ebook img

Some intersections of Lorentz spaces PDF

0.13 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Some intersections of Lorentz spaces

SOME INTERSECTIONS OF LORENTZ SPACES 5 F.ABTAHI,H.G.AMINI,H.A.LOTFIANDA.REJALI 1 0 2 n Abstract. Let (X,µ) be a measure space. For p,q ∈ (0,∞] and arbitrary a J subsets P,Q of (0,∞], we introduce and characterize some intersections of Lorentzspaces,denoted byILp,Q(X,µ),ILJ,q(X,µ)andILJ,Q(X,µ). 1 3 0. Introduction ] A Let (X,µ) be a measure space. For 0<p≤∞, the space Lp(X,µ) is the usual Lebesgue space as defined in [3] and [6]. Let us remark that for 1≤p<∞ F . 1/p h kfk := |f(x)|pdµ(x) t p a (cid:18)ZX (cid:19) m defines a norm on Lp(X,µ) such that (Lp(X,µ),k.k ) is a Banach space. Also for p [ 0<p<1, 1 kfk := |f(x)|pdµ(x) p v ZX 9 defines a quasi norm on Lp(X,µ) such that (Lp(X,µ),k.k ) is a complete metric p 5 space. Moreover for p=∞, 1 0 kfk∞ =inf{B >0:µ({x∈X :|f(x)|>B})=0} 0 defines a norm on L∞(X,µ) such that (L∞(X,µ),k.k ) is a Banach space. In [1], . ∞ 2 we considered an arbitrary intersection of the Lp−spaces denoted by Lp(G), p∈J 0 where G is a locally compact group with a left Haar measure λ and J ⊆ [1,∞]. 5 T Then we introduced the subspace IL (G) of Lp(G) as 1 J p∈J : v IL (G)={f ∈ Lp(G):kfTk =supkfk <∞}, J J p i p∈J X p∈J \ r and studied ILJ(G) as a Banach algebra under convolution product, for the case a where 1 ∈ J. Also in [2], we generalized the results of [1] to the weighted case. In fact for an arbitrary family Ω of the weight functions on G and 1 ≤ p < ∞, we introduced the subspace IL (G,Ω) of the locally convex space Lp(G,Ω) = p Lp(G,ω). Moreover,we providedsome sufficient conditions on G and also Ω ω∈Ω to construct a norm on IL (G,Ω). The fourth section of [2] has been assigned to p T someintersectionsofLorentzspaces. Indeedforthecasewherepisfixedandqruns through J ⊆(0,∞), we introduced IL (G) as a subspace of ∩ L (G), where p,J q∈J p,q L (G) is the Lorentz space with indices p and q. As the main result, we proved p,q that IL (G)=L (G), in the case where m =inf{q:q ∈J} is positive. p,J p,mJ J In the present work, we continue our study concerning the intersections of Lorentz spaces on the measure space (X,µ), to complete our results in this di- rection. Precisely,we verifymost the results givenin the secondand thirdsections of [1], for Lorentz spaces. 2000 Mathematics Subject Classification. Primary43A15,Secondary43A20. Key words and phrases. Lp−spaces,Lorentzspaces. 1 2 F.ABTAHI,H.G.AMINI,H.A.LOTFIANDA.REJALI 1. Preliminaries In this section, we give some preliminaries and definitions which will be used throughout the paper. We refer to [3], as a good introductory book. Let (X,µ) be a measure space and f be a complex valued measurable function on X. For each α>0, let d (α)=µ({x∈X :|f(x)|>α}). f The decreasing rearrangementof f is the function f∗ :[0,∞)→[0,∞] defined by f∗(t)=inf{s>0:d (s)≤t}. f We adopt the convention inf∅ = ∞, thus having f∗(t) = ∞ whenever d (α) > t f for all α≥0. For 0<p≤∞ and 0<q <∞, define (1.1) kfkLp,q = ∞ tp1f∗(t) q dtt 1/q, (cid:18)Z0 (cid:16) (cid:17) (cid:19) where dt is the Lebesgue measure. In the case where q =∞, define (1.2) kfkLp,∞ =suptp1f∗(t). t>0 The setofall f with kfk <∞is denotedby L (X,µ)andis calledthe Lorentz p,q p,q space with indices p and q. As in Lp−spaces, two functions in L (X,µ) are p,q considered equal if they are equal µ−almost everywhere on X. It is worth noting that by [3, Proposition 1.4.5] for each 0<p<∞ we have ∞ (1.3) |f(x)|pdµ(x)= f∗(t)pdt. ZX Z0 ItfollowsthatL (X,µ)=Lp(X,µ). Furthermorebythe definitiongiveninequa- p,p tion (1.2), one can observe that L (X,µ) = L∞(X,µ). Note that in the case ∞,∞ where p = ∞, one can conclude that the only simple function with finite k.k L∞,q normis the zerofunction. For this reason,L (X,µ)={0},forevery0<q <∞; ∞,q see [3, page 49]. In [2], for locally compact group G and 0<p<∞ and also an arbitrary subset Q of (0,∞) with m =inf{q :q ∈Q}>0, Q we introduced IL (G) as a subset of ∩ L (G) by p,Q q∈Q p,q (1.4) IL (G)={f ∈ L (G):kfk = supkfk <∞}. p,Q p,q Lp,Q Lp,q q∈Q q∈Q \ As the main result of the third section in [2], we proved the following theorem. Theorem 1.1. [2, Theorem 12] Let G be a locally compact group, 0<p<∞ and Q be an arbitrary subset of (0,∞) such that m >0. Then IL (G)=L (G). Q p,Q p,mQ Moreover, for each f ∈L (G), p,mQ m 1/mQ Q (1.5) kfk ≤kfk ≤max 1, kfk . Lp,mQ Lp,Q ( (cid:18) p (cid:19) ) Lp,mQ Note that in the definition of IL (G) given in (1.4), one can replace G by an p,Q arbitrary measure space (X,µ). Precisely if let (1.6) IL (X,µ)={f ∈ L (X,µ):kfk = supkfk <∞}, p,Q p,q Lp,Q Lp,q q∈Q q∈Q \ 3 then IL (X,µ)=L (X,µ). Moreover for each f ∈L (X,µ), (1.5) is sat- p,Q p,mQ p,mQ isfied. Furthermore, Theorem [2, Theorem 12] is also valid for IL (X,µ). In the p,Q presentwork,inasimilarway,weintroduceandcharacterizethespacesIL (X,µ) J,q andalsoIL (X,µ), as otherintersections ofLorentzspaces. Moreoverwe obtain J,Q some results about Lorentz space related to a Banach spaces E, introduced in [4]. 2. Main Results At the beginning of the present section we recall [3, Exercise 1.4.2], which will be used several times in our further arguments. A simple proof is given here. Proposition 2.1. Let (X,µ) be a measure space and 0<p <p ≤∞. Then 1 2 L (X,µ) L (X,µ)⊆ L (X,µ). p1,∞ p2,∞ p,s \ p1<p<p\2,0<s≤∞ Proof. Let f ∈ L (X,µ) ∩ L (X,µ). If kfk = 0, one can readily p1,∞ p2,∞ Lp1,∞ obtained that f ∈ L (X,µ), for all p < p < p and 0 < s ≤ ∞. Now let p,s 1 2 kfk 6=0 and first suppose that p <∞. We show that f ∈L (X,µ), for all Lp1,∞ 2 p,s p <p<p and 0<s<∞. It is clear that for each α>0 1 2 kfkp1 kfkp2 (2.1) d (α)≤min Lp1,∞, Lp2,∞ . f αp1 αp2 ! Set 1 kfkp2 p2−p1 B = Lp2,∞ . kfkp1 Lp1,∞! Thus kfkLp,s = p ∞(df(α)1p α)sdαα s1 = p ∞df(α)sp αs−1dα s1 (cid:18) Z0 (cid:19) (cid:18) Z0 (cid:19) 1 1 B kfkp1 ps s ∞ kfkp2 ps s ≤ p αs−1 Lp1,∞ dα + p αs−1 Lp2,∞ dα  Z0 αp1 !   ZB αp2 !  = p1s kfkpp1 Bαs−1−spp1dαs1 +p1s kfkpp2 ∞αs−1−spp2dαs1 Lp1,∞ Z0 ! Lp2,∞ (cid:18)ZB (cid:19) 1 1 1 p1 Bs−spp1 s 1 p2 Bs−spp2 s = ps kfkLpp1,∞ s− spp1 ! +ps kfkLpp2,∞ spp2 −s! 1 = p s kfkpp1.(pp22−−pp1) kfkpp2 (pp2−−pp11) (s− spp1)! Lp1,∞ Lp2,∞ 1 + p s kfkpp1.(pp22−−pp1) kfkpp2 (pp2−−pp11) (spp2 −s)! Lp1,∞ Lp2,∞ 1 1 = p s + p s kfkpp1(pp22−−pp1) kfkpp2(pp2−−pp11)  (s− spp1)! (spp2 −s)!  Lp1,∞ Lp2,∞ < ∞.  4 F.ABTAHI,H.G.AMINI,H.A.LOTFIANDA.REJALI Thus f ∈ L (X,µ). For p = ∞, since d (α) = 0 for each α > kfk , inequality p,s 2 f ∞ (2.1) implies that kfksLp,s ≤ s−psp1kfkps1pp,1∞kfks∞−spp1, p which implies f ∈L (X,µ). In the case where s=∞, by [3, Proposition 1.1.14], p,s for p <r <p we have 1 2 L (X,µ)∩L (X,µ)⊆Lr(X,µ)⊆L (X,µ). p1,∞ p2,∞ r,∞ This gives the proposition. (cid:3) Proposition2.2. Let(X,µ)beameasurespace, 0<q ≤∞and0<p <p ≤∞. 1 2 Then L (X,µ)=L (X,µ)∩L (X,µ). r,q p1,q p2,q p1≤\r≤p2 Moreover for each f ∈L (X,µ)∩L (X,µ) and p <r <p , p1,q p2,q 1 2 kfk ≤21/qmax{kfk ,kfk }. Lr,q Lp1,q Lp2,q Proof. By [3, Proposition 1.4.10] and Proposition 2.1 we have L (X,µ)∩L (X,µ) ⊆ L (X,µ)∩L (X,µ) p1,q p2,q p1,∞ p2,∞ ⊆ L (X,µ). r,s p1<r<p\2,0<s≤∞ It follows that L (X,µ)∩L (X,µ)⊆ L (X,µ). p1,q p2,q r,q p1≤\r≤p2 The converse of the inclusion is clearly valid. Thus L (X,µ)∩L (X,µ)= L (X,µ). p1,q p2,q r,q p1≤\r≤p2 Now let q <∞. For each f ∈L (X,µ)∩L (X,µ), we have p1,q p2,q kfkq = ∞ t1rf∗(t) q dt Lr,q t Z0 (cid:16) (cid:17) ≤ 1 tp12f∗(t) q dt + ∞ tp11f∗(t) q dt t t ≤ Zkf0kq(cid:16) +kf(cid:17)kq Z1 (cid:16) (cid:17) Lp2,q Lp1,q ≤ 2 max{kfkq ,kfkq } Lp2,q Lp1,q Also for q =∞ we have kfkLr,∞ = suptr1f∗(t) t>0 ≤ max{ sup tp12f∗(t),suptp11f∗(t)} 0<t<1 t≥1 ≤ max{kfk ,kfk }. Lp2,∞ Lp1,∞ This completes the proof. (cid:3) Weareinapositiontoprove[1,Proposition2.3]forLorentzspaces. Itisobtained in the following proposition. Recall from [1] that for a subset J of (0,∞), M =sup{p:p∈J}. J Proposition 2.3. Let (X,µ) be a measure space, 0<q ≤∞ and J be a subset of (0,∞) such that 0<m . Then the following assertions hold. J 5 (i) If m ,M ∈J, then J J L (X,µ)= L (X,µ)=L (X,µ)∩L (X,µ). p,q p,q mJ,q MJ,q p∈[m\J,MJ] p\∈J (ii) If m ∈J and M ∈/ J, then L (X,µ)= L (X,µ). J J p∈J p,q p∈[mJ,MJ) p,q (iii) If m ∈/ J and M ∈J, then L (X,µ)= L (X,µ). J J Tp∈J p,q Tp∈(mJ,MJ] p,q (iv) If m ,M ∈/ J, then L (X,µ)= L (X,µ). J J p∈J p,Tq p∈(mJ,MTJ) p,q Proof. (i). It is clearly obtainTby Proposition 2.2T. (ii). Letf ∈ L (X,µ)andtakem <t<M . Thenthereexistt ,t ∈J p∈J p,q J J 1 2 such that t <t<t . So by Proposition 2.2 1 2 T f ∈L (X,µ)∩L (X,µ)= L (X,µ) t1,q t2,q p,q t1≤\p≤t2 and thus f ∈L (X,µ). It follows that t,q L (X,µ)⊆L (X,µ), p,q t,q p∈J \ for each t∈[m ,M ). Consequently J J L (X,µ)⊆ L (X,µ). p,q p,q p\∈J p∈[m\J,MJ) The converse of the inclusion is clear. (iii) and (iv) are proved in a similar way. (cid:3) Similar to the definition of IL (X,µ) given in (1.6), for J,Q⊆(0,∞) let p,Q IL (X,µ)={f ∈ L (X,µ): kfk =sup kfk <∞} J,q p∈J p,q LJ,q p∈J Lp,q and T IL (X,µ)={f ∈ L (X,µ): kfk =sup kfk <∞}. J,Q p∈J,q∈Q p,q LJ,Q p∈J,q∈Q Lp,q Proposition 2.4. LeTt (X,µ) be a measure space, 0<q ≤∞ and J ⊆(0,∞) such that m >0. Then J IL (X,µ)⊆L (X,µ)∩L (X,µ). J,q mJ,q MJ,q Proof. First, let q <∞. We follow a proof similar to the proof of [2, Theorem 12]. Suppose that M < ∞ and (x ) is a sequences in J such that lim x =M . For J n n n J f ∈IL (X,µ) by Fatou’s lemma, we have J,q kfkqLMJ,q == Z0∞∞l(cid:16)imtM1iJn.ff∗t(xt1n)(cid:17).fq∗d(ttt) q dt n t ≤ Zlim0 inf ∞(cid:16)tx1n.f∗(t)(cid:17)q dt n t = liminfkZf0kq(cid:16) (cid:17) n Lxn,q ≤ kfkq J,q < ∞. If M =∞ and f ∈IL (X,µ), then J J,q ∞f∗(t)qdt 1/q = ∞liminf tx1nf∗(t) q dt 1/q t n t (cid:18)Z0 (cid:19) (cid:18)Z0 (cid:16) (cid:17) (cid:19) ≤ liminfkfk ≤kfk <∞. Lxn,q J,q n 6 F.ABTAHI,H.G.AMINI,H.A.LOTFIANDA.REJALI On the other hand, as we mentioned in section 1, since q < ∞ then L (X,µ)= ∞,q {0} and since ∞f∗(t)qdt < ∞, so we have f = 0, µ−almost every where on X. 0 t Thus IL (X,µ)=L (X,µ)={0}. It follows that IL (X,µ)⊆L (X,µ). J,q R ∞,q J,q MJ,q Now suppose that q =∞ and f ∈IL (X,µ). Then J,q kfkLMJ,∞ = st>up0tM1J f∗(t)=stu>p0 linmtx1n.f∗(t) (cid:16) (cid:17) ≤ sup limkfk =kfk <∞, t>0 n Lxn,∞ LJ,∞ (cid:16) (cid:17) and so f ∈ L (X,µ). Thus we proved that IL (X,µ) ⊆ L (X,µ), for MJ,∞ J,q MJ,q each0<q ≤∞. Usingsomesimilararguments,onecanobtainthatIL (X,µ)⊆ J,q L (X,µ). Consequently the proof is complete. (cid:3) mJ,q ThefollowingpropositionisobtainedimmediatelyfromPropositions2.2,2.3and 2.4. Proposition 2.5. Let (X,µ) be a measure space, 0<q ≤∞ and J ⊆(0,∞) such that m >0 and M <∞. Then J J IL (X,µ) = IL (X,µ)=IL (X,µ) J,q (mJ,MJ),q [mJ,MJ),q = IL (X,µ)=IL (X,µ) (mJ,MJ],q [mJ,MJ],q = L (X,µ)∩L (X,µ). mJ,q MJ,q Furthermore, for each f ∈IL (X,µ) and p∈J, J,q kfk ≤21/qmax{kfk ,kfk } Lp,q LmJ,q LMJ,q Theorem2.6. Let(X,µ)beameasurespaceandJ,Q⊆(0,∞)suchthatm ,m > J Q 0. Then (2.2) IL (X,µ)=L (X,µ)∩L (X,µ). J,Q mJ,mQ MJ,mQ Moreover for each f ∈IL (X,µ) J,Q max{kfk ,kfk } ≤ sup kfk LmJ,mQ LMJ,mQ p∈J,q∈Q Lp,q ≤ Kmax{kfk ,kfk }, LmJ,mQ LMJ,mQ for some positive constant K >0. Proof. Let f ∈IL (X,µ). Then by proposition 2.5, we have J,Q f ∈L (X,µ)∩L (X,µ), mJ,q MJ,q for each q ∈Q, and so f ∈(∩ L (X,µ))∩(∩ L (X,µ)). q∈Q mJ,q q∈Q MJ,q Thus [2, Theorem 12] implies that f ∈ L (X,µ)∩L (X,µ). Also by mJ,mQ MJ,mQ Fatou’s lemma, one can readily obtain that kfk ≤ sup kfk <∞ LmJ,mQ p∈J,q∈Q Lp,q and also kfk ≤ sup kfk <∞. LMJ,mQ p∈J,q∈Q Lp,q For the converse,note that by Proposition2.2 and [3, Proposition1.4.10],we have L (X,µ)∩L (X,µ) = L (X,µ) mJ,mQ MJ,mQ r,mQ mJ≤\r≤MJ ⊆ L (X,µ). r,t mJ≤r≤MJ\,mQ≤t≤MQ 7 It follows that L (X,µ)∩L (X,µ)⊆ L (X,µ). mJ,mQ MJ,mQ p,q p∈J,q∈Q \ ByProposition2.5and[2,Theorem12],foreachf ∈L (X,µ)∩L (X,µ) mJ,mQ MJ,mQ we have max{kfk ,kfk } ≤ sup kfk LmJ,mQ LMJ,mQ mJ≤p≤MJ,mQ≤q≤MQ Lp,q m 1 ≤ mJ≤sup≤pMJ(cid:20)max{1,( pQ)mQ}kfkLp,mQ(cid:21) m 1 ≤ 21/mQmax{1,(mQJ)mQ} max{kfkLmJ,mQ,kfkLMJ,mQ} and so the inequality is provided by choosing m 1 K =21/mQmax{1,( Q)mQ}. m J Moreoverf ∈IL (X,µ) and the equality (2.2) is satisfied. (cid:3) J,Q Proposition 2.7. Let (X,µ) be a measure space and 0 < p ≤ ∞. Then fg ∈ L (X,µ), for each f ∈L∞(X,µ) and g ∈L (X,µ). p,∞ p,∞ Proof. By [3, Proposition 1.4.5] parts (7) and (15), we have kf gkp,∞ = sup tp1 (f g)∗(t) ≤sup tp1f∗(t)g∗(t) 2 2 t>0 t>0(cid:18) (cid:19) (cid:16) (cid:17) = sup (2t)p1 f∗(t)g∗(t) ≤2p1 kgkp,∞ kfk∞ t>0 (cid:16) (cid:17) < ∞. It follows that fg ∈L (X,µ). (cid:3) p,∞ Proposition 2.8. Let (X,µ) be a measure space, 0 < p ≤ ∞ and J,Q ⊆ (0,∞) such that m >0, m >0 and m ∈Q. Then IL (X,µ)=A∩B, where J Q Q J,Q A={f ∈ L (X,µ), M =supkfk <∞, ∀q ∈Q} p,q q Lp,q p∈J p∈J,q∈Q \ and B ={f ∈ L (X,µ), M = supkfk <∞, ∀p∈J}. p,q p Lp,q q∈Q p∈J,q∈Q \ Proof. ItisclearthatIL (X,µ)⊆A∩B. Fortheconverseassumethatf ∈A∩B. J,Q By [2, Theorem 12] implies that for each p∈J m 1 qs∈uQpkfkLp,q ≤max{1,( pQ)mQ}kfkLp,mQ and so m 1 p∈Js,upq∈QkfkLp,q ≤ max{1,(mQJ )mQ}spu∈pJkfkLp,mQ m 1 = max{1,(mQ)mQ}MmQ J < ∞. It follows that f ∈IL (X,µ). (cid:3) J,Q 8 F.ABTAHI,H.G.AMINI,H.A.LOTFIANDA.REJALI In the sequel, we investigatesomepreviousresults, forthe specialLorentzspace ℓ {E},introducedin [4]. Inthe further discussions, E stands for aBanachspace. p,q Also K is the real or complex field and I is the set of positive integers. We first provide the required preliminaries, which follow from [4]. Definition 2.9. For 1 ≤p ≤ ∞, 1≤ q < ∞ or 1 ≤ p< ∞, q = ∞ let ℓ {E} be p,q the space of all E-valued zero sequences {x } such that i 1 ∞ iq/p−1kx kq q for 1≤p≤∞, 1≤q <∞ k{x }k = i=1 φ(i) i p,q 1 ( (cid:0)P supiipkxφ(i)k (cid:1) for 1≤p<∞, q =∞. is finite, where {kx k} is the non-increasingrearrangementof {kx k}. If E =K, φ(i) i then ℓ {K} is denoted by ℓ . p,q p,q In particular, ℓ {E} coincides with ℓ {E} and k.k =k.k ; see [5]. p,p p p,p p The following result will be used in the final result of this paper. It is in fact [4, Proposition 2]. Proposition 2.10. Let E be a Banach space. (i) If 1 ≤ p < ∞,1 ≤ q < q ≤ ∞, then ℓ {E} ⊆ ℓ {E} and for every 1 p,q p,q1 {x }∈ℓ {E} i p,q 1− 1 q q q1 k{x }k ≤ k{x }k , i p,q1 p i p,q (cid:18) (cid:19) for p<q and k{x }k ≤k{x }k , i p,q1 i p,q for p≥q. In fact q k{x }k ≤max{1, }k{x }k . i p,q1 p i p,q (ii) Let eather 1≤p<p ≤∞, 1≤q <∞ or 1≤p<p <∞, q =∞. Then 1 1 ℓ {E}⊆ℓ {E} p,q p1,q and for every {x }∈ℓ {E} i p,q k{x }k ≤k{x }k i p1,q i p,q Now for J,Q⊆[1,∞) let IL ={{x }∈ ℓ : k{x }k =sup k{x }k <∞}. J,Q i p∈J,q∈Q p,q i J,Q p∈J,q∈Q i p,q We finish this work with the following result, which determines the structure of T IL . J,Q Proposition 2.11. Let J,Q⊆[1,∞). Then IL =ℓ . J,Q mJ,mQ Proof. Some similar arguments to [2, Theorem 12] implies that IL = ℓ . p,Q p,mQ Indeed, by Proposition 2.10 for each q ∈ Q, ℓ ⊆ ℓ . Also for each {x } ∈ p,mQ p,q i ℓ , p,mQ m Q k{x }k ≤max{1, }k{x }k . i p,q p i p,mQ It follows that {x }∈IL and i p,Q m Q k{x }k ≤max{1, }k{x }k . i p,Q p i p,mQ 9 Thus ℓ ⊆IL . The reverseof this inclusionis clearwhenever m ∈Q. Now p,mQ p,Q Q let mQ ∈/ Q. Thus there is a sequence (yn)n∈N in Q, converging to mQ. For each {x }∈IL , Fatou’s lemma implies that i p,Q ∞ k{xi}kmp,mQQ = impQ−1kxΦ(i)kmQ i=1 X ∞ = liminf iypn−1kxΦ(i)kyn n Xi=1 (cid:16) (cid:17) ∞ ≤ liminf iypn−1kxΦ(i)kyn n Xi=1(cid:16) (cid:17) = liminfk{x }kyn ≤liminfk{x }kyn n i p,yn n i p,Q = k{x }kmQ, i p,Q which implies {x } ∈ ℓ . Consequently IL = ℓ . In the sequel, we show i p,mQ p,Q p,mQ that IL ⊆ ℓ , for each q ∈ Q. Suppose that (y ) be a sequences in J such J,q mJ,q n that lim x =m and {x }∈IL Then by Fatou’s lemma, we have n n J i J,q ∞ k{xi}kqmJ,q = imqJ−1kxΦ(i)kq Xi=1(cid:16) (cid:17) ∞ = liminf iyqn−1kxΦ(i)kq n Xi=1 (cid:16) (cid:17) ∞ ≤ liminf iyqn−1kxΦ(i)kq n Xi=1(cid:16) (cid:17) = liminfk{x }kq n i yn,q ≤ k{x }kq i J,q < ∞. Hence IL ⊆ ℓ . Now suppose that {x } ∈ IL . Then for each q ∈ Q, J,q mJ,q i J,Q {x }∈IL and so {x }∈ℓ . Onthe other hand by the aboveinequalities, for i J,q i mJ,q each 1 ≤ q < ∞, we have k{x }k ≤ k{x }k . So {x } ∈ IL ⊆ ℓ , i mJ,q i J,q i mJ,Q mJ,mQ which implies IL ⊆ ℓ . Also by Proposition 2.10, for each p ≥ m and J,Q mJ,mQ J q ≥m we have ℓ ⊆ℓ ⊆ℓ . Consequently Q mJ,mQ mJ,q p,q ℓ ⊆ ℓ . mJ,mQ p,q p∈J,q∈Q \ Moreoverfor each {x }∈ℓ , i p,q m Q sup k{x }k ≤ supk{x }k ≤max{1, }k{x }k . i p,q i mJ,q m i mJ,mQ p∈J,q∈Q q∈Q J It follows that ℓ ⊆IL ⊆ℓ . mJ,mQ J,Q mJ,mQ Therefore IL =ℓ , as claimed. (cid:3) J,Q mJ,mQ Acknowledgment. This researchwas partially supported by the Banach alge- bra Center of Excellence for Mathematics, University of Isfahan. 10 F.ABTAHI,H.G.AMINI,H.A.LOTFIANDA.REJALI References [1] Abtahi,F.,Amini,H.G.,Lotfi,H.A.andRejali,A.,AnarbitraryintersectionofLp−spaces, Bull.Aust.Math.Soc.,85,(2012), 433-445. [2] Abtahi, F., Amini, H. G., Lotfi, H. A. and Rejali, A., Some intersections of the weighted Lp−spaces,Abstr.Appl.Anal.,ArticleID986857, 12page,2013. [3] Grafakos, L., Classical Fourier Analysis, 2nd edn., Springer Science+Business Media, LLC, (2008). [4] Kato,M.,OnLorentz spaces lp,q(E),HiroshimaMath.J.,6,(1976), 73-93. [5] Miyazaki,K.,(p−q)-nuclearand(p−q)-integraloperators,HiroshimaMath.J.,4,(1974), 99-132. [6] Rudin,W.,Realandcomplexanalysis,thirdedn,McGraw-HillBookCo.,NewYork,1987. F.Abtahi DepartmentofMathematics,UniversityofIsfahan,Isfahan,Iran [email protected] H.G.Amini DepartmentofMathematics,UniversityofIsfahan,Isfahan,Iran A.Lotfi DepartmentofMathematics,UniversityofIsfahan,Isfahan,Iran hali-lotfi@yahoo.com A.Rejali DepartmentofMathematics,UniversityofIsfahan,Isfahan,Iran [email protected]

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.