5. Let (X,µ) be a measure space, 0<q ≤∞ and J ⊆(0,∞) such that m >0 and M <∞. Then J J IL (X,µ) = IL (X,µ)=IL (X,µ) J,q (mJ,MJ),q [mJ,MJ),q = IL (X,µ)=IL (X,µ) (mJ,MJ],q [mJ,MJ],q = L (X,µ)∩L (X,µ). mJ,q MJ,q Furthermore, for each f ∈IL (X,µ) and p∈J, J,q kfk ≤21/qmax{kfk ,kfk } Lp,q LmJ,q LMJ,q Theorem2.6. Let(X,µ)beameasurespaceandJ,Q⊆(0,∞)suchthatm ,m > J Q 0. Then (2.2) IL (X,µ)=L (X,µ)∩L (X,µ). J,Q mJ,mQ MJ,mQ Moreover for each f ∈IL (X,µ) J,Q max{kfk ,kfk } ≤ sup kfk LmJ,mQ LMJ,mQ p∈J,q∈Q Lp,q ≤ Kmax{kfk ,kfk }, LmJ,mQ LMJ,mQ for some positive constant K >0. Proof. Let f ∈IL (X,µ). Then by proposition 2.5, we have J,Q f ∈L (X,µ)∩L (X,µ), mJ,q MJ,q for each q ∈Q, and so f ∈(∩ L (X,µ))∩(∩ L (X,µ)). q∈Q mJ,q q∈Q MJ,q Thus [2, Theorem 12] implies that f ∈ L (X,µ)∩L (X,µ). Also by mJ,mQ MJ,mQ Fatou’s lemma, one can readily obtain that kfk ≤ sup kfk <∞ LmJ,mQ p∈J,q∈Q Lp,q and also kfk ≤ sup kfk <∞. LMJ,mQ p∈J,q∈Q Lp,q For the converse,note that by Proposition2.2 and [3, Proposition1.4.10],we have L (X,µ)∩L (X,µ) = L (X,µ) mJ,mQ MJ,mQ r,mQ mJ≤\r≤MJ ⊆ L (X,µ). r,t mJ≤r≤MJ\,mQ≤t≤MQ 7 It follows that L (X,µ)∩L (X,µ)⊆ L (X,µ). mJ,mQ MJ,mQ p,q p∈J,q∈Q \ ByProposition2.5and[2,Theorem12],foreachf ∈L (X,µ)∩L (X,µ) mJ,mQ MJ,mQ we have max{kfk ,kfk } ≤ sup kfk LmJ,mQ LMJ,mQ mJ≤p≤MJ,mQ≤q≤MQ Lp,q m 1 ≤ mJ≤sup≤pMJ(cid:20)max{1,( pQ)mQ}kfkLp,mQ(cid:21) m 1 ≤ 21/mQmax{1,(mQJ)mQ} max{kfkLmJ,mQ,kfkLMJ,mQ} and so the inequality is provided by choosing m 1 K =21/mQmax{1,( Q)mQ}. m J Moreoverf ∈IL (X,µ) and the equality (2.2) is satisfied. (cid:3) J,Q Proposition 2.7. Let (X,µ) be a measure space and 0 < p ≤ ∞. Then fg ∈ L (X,µ), for each f ∈L∞(X,µ) and g ∈L (X,µ). p,∞ p,∞ Proof. By [3, Proposition 1.4.5] parts (7) and (15), we have kf gkp,∞ = sup tp1 (f g)∗(t) ≤sup tp1f∗(t)g∗(t) 2 2 t>0 t>0(cid:18) (cid:19) (cid:16) (cid:17) = sup (2t)p1 f∗(t)g∗(t) ≤2p1 kgkp,∞ kfk∞ t>0 (cid:16) (cid:17) < ∞. It follows that fg ∈L (X,µ). (cid:3) p,∞ Proposition 2.8. Let (X,µ) be a measure space, 0 < p ≤ ∞ and J,Q ⊆ (0,∞) such that m >0, m >0 and m ∈Q. Then IL (X,µ)=A∩B, where J Q Q J,Q A={f ∈ L (X,µ), M =supkfk <∞, ∀q ∈Q} p,q q Lp,q p∈J p∈J,q∈Q \ and B ={f ∈ L (X,µ), M = supkfk <∞, ∀p∈J}. p,q p Lp,q q∈Q p∈J,q∈Q \ Proof. ItisclearthatIL (X,µ)⊆A∩B. Fortheconverseassumethatf ∈A∩B. J,Q By [2, Theorem 12] implies that for each p∈J m 1 qs∈uQpkfkLp,q ≤max{1,( pQ)mQ}kfkLp,mQ and so m 1 p∈Js,upq∈QkfkLp,q ≤ max{1,(mQJ )mQ}spu∈pJkfkLp,mQ m 1 = max{1,(mQ)mQ}MmQ J < ∞. It follows that f ∈IL (X,µ). (cid:3) J,Q 8 F.ABTAHI,H.G.AMINI,H.A.LOTFIANDA.REJALI In the sequel, we investigatesomepreviousresults, forthe specialLorentzspace ℓ {E},introducedin [4]. Inthe further discussions, E stands for aBanachspace. p,q Also K is the real or complex field and I is the set of positive integers. We first provide the required preliminaries, which follow from [4]. Definition 2.9. For 1 ≤p ≤ ∞, 1≤ q < ∞ or 1 ≤ p< ∞, q = ∞ let ℓ {E} be p,q the space of all E-valued zero sequences {x } such that i 1 ∞ iq/p−1kx kq q for 1≤p≤∞, 1≤q <∞ k{x }k = i=1 φ(i) i p,q 1 ( (cid:0)P supiipkxφ(i)k (cid:1) for 1≤p<∞, q =∞. is finite, where {kx k} is the non-increasingrearrangementof {kx k}. If E =K, φ(i) i then ℓ {K} is denoted by ℓ . p,q p,q In particular, ℓ {E} coincides with ℓ {E} and k.k =k.k ; see [5]. p,p p p,p p The following result will be used in the final result of this paper. It is in fact [4, Proposition 2]. Proposition 2.10. Let E be a Banach space. (i) If 1 ≤ p < ∞,1 ≤ q < q ≤ ∞, then ℓ {E} ⊆ ℓ {E} and for every 1 p,q p,q1 {x }∈ℓ {E} i p,q 1− 1 q q q1 k{x }k ≤ k{x }k , i p,q1 p i p,q (cid:18) (cid:19) for p<q and k{x }k ≤k{x }k , i p,q1 i p,q for p≥q. In fact q k{x }k ≤max{1, }k{x }k . i p,q1 p i p,q (ii) Let eather 1≤p<p ≤∞, 1≤q <∞ or 1≤p<p <∞, q =∞. Then 1 1 ℓ {E}⊆ℓ {E} p,q p1,q and for every {x }∈ℓ {E} i p,q k{x }k ≤k{x }k i p1,q i p,q Now for J,Q⊆[1,∞) let IL ={{x }∈ ℓ : k{x }k =sup k{x }k <∞}. J,Q i p∈J,q∈Q p,q i J,Q p∈J,q∈Q i p,q We finish this work with the following result, which determines the structure of T IL . J,Q Proposition 2.11. Let J,Q⊆[1,∞). Then IL =ℓ . J,Q mJ,mQ Proof. Some similar arguments to [2, Theorem 12] implies that IL = ℓ . p,Q p,mQ Indeed, by Proposition 2.10 for each q ∈ Q, ℓ ⊆ ℓ . Also for each {x } ∈ p,mQ p,q i ℓ , p,mQ m Q k{x }k ≤max{1, }k{x }k . i p,q p i p,mQ It follows that {x }∈IL and i p,Q m Q k{x }k ≤max{1, }k{x }k . i p,Q p i p,mQ 9 Thus ℓ ⊆IL . The reverseof this inclusionis clearwhenever m ∈Q. Now p,mQ p,Q Q let mQ ∈/ Q. Thus there is a sequence (yn)n∈N in Q, converging to mQ. For each {x }∈IL , Fatou’s lemma implies that i p,Q ∞ k{xi}kmp,mQQ = impQ−1kxΦ(i)kmQ i=1 X ∞ = liminf iypn−1kxΦ(i)kyn n Xi=1 (cid:16) (cid:17) ∞ ≤ liminf iypn−1kxΦ(i)kyn n Xi=1(cid:16) (cid:17) = liminfk{x }kyn ≤liminfk{x }kyn n i p,yn n i p,Q = k{x }kmQ, i p,Q which implies {x } ∈ ℓ . Consequently IL = ℓ . In the sequel, we show i p,mQ p,Q p,mQ that IL ⊆ ℓ , for each q ∈ Q. Suppose that (y ) be a sequences in J such J,q mJ,q n that lim x =m and {x }∈IL Then by Fatou’s lemma, we have n n J i J,q ∞ k{xi}kqmJ,q = imqJ−1kxΦ(i)kq Xi=1(cid:16) (cid:17) ∞ = liminf iyqn−1kxΦ(i)kq n Xi=1 (cid:16) (cid:17) ∞ ≤ liminf iyqn−1kxΦ(i)kq n Xi=1(cid:16) (cid:17) = liminfk{x }kq n i yn,q ≤ k{x }kq i J,q < ∞. Hence IL ⊆ ℓ . Now suppose that {x } ∈ IL . Then for each q ∈ Q, J,q mJ,q i J,Q {x }∈IL and so {x }∈ℓ . Onthe other hand by the aboveinequalities, for i J,q i mJ,q each 1 ≤ q < ∞, we have k{x }k ≤ k{x }k . So {x } ∈ IL ⊆ ℓ , i mJ,q i J,q i mJ,Q mJ,mQ which implies IL ⊆ ℓ . Also by Proposition 2.10, for each p ≥ m and J,Q mJ,mQ J q ≥m we have ℓ ⊆ℓ ⊆ℓ . Consequently Q mJ,mQ mJ,q p,q ℓ ⊆ ℓ . mJ,mQ p,q p∈J,q∈Q \ Moreoverfor each {x }∈ℓ , i p,q m Q sup k{x }k ≤ supk{x }k ≤max{1, }k{x }k . i p,q i mJ,q m i mJ,mQ p∈J,q∈Q q∈Q J It follows that ℓ ⊆IL ⊆ℓ . mJ,mQ J,Q mJ,mQ Therefore IL =ℓ , as claimed. (cid:3) J,Q mJ,mQ Acknowledgment. This researchwas partially supported by the Banach alge- bra Center of Excellence for Mathematics, University of Isfahan. 10 F.ABTAHI,H.G.AMINI,H.A.LOTFIANDA.REJALI References [1] Abtahi,F.,Amini,H.G.,Lotfi,H.A.andRejali,A.,AnarbitraryintersectionofLp−spaces, Bull.Aust.Math.Soc.,85,(2012), 433-445. [2] Abtahi, F., Amini, H. G., Lotfi, H. A. and Rejali, A., Some intersections of the weighted Lp−spaces,Abstr.Appl.Anal.,ArticleID986857, 12page,2013. [3] Grafakos, L., Classical Fourier Analysis, 2nd edn., Springer Science+Business Media, LLC, (2008). [4] Kato,M.,OnLorentz spaces lp,q(E),HiroshimaMath.J.,6,(1976), 73-93. [5] Miyazaki,K.,(p−q)-nuclearand(p−q)-integraloperators,HiroshimaMath.J.,4,(1974), 99-132. [6] Rudin,W.,Realandcomplexanalysis,thirdedn,McGraw-HillBookCo.,NewYork,1987. F.Abtahi DepartmentofMathematics,UniversityofIsfahan,Isfahan,Iran [email protected] H.G.Amini DepartmentofMathematics,UniversityofIsfahan,Isfahan,Iran A.Lotfi DepartmentofMathematics,UniversityofIsfahan,Isfahan,Iran hali-lotfi@yahoo.com A.Rejali DepartmentofMathematics,UniversityofIsfahan,Isfahan,Iran [email protected]