Solving the Schrödinger Equation Has Everything Been Tried? P780.9781848167247-tp.indd 1 7/25/11 11:49 AM TThhiiss ppaaggee iinntteennttiioonnaallllyy lleefftt bbllaannkk Solving the Schrödinger Equation Has Everything Been Tried? Editor Paul Popelier Imperial College Press ICP P780.9781848167247-tp.indd 2 7/25/11 11:49 AM Published by Imperial College Press 57 Shelton Street Covent Garden London WC2H 9HE Distributed by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. SOLVING THE SCHRÖDINGER EQUATION Has Everything Been Tried? Copyright © 2011 by Imperial College Press All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher. ISBN-13 978-1-84816-724-7 ISBN-10 1-84816-724-5 Typeset by Stallion Press Email: [email protected] Printed in Singapore. Catherine - Solving the Schrodinger Eqn.pmd 1 9/7/2011, 5:06 PM July20,2011 9:6 9inx6in b1189-fm SolvingtheSchro¨dingerEquation ToD.P.B. v July20,2011 9:6 9inx6in b1189-fm SolvingtheSchro¨dingerEquation ‘Therichestinteractionsoccurbetweentwoalmostidenticalbut opposingconstituents.’ vi July20,2011 9:6 9inx6in b1189-fm SolvingtheSchro¨dingerEquation Contents Preface xv 1. IntraculeFunctionalTheory 1 DeborahL.CrittendenandPeterM.W.Gill 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Intracules . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 ElectronCorrelationModels . . . . . . . . . . . . . . 13 1.4 DynamicandStaticCorrelation . . . . . . . . . . . . . 16 1.5 DispersionEnergies . . . . . . . . . . . . . . . . . . . 18 1.6 FutureProspects . . . . . . . . . . . . . . . . . . . . . 21 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2. ExplicitlyCorrelatedElectronicStructureTheory 25 FrederickR.Manby 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 25 2.1.1 Basis-setexpansions . . . . . . . . . . . . . . 25 2.2 F12Theory . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.1 MP2-F12 . . . . . . . . . . . . . . . . . . . . 29 2.2.2 Explicitlycorrelatedcoupled-cluster theory . . . . . . . . . . . . . . . . . . . . . 30 2.3 FiveThoughtsforF12Theory . . . . . . . . . . . . . . 31 2.3.1 Thought1:Doweneed(productsof) virtuals? . . . . . . . . . . . . . . . . . . . . 31 2.3.2 Thought2:Aretherebettertwo-electron basissets? . . . . . . . . . . . . . . . . . . . 34 vii July20,2011 9:6 9inx6in b1189-fm SolvingtheSchro¨dingerEquation viii Contents 2.3.3 Thought3:Doweneedtheresolution oftheidentity? . . . . . . . . . . . . . . . . . 35 2.3.4 Thought4:Couldwehaveexplicitcorrelation forhigherexcitations? . . . . . . . . . . . . . 38 2.3.5 Thought5:Canweavoidthree-electronerrors intwo-electronsystems? . . . . . . . . . . . . 39 2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . 40 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3. SolvingProblemswithStrongCorrelationUsing theDensityMatrixRenormalizationGroup(DMRG) 43 GarnetKin-LicChanandSandeepSharma 3.1 TheProblemofStrongCorrelation . . . . . . . . . . . 43 3.2 TheDensityMatrixRenormalizationGroup Wavefunction . . . . . . . . . . . . . . . . . . . . . . 46 3.3 LocalityandEntanglementintheDMRG . . . . . . . . 47 3.4 OtherPropertiesoftheDMRG . . . . . . . . . . . . . 50 3.5 RelationtotheRenormalizationGroup . . . . . . . . . 51 3.6 DynamicCorrelation—theRoleofCanonical Transformations . . . . . . . . . . . . . . . . . . . . . 53 3.7 WhatCantheDMRGDo?ABriefHistory . . . . . . . 54 3.8 TheFuture:HigherDimensionalAnalogues . . . . . . 57 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4. Reduced-Density-MatrixTheoryforMany-electronCorrelation 61 DavidA.Mazziotti 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 62 4.2 Variational2-RDMMethod . . . . . . . . . . . . . . . 63 4.2.1 Energyasa2-RDMfunctional . . . . . . . . 63 4.2.2 Positivityconditions . . . . . . . . . . . . . . 64 4.2.3 Semidefiniteprogramming . . . . . . . . . . . 67 4.2.4 Applications . . . . . . . . . . . . . . . . . . 69 4.3 ContractedSchro¨dingerTheory . . . . . . . . . . . . . 73 4.3.1 ACSEandcumulantreconstruction . . . . . . 74 4.3.2 SolvingtheACSEforground andexcitedstates. . . . . . . . . . . . . . . . 75 4.3.3 Applications . . . . . . . . . . . . . . . . . . 77 4.4 Parametric2-RDMMethod . . . . . . . . . . . . . . . 80 4.4.1 Parametrizationofthe2-RDM . . . . . . . . . 81 July20,2011 9:6 9inx6in b1189-fm SolvingtheSchro¨dingerEquation Contents ix 4.4.2 Applications . . . . . . . . . . . . . . . . . . 83 4.5 LookingAhead . . . . . . . . . . . . . . . . . . . . . 85 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5. FiniteSizeScalingforCriticalityoftheSchro¨dingerEquation 91 SabreKais 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 92 5.2 CriticalityforLarge-dimensionalModels . . . . . . . . 93 5.3 FiniteSizeScaling:ABriefHistory . . . . . . . . . . . 95 5.4 FiniteSizeScalingfortheSchro¨dingerEquation . . . . 97 5.5 TheHulthenPotential . . . . . . . . . . . . . . . . . . 100 5.5.1 Analyticalsolution . . . . . . . . . . . . . . . 100 5.5.2 Basissetexpansion . . . . . . . . . . . . . . 101 5.5.3 Finiteelementmethod . . . . . . . . . . . . . 101 5.5.4 Finitesizescalingresults . . . . . . . . . . . 102 5.6 FiniteSizeScalingandCriticality ofM-electronAtoms. . . . . . . . . . . . . . . . . . . 105 5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . 107 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . 108 6. TheGeneralizedSturmianMethod 111 JamesAveryandJohnAvery 6.1 DescriptionoftheMethod . . . . . . . . . . . . . . . . 111 6.1.1 TheintroductionofSturmians intoquantumtheory . . . . . . . . . . . . . . 111 6.1.2 GeneralizedSturmians . . . . . . . . . . . . . 114 6.1.3 ThegeneralizedSturmianmethodapplied toatoms . . . . . . . . . . . . . . . . . . . . 117 6.1.4 Goscinskianconfigurations . . . . . . . . . . 118 6.1.5 Goscinskiansecularequationsforatoms andatomicions . . . . . . . . . . . . . . . . 120 6.2 Advantages:SomeIllustrativeExamples . . . . . . . . 120 6.2.1 Thelarge-Zapproximation:restriction ofthebasissettoanR-block . . . . . . . . . 121 6.2.2 Validityofthelarge-Zapproximation . . . . . 126 6.2.3 Coreionizationenergies . . . . . . . . . . . . 129 6.3 LimitationsoftheMethod;ProspectsfortheFuture . . 130 6.3.1 CanthegeneralizedSturmianmethod beappliedtoN-electronmolecules?. . . . . . 133