ebook img

Some integral inequalities for α-, m-, (α,m)-logarithmically convex functions PDF

0.14 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Some integral inequalities for α-, m-, (α,m)-logarithmically convex functions

SOME INTEGRAL INEQUALITIES FOR α-, m-, (α,m)-LOGARITHMICALLY CONVEX FUNCTIONS 3 1 MEVLU¨TTUNC¸(cid:3) ANDEBRUYU¨KSEL▽ 0 2 Abstract. In this paper, we establish some new Hadamard type inequali- n ties usingelementary well knowninequalities forfunctions whoseinequalities a absolutevaluesareα-,m-,(α,m)-logarithmicallyconvex. J 8 2 1. INTRODUCTION ] A Let f : I ⊆ R → R be a convex mapping defined on the interval I of real C numbers and a,b∈I, with a<b. The following double inequalities: . h a+b b f(a)+f(b) t f ≤ f(x)dx≤ a 2 2 m (cid:18) (cid:19) Za hold. This double inequality is known in the literature as the Hermite-Hadamard [ inequality for convex functions (see [1]-[8]). 1 In this section, we will present definitions and some results used in this paper. v Definition 1. Let I be an interval in R. Then f : I →R, ∅=6 I ⊆R is said to be 7 5 convex if 0 (1.1) f(tx+(1−t)y)≤tf(x)+(1−t)f(y). 7 . for all x,y ∈I and t∈[0,1]. 1 0 In [1], the concepts of α-, m- and (α,m)-logarithmically convex functions were 3 introduced as follows. 1 v: Definition 2. [1] A function f : [0,b] → (0,∞) is said to be m-logarithmically i convex if the inequality X (1.2) f(tx+m(1−t)y)≤[f(x)]t[f(y)]m(1−t) r a holds for all x,y ∈[0,b], m∈(0,1], and t∈[0,1]. Obviously,if putting m=1 in Definition 2, then f is just the ordinarylogarith- mically convex on [0,b]. Definition 3. [8] A function f : [0,b] → (0,∞) is said to be α-logarithmically convex if (1.3) f(tx+(1−t)y)≤[f(x)]tα[f(y)](1−tα) Date:January10,2013. 2000 Mathematics Subject Classification. 26A15,26A51,26D10. Key words and phrases. α-, m-, (α,m)-logarithmically convex, Hadamard’s inequality, H¨older’sinequality,powermeaninequality,Cauchy’sinequality. (cid:3)CorrespondingAuthor. Thispaperisinfinalformandnoversionofitwillbesubmittedforpublicationelsewhere. 1 2 MEVLU¨TTUNC¸(cid:3) ANDEBRUYU¨KSEL▽ holds for all x,y ∈[0,b], α∈(0,1] and t∈[0,1]. Clearly, when taking α = 1 in Definition 3, then f becomes the ordinary loga- rithmically convex on [0,b]. Definition 4. [1] A function f :[0,b]→(0,∞) is said to be (α,m)-logarithmically convex if (1.4) f(tx+m(1−t)y)≤[f(x)]tα[f(y)]m(1−tα) holds for all x,y ∈[0,b], (α,m)∈(0,1]×(0,1], and t∈[0,1]. Clearly, when taking α = 1 in Definition 4, then f becomes the standard m- logarithmically convex function on [0,b], and, when taking m = 1 in Definition 4, then f becomes the α-logarithmically convex function on [0,b]. 2. NEW HADAMARD-TYPE INEQUALITIES In order to prove our main theorems, we need the following lemma [2]. Lemma 1. [2] Let f : I ⊂ R → R be a differentiable mapping on I◦, a,b ∈ I◦ with a < b. If f′ ∈ L[a,b], then the following equality holds: f(a)+f(b) 1 b (2.1) − f(x)dx 2 b−a Za b−a 1 1 ′ ′ = [f (ta+(1−t)b)−f (sa+(1−s)b)](s−t)dtds. 2 Z0 Z0 Asimple proofofthis equalitycanbe alsodoneintegratingbypartsinthe right hand side (see [2]). ThenexttheoremsgivesanewresultoftheupperHermite-Hadamardinequality for α-, m-, (α,m)-logarithmically convex functions. Theorem 1. Let I ⊃ [0,∞) be an open interval and let f : I → (0,∞) be a differentiable function on I such that f′ ∈L(a,b) for 0≤a<b<∞. If |f′(x)| is (α,m)-logarithmically convex on 0, b for (α,m)∈(0,1]2, then m (cid:2) (cid:3) f(a)+f(b) 1 b (2.2) − f(x)dx (cid:12)(cid:12) 2 b−aZa (cid:12)(cid:12) (cid:12)(cid:12) (b−a) f′ b m, (cid:12)(cid:12) η =1 ≤ (cid:12)( (b3−2a)(cid:12)f′(cid:0)mmb(cid:1)(cid:12)m −α2ln2ηα−32lαn3lnηη(cid:12)+2ηα−2, η <1 (cid:12) (cid:12) (cid:12) (cid:0) (cid:1)(cid:12) where η =|f′(a)|/ f′ b m(cid:12) . (cid:12) m (cid:12) (cid:0) (cid:1)(cid:12) (cid:12) (cid:12) SOME INTEGRAL INEQUALITIES 3 Proof. By Lemma 1 and since |f′| is an (α,m)-logarithmically convex on 0, b , m then we have (cid:2) (cid:3) f(a)+f(b) 1 b − f(x)dx (cid:12)(cid:12) 2 b−aZa (cid:12)(cid:12) (cid:12)(cid:12)b−a 1 1 ′ (cid:12)(cid:12) ′ ≤ (cid:12) |(f (ta+(1−t)b))−(cid:12) (f (sa+(1−s)b))||s−t|dtds 2 Z0 Z0 b−a 1 1 ′ tα ′ b m(1−tα) ≤ |s−t||f (a)| f dtds 2 m "Z0 Z0 (cid:12) (cid:18) (cid:19)(cid:12) # (cid:12) (cid:12) b−a 1 1 ′ s(cid:12)(cid:12)α ′ b(cid:12)(cid:12) m(1−sα) + |s−t||f (a)| f dtds 2 m "Z0 Z0 (cid:12) (cid:18) (cid:19)(cid:12) # (cid:12) (cid:12) (cid:12) (cid:12) If 0<k≤1, 0<m,n≤1 (cid:12) (cid:12) (2.3) kmn ≤kmn. When η =1, by (2.3), we get f(a)+f(b) 1 b − f(x)dx (cid:12)(cid:12) 2 b−aZa (cid:12)(cid:12) (cid:12)(cid:12)b−a ′ b m 1 1 (cid:12)(cid:12) 1 1 ≤ (cid:12) f |s−t|d(cid:12)tds+ |s−t|dtds 2 m (cid:12) (cid:18) (cid:19)(cid:12) (cid:20)Z0 Z0 Z0 Z0 (cid:21) (cid:12) (cid:12)m b−a(cid:12) ′ b (cid:12) = (cid:12)f (cid:12) 3 m (cid:12) (cid:18) (cid:19)(cid:12) (cid:12) (cid:12) When η <1, by (2.3)(cid:12), we get(cid:12) (cid:12) (cid:12) f(a)+f(b) 1 b − f(x)dx (cid:12)(cid:12) 2 b−aZa (cid:12)(cid:12) ≤ (cid:12)(cid:12)(cid:12)b−a f′ b m 1 1|s−t|η(cid:12)(cid:12)(cid:12)αtdtds+ 1 1|s−t|ηαsdtds 2 m (cid:12) (cid:18) (cid:19)(cid:12) (cid:20)Z0 Z0 Z0 Z0 (cid:21) b−a(cid:12)(cid:12) ′ b (cid:12)(cid:12)m −α2ln2η−2αlnη+4ηα+α2ηαln2η−2αηαlnη−4 = (cid:12)f (cid:12) 2 m 2α3ln3η (cid:12) (cid:18) (cid:19)(cid:12) (cid:20) −α(cid:12)(cid:12)lnη+2η(cid:12)(cid:12)α−αηαlnη−2 + (cid:12) (cid:12) 2α2ln2η (cid:21) which completes the proof. (cid:3) Corollary 1. Let I ⊃ [0,∞) be an open interval and let f : I → (0,∞) be a differentiable function on I such that f′ ∈L(a,b) for 0≤a<b<∞. If |f′(x)| is m-logarithmically convex on 0, b for m∈(0,1] , then m f(a)+f(b) 1 b (cid:2) (cid:3) (b−a) f′ b m, η =1 (cid:12)(cid:12) 2 − b−aZa f(x)dx(cid:12)(cid:12)≤( (b3−2a)(cid:12)(cid:12)f′(cid:0)mmb(cid:1)(cid:12)(cid:12)m −ln2η−l2n3lnηη+2η−2, η <1 (cid:12) (cid:12) (cid:12)where η is same as Theorem 1. (cid:12) (cid:12) (cid:0) (cid:1)(cid:12) (cid:12) (cid:12) (cid:12) (cid:12) 4 MEVLU¨TTUNC¸(cid:3) ANDEBRUYU¨KSEL▽ Corollary 2. Let I ⊃ [0,∞) be an open interval and let f : I → (0,∞) be a differentiable function on I such that f′ ∈ L(a,b) for 0 ≤ a < b < ∞. If |f′(x)|is α-logarithmically convex on [0,b] for α∈(0,1] , then f(a)+f(b) 1 b (b−a)|f′(b)|, η =1 (cid:12)(cid:12) 2 − b−aZa f(x)dx(cid:12)(cid:12)≤( (b3−2a)|f′(b)|4ηα−4α2lnαη3−ln23αη2ln2η−4, η <1 (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) where η =|f′(a)|/|f′(b)|. Theorem 2. Let I ⊃ [0,∞) be an open interval and let f : I → (0,∞) be a differentiable function on I such that f′ ∈ L(a,b) for 0 ≤ a < b < ∞. If |f′(x)|q is an (α,m)-logarithmically convex on 0, b for (α,m)∈(0,1]2 and p,q >1 with m 1 + 1 =1, then p q (cid:2) (cid:3) f(a)+f(b) 1 b (2.4) − f(x)dx (cid:12)(cid:12) 2 b−aZa (cid:12)(cid:12) (cid:12) (cid:12)1 (cid:12)(cid:12) (b−a) f′ b m 2 (cid:12)(cid:12)p , η =1 m (p+1)(p+2) ≤  1 1  (b−a(cid:12)(cid:12)) f(cid:0)′ (cid:1)mb(cid:12)(cid:12) (cid:16)m (p+1)2(p+(cid:17)2) p × ηln(αηq(,ααqq,)α−q)1 q , η <1  (cid:12)(cid:12) (cid:0) (cid:1)(cid:12)(cid:12) (cid:16) (cid:17) (cid:16) (cid:17) where η(α,α) is same as Theorem 1 Proof. Since|f′|q isan(α,m)-logarithmicallyconvexon 0, b ,fromLemma1and m the well known Ho¨lder inequality, we have (cid:2) (cid:3) (2.5) f(a)+f(b) 1 b − f(x)dx (cid:12)(cid:12) 2 b−aZa (cid:12)(cid:12) (cid:12)(cid:12)b−a 1 1 ′ (cid:12)(cid:12) ′ ≤ (cid:12) |(f (ta+(1−t)b))−(cid:12) (f (sa+(1−s)b))||s−t|dtds 2 Z0 Z0 b−a 1 1 ′ tα ′ b m(1−tα) ≤ |s−t||f (a)| f dtds 2 m Z0 Z0 (cid:12) (cid:18) (cid:19)(cid:12) b−a 1 1 ′ s(cid:12)(cid:12)α ′ b(cid:12)(cid:12) m(1−sα) + |s−t||f (a)|(cid:12) f (cid:12) dtds 2 m Z0 Z0 (cid:12) (cid:18) (cid:19)(cid:12) (cid:12) (cid:12)1 b−a b m 1 1 (cid:12) (cid:12)p ≤ f′ |s−(cid:12)t|pdtds (cid:12) 2 m (cid:12) (cid:18) (cid:19)(cid:12) (cid:18)Z0 Z0 (cid:19) (cid:12) (cid:12) 1 1 (cid:12) 1 1 (cid:12) q 1 1 q × (cid:12) ηqt(cid:12)αdtds + ηqsαdtds "(cid:18)Z0 Z0 (cid:19) (cid:18)Z0 Z0 (cid:19) # SOME INTEGRAL INEQUALITIES 5 If η =1, by (2.3), we obtain f(a)+f(b) 1 b − f(x)dx (cid:12)(cid:12) 2 b−aZa (cid:12)(cid:12) (cid:12) (cid:12) 1 (cid:12) b m 1 1 (cid:12) p ≤ ((cid:12)b−a) f′ |s−t(cid:12)|pdtds m (cid:12) (cid:18) (cid:19)(cid:12) (cid:18)Z0 Z0 (cid:19) (cid:12) (cid:12)m 1 = (b−a)(cid:12)(cid:12)f′ b (cid:12)(cid:12) 2 p m (p+1)(p+2) (cid:12) (cid:18) (cid:19)(cid:12) (cid:18) (cid:19) (cid:12) (cid:12) (cid:12) (cid:12) If η <1, by (2.3), we obtain (cid:12) (cid:12) f(a)+f(b) 1 b (2.6) − f(x)dx (cid:12)(cid:12) 2 b−aZa (cid:12)(cid:12) (cid:12) (cid:12) 1 (cid:12)b−a b m 1 1 (cid:12) p ≤ (cid:12) f′ |s−t|p(cid:12)dtds 2 m (cid:12) (cid:18) (cid:19)(cid:12) (cid:18)Z0 Z0 (cid:19) (cid:12) (cid:12) 1 1 (cid:12) 1 1 (cid:12) q 1 1 q × (cid:12) ηqt(cid:12)αdtds + ηqsαdtds "(cid:18)Z0 Z0 (cid:19) (cid:18)Z0 Z0 (cid:19) # m 1 1 ′ b 2 p η(αq,αq)−1 q = (b−a) f × m (p+1)(p+2) lnη(αq,αq) (cid:12) (cid:18) (cid:19)(cid:12) (cid:18) (cid:19) (cid:18) (cid:19) (cid:12) (cid:12) which completes th(cid:12)e proof. (cid:12) (cid:3) (cid:12) (cid:12) Corollary 3. Let I ⊃ [0,∞) be an open interval and let f : I → (0,∞) be a differentiable function on I such that f′ ∈L(a,b) for 0≤a<b<∞. If |f′(x)|qis an m-logarithmically convex on 0, b for m∈(0,1] and p=q =2, then m (cid:2) (cid:3) f(a)+f(b) 1 b (b−a) f′ mb m 16, η =1 − f(x)dx ≤ 1 (cid:12)(cid:12) 2 b−aZa (cid:12)(cid:12)  (b−a(cid:12)(cid:12)) f(cid:0)′ m(cid:1)b(cid:12)(cid:12) mq 16 ηln(2η,(22),−2)1 2 , η <1 (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:0) (cid:1)(cid:12) q (cid:16) (cid:17) C(cid:12) orollary 4. Let I ⊃ [0,∞) be(cid:12)anopen interva(cid:12)l and l(cid:12)et f : I → (0,∞) be a differentiable function on I such that f′ ∈ L(a,b) for 0 ≤ a < b < ∞. If |f′(x)|is α-logarithmically convex on [0,b] for α∈(0,1] , then f(a)+f(b) 1 b − f(x)dx (cid:12)(cid:12) 2 b−aZa (cid:12)(cid:12) (cid:12) 1 (cid:12) (cid:12)(cid:12) (b−a)|f′(b)| 2 p , (cid:12)(cid:12) η =1 (p+1)(p+2) ≤  1 1  (b−a)|f′(b(cid:16))| (p+1)2(p+2(cid:17)) p ηln(αηq(,ααqq,)α−q)1 q , η <1 (cid:16) (cid:17) (cid:16) (cid:17) where η =|f′(a)|/|f′(b)|. Theorem 3. Let I ⊃ [0,∞) be an open interval and let f : I → (0,∞) be a differentiable function on I such that f′ ∈L(a,b) for 0≤a<b<∞. If |f′(x)|q is 6 MEVLU¨TTUNC¸(cid:3) ANDEBRUYU¨KSEL▽ (α,m)-logarithmically convex on 0, b for (α,m)∈(0,1]2, and then m (cid:2) (cid:3) (2.7) f(a)+f(b) 1 b − f(x)dx (cid:12)(cid:12) 2 b−aZa (cid:12)(cid:12) (cid:12)(cid:12) b−a f′ b m, (cid:12)(cid:12) η =1 ≤ (cid:12) b−3a(cid:12) 1 (cid:0)1m−1q(cid:1)(cid:12)f′ b m 2ϕ−2(cid:12)− ϕ+1 − 1−ϕ 1q + ϕ−1 − ϕ+1 q1 , η <1  2 (cid:12) 3 (cid:12) m [lnϕ]3 [lnϕ]2 2lnϕ [lnϕ]2 2lnϕ (cid:0) (cid:1) (cid:12) (cid:0) (cid:1)(cid:12) (cid:26)h i h i (cid:27)  (cid:12) (cid:12) where η(α,α) is same as Theorem 1, and we take η(αq,αq)=ϕ . Proof. Since |f′|q is an (α,m)-logarithmically convex on 0, b , for q ≥ 1, from m Lemma 1 and the well known power mean integral inequality, we get (cid:2) (cid:3) f(a)+f(b) 1 b − f(x)dx (cid:12)(cid:12) 2 b−aZa (cid:12)(cid:12) (cid:12)(cid:12)b−a 1 1 ′ (cid:12)(cid:12) ′ ≤ (cid:12) |(f (ta+(1−t)b))−(cid:12) (f (sa+(1−s)b))||s−t|dtds 2 Z0 Z0 b−a 1 1 1−q1 1 1 q1 ′ q ≤ |s−t|dtds |s−t||f (ta+(1−t)b)| dtds 2 (cid:18)Z0 Z0 (cid:19) (cid:18)Z0 Z0 (cid:19) b−a 1 1 1−1q 1 1 q1 ′ q + |s−t|dtds |s−t||f (sa+(1−s)b)| dtds 2 (cid:18)Z0 Z0 (cid:19) (cid:18)Z0 Z0 (cid:19) b−a b m 1 1 1−q1 1 1 q1 ≤ f′ |s−t|dtds |s−t|ηqtαdtds 2 m (cid:12) (cid:18) (cid:19)(cid:12) (cid:18)Z0 Z0 (cid:19) (cid:18)Z0 Z0 (cid:19) b−a(cid:12)(cid:12) b(cid:12)(cid:12) m 1 1 1−q1 1 1 q1 + (cid:12) f′ (cid:12) |s−t|dtds |s−t|ηqsαdtds 2 m (cid:12) (cid:18) (cid:19)(cid:12) (cid:18)Z0 Z0 (cid:19) (cid:18)Z0 Z0 (cid:19) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) When η =1, by (2.3), we obtain f(a)+f(b) 1 b − f(x)dx (cid:12)(cid:12) 2 b−aZa (cid:12)(cid:12) ≤ (cid:12)(cid:12)(cid:12)b−a 1 1−q1 f′ b m 1 (cid:12)(cid:12)(cid:12)1|s−t|dtds q1 2 3 m (cid:18) (cid:19) (cid:12) (cid:18) (cid:19)(cid:12) (cid:18)Z0 Z0 (cid:19) +b−a 1 1−(cid:12)(cid:12)(cid:12)q1 f′ b (cid:12)(cid:12)(cid:12) m 1 1|s−t|dtds q1 2 3 m (cid:18) (cid:19) (cid:12) (cid:18) (cid:19)(cid:12) (cid:18)Z0 Z0 (cid:19) m(cid:12) (cid:12) b−a ′ b (cid:12) (cid:12) = f (cid:12) (cid:12) 3 m (cid:12) (cid:18) (cid:19)(cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) SOME INTEGRAL INEQUALITIES 7 When η <1, by (2.3), we obtain f(a)+f(b) 1 b − f(x)dx (cid:12)(cid:12) 2 b−aZa (cid:12)(cid:12) ≤ (cid:12)(cid:12)(cid:12)b−a 1 1−q1 f′ b m 1 (cid:12)(cid:12)(cid:12)1|s−t|ηαqtdtds q1 2 3 m (cid:18) (cid:19) (cid:12) (cid:18) (cid:19)(cid:12) (cid:18)Z0 Z0 (cid:19) +b−a 1 1−(cid:12)(cid:12)(cid:12)1q f′ b (cid:12)(cid:12)(cid:12) m 1 1|s−t|ηαqsdtds q1 2 3 m (cid:18) (cid:19) (cid:12) (cid:18) (cid:19)(cid:12) (cid:18)Z0 Z0 (cid:19) = b−a 1 1−q1 f(cid:12)(cid:12)(cid:12)′ b m(cid:12)(cid:12)(cid:12) 2 3 m (cid:18) (cid:19) (cid:12) (cid:18) (cid:19)(cid:12) (cid:12) (cid:12) 1 2η(αq,αq(cid:12)(cid:12))−2 (cid:12)(cid:12) η(αq,αq)+1 1−η(αq,αq) q × − − "[ln(η(αq,αq))]3 [ln(η(αq,αq))]2 2ln(η(αq,αq))#  1  η(αq,αq)−1 η(αq,αq)+1 q + − "[ln(η(αq,αq))]2 2ln(η(αq,αq))#   which completes the proof. (cid:3)  Corollary 5. Let I ⊃ [0,∞) be an open interval and let f : I → (0,∞) be a differentiable function on I such that f′ ∈L(a,b) for 0≤a<b<∞. If |f′(x)|qis m-logarithmically convex on 0, b for m∈(0,1], then m f(a)+f(b) 1 (cid:2) b (cid:3) − f(x)dx (cid:12)(cid:12) 2 b−aZa (cid:12)(cid:12) (cid:12)(cid:12) b−a f′ b m, (cid:12)(cid:12) η =1 ≤ (cid:12) (b−2a) 13 1−3q1 (cid:12)f′(cid:0)mmb(cid:1)(cid:12)m (cid:12) (cid:12) (cid:12) 1 1  (cid:0)×(cid:1) [2lnη(cid:12)(cid:12)(ηq(,qq(cid:0),)q−)]23(cid:1)(cid:12)(cid:12)− [lηn(ηq,(qq),+q)1]2 − 21l−nηη((qq,,qq)) q + [lηn(ηq,(qq),−q)1]2 − 2ηl(nq,ηq()q+,q1) q ,η <1 (cid:26)h i h i (cid:27) Corollary 6. Let I ⊃ [0,∞) be an open interval and let f : I → (0,∞) be a differentiable function on I such that f′ ∈L(a,b) for 0≤a<b<∞. If |f′(x)| is α-logarithmically convex on [0,b] for α∈(0,1] , then f(a)+f(b) 1 b − f(x)dx (cid:12)(cid:12) 2 b−aZa (cid:12)(cid:12) (cid:12)(cid:12) (b−a) 1 |f′(b)|, (cid:12)(cid:12) η =1 (cid:12) (b−a) 1 1−(cid:0)31q(cid:1)|f′(b)| 2η(αq,(cid:12)αq)−2 − η(αq,αq)+1 − 1−η(αq,αq) 1q ≤ 2 3 [ln(η(αq,αq))]3 [ln(η(αq,αq))]2 2ln(η(αq,αq))  (cid:0) (cid:1) + (cid:18)ηh(αq,αq)−1 − η(αq,αq)+1 1q i , η <1 [ln(η(αq,αq))]2 2ln(η(αq,αq)) where η =|f′(a)|/|f′(b)|.h i (cid:19) Theorem 4. Let f :I ⊂R →R be differentiable on I◦, a,b∈I, with a<b and + + f′ ∈L([a,b]). If |f′| is an (α,m)-logarithmically convex 0, b for (α,m)∈(0,1]2 m (cid:2) (cid:3) 8 MEVLU¨TTUNC¸(cid:3) ANDEBRUYU¨KSEL▽ and µ ,µ ,τ ,τ >0 with µ +τ =1 and µ +τ =1, then 1 2 1 2 1 1 2 2 (2.8) f(a)+f(b) 1 b − f(x)dx (cid:12)(cid:12) 2 b−aZa (cid:12)(cid:12) (cid:12)(cid:12) (b−a) f′ b m 2µ31 (cid:12)(cid:12)+ 2µ32 +τ +τ , η =1 (cid:12) 2 m (2µ1+1)(µ1+1)(cid:12) (2µ2+1)(µ2+1) 1 2  (b−a)(cid:12)f′(cid:0) b(cid:1)(cid:12)mh 2µ31 + 2µ32 i ≤  2 (cid:12)+(cid:12)(cid:12) τ(cid:0)1mη(cid:16)(cid:1)(cid:12)τ(cid:12)(cid:12)α1,τnα1((cid:17)2−µ11++1)(τµ21η+(cid:16)1)τα2,τα2(2(cid:17)µ−21+1)(,µ2+1) η <1  lnη(cid:16)τα1,τα1(cid:17) lnη(cid:16)τα2,τα2(cid:17)(cid:27) where η(α,α) is same as Theorem 1. Proof. Since|f′|q isan(α,m)-logarithmicallyconvexon 0, b ,fromLemma1,we m have (cid:2) (cid:3) f(a)+f(b) 1 b (2.9) − f(x)dx (cid:12)(cid:12) 2 b−aZa (cid:12)(cid:12) (cid:12)(cid:12)(b−a) 1 1 ′ (cid:12)(cid:12) ′ ≤ (cid:12) |(f (ta+(1−t)b)(cid:12))−(f (sa+(1−s)b))||s−t|dtds 2 Z0 Z0 (b−a) 1 1 ′ tα ′ b m(1−tα) ≤ |s−t||f (a)| f dtds 2 m "Z0 Z0 (cid:12) (cid:18) (cid:19)(cid:12) # (cid:12) (cid:12) (b−a) 1 1 ′ s(cid:12)(cid:12)α ′ b(cid:12)(cid:12) m(1−sα) + |s−t||f (a)| f dtds 2 m "Z0 Z0 (cid:12) (cid:18) (cid:19)(cid:12) # (cid:12) (cid:12) (b−a) b m 1 1 (cid:12) (cid:12) 1 1 = f′ |s−t|(cid:12)ηtαdtds+(cid:12) |s−t|ηsαdtds 2 m (cid:12) (cid:18) (cid:19)(cid:12) (cid:20)Z0 Z0 Z0 Z0 (cid:21) (cid:12) (cid:12) (cid:12) (cid:12) for all t∈[0,1]. U(cid:12)sing the w(cid:12)ell knowninequality rt≤µrµ1 +τtτ1, on the right side of (2.9), we get 1 1 1 1 (2.10) |s−t|ηtαdtds+ |s−t|ηsαdtds Z0 Z0 Z0 Z0 1 1 1 1 1 tα ≤ µ1 |s−t|µ1 dtds+τ1 ητ1dtds Z0 Z0 Z0 Z0 1 1 1 1 1 sα +µ2 |s−t|µ2 dtds+τ2 ητ2dtds Z0 Z0 Z0 Z0 When η =1, by (2.3), we get 1 1 1 1 (2.11) |s−t|ηtαdtds+ |s−t|ηsαdtds Z0 Z0 Z0 Z0 2µ3 2µ3 ≤ 1 + 2 +τ +τ 1 2 (2µ +1)(µ +1) (2µ +1)(µ +1) 1 1 2 2 SOME INTEGRAL INEQUALITIES 9 When η <1, by (2.3), we get (2.12) 1 1 1 1 |s−t|ηtαdtds+ |s−t|ηsαdtds Z0 Z0 Z0 Z0 1 1 1 1 1 tα 1 1 1 1 1 sα ≤ µ1 |s−t|µ1 dtds+τ1 ητ1dtds+µ2 |s−t|µ2 dtds+τ2 ητ2dtds Z0 Z0 Z0 Z0 Z0 Z0 Z0 Z0 1 1 1 1 1 1 1 1 1 1 αt αs ≤ µ1 |s−t|µ1 dtds+µ2 |s−t|µ2 dtds+τ1 ητ1dtds+τ2 ητ2dtds Z0 Z0 Z0 Z0 Z0 Z0 Z0 Z0 = 2µ31 + 2µ32 +τ η τα1,τα1 −1 +τ η τα2,τα2 −1 (2µ1+1)(µ1+1) (2µ2+1)(µ2+1) 1 ln(cid:16)η α,(cid:17)α 2 ln(cid:16)η α,(cid:17)α τ1 τ1 τ2 τ2 from (2.9)-(2.12), which completes the proof. (cid:16) (cid:17) (cid:16) (cid:3)(cid:17) Corollary 7. Under the assumptions of Theorem 4, and µ = µ = µ > 0, τ = 1 2 τ =τ >0 with µ+τ =1, then we have 1 2 f(a)+f(b) 1 b (b−2a) f′ mb m (2µ+41µ)(3µ+1) +2τ , η =1 − f(x)dx ≤ (cid:12)(cid:12) 2 b−aZa (cid:12)(cid:12)  (b−2a) f′ m(cid:12)(cid:12)b (cid:0)m (cid:1)((cid:12)(cid:12)2µ+h41µ)(3µ+1) +2τηln(ηατ(,αατi,)α−)1 , η <1 (cid:12) (cid:12) (cid:20) τ τ (cid:21) (cid:12) (cid:12) (cid:12) (cid:0) (cid:1)(cid:12) (cid:12) (cid:12)Reference(cid:12)s (cid:12) [1] R.-F. Bai, F. Qi and B.-Y. Xi, Hermite-Hadamard type inequalities for the m- and (α,m)- logarithmicallyconvexfunctions.Filomat, 27(2013), 1-7. [2] M.Z. Sarıkaya, E. Set, M.E.O¨zdemir: New inequalities of Hermite-HadamardType, Volume 12,Issue4,2009,Art.11,RGMIAOnline: http://rgmia.org/papers/v12n4/set2.pdf [3] J. Hadamard: E´tude sur les propri´et´es des fonctions enti`eres et en particulier d’une fonction consider´eeparRiemann,J.MathPuresAppl.,58,(1893) 171–215. [4] D.S.Mitrinovi´c,J.Peˇcari´candA.M.Fink:Classicalandnewinequalitiesinanalysis,Kluw- erAcademic,Dordrecht,1993. [5] S. S. Dragomir and C. E. M. Pearce: Selected topics on Hermite-Hadamard in- equalities and applications, RGMIA monographs, Victoria University, 2000. [Online: http://www.staff.vu.edu.au/RGMIA/monographs/hermite-hadamard.html]. [6] S.SDragomirandR.P.Agarwal,Twoinequalities fordifferantiablemappingsandapplications to special means of real numbers and trapezoidal formula, Appl. Math. Lett., 11(5) (1998), 91-95. [7] J.E.Peˇcari´c,F.ProschanandY.L.Tong: ConvexFunctions,PartialOrderings,andStatistical Applications,AcademicPressInc.,1992. [8] M.Tun¸c,E.Yu¨kselandI˙.Karabayır,Onsomeinequalitiesforfunctionswhosesecondderiv- etives absolutevaluesareα-,m-,(α,m)-logarithmicallyconvex, submitted. (cid:3)Department of Mathematics, Faculty of Science and Arts, Kilis 7 Aralık Univer- sity,Kilis, 79000,Turkey. E-mail address: (cid:3)[email protected] ▽The Institute for Graduate Studies in Sciences and Engineering, Kilis 7 Aralık University,Kilis, 79000,Turkey. E-mail address: ▽[email protected]

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.