ebook img

Solutions to some exercises in the book "J. E. Humphreys, An Introduction to Lie Algebras and Representation Theory" PDF

50 Pages·2013·0.381 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Solutions to some exercises in the book "J. E. Humphreys, An Introduction to Lie Algebras and Representation Theory"

Solutions to some exercises in the book “J. E. Humphreys, An Introduction to Lie Algebras and Representation Theory” July20,2013 Contents 1 DefinitionsandFirstExamples 3 2 IdealsandHomomorphisms 9 3 SolvableandNilpotentLieAlgebras 13 4 TheoremsofLieandCartan 16 5 KillingForm 17 6 CompleteReducibilityofRepresentations 20 7 Representationsofsl(2,F) 24 8 RootSpaceDecomposition 30 9 Axiomatics 33 10 SimpleRootsandWeylGroup 36 11 Classification 39 12 ConstructionofRootSystemsandAutomorphisms 39 13 AbstractTheoryofWeights 40 14 IsomorphismTheorem 41 15 CartanSubalgebras 41 16 ConjugacyTheorems 41 17 UniversalEnvelopingAlgebras 43 18 GeneratorsandRelations 43 19 TheSimpleAlgebras 43 20 WeightsandMaximalVectors 45 21 FiniteDimensionalModules 46 1 22 MultiplicityFormula 47 23 Characters 47 24 FormulasofWeyl,Kostant,andSteinberg 48 25 ChevalleybasisofL 48 26 Kostant’sTheorem 49 27 AdmissibleLattices 50 Page2 1 Definitions and First Examples 1. LetLbetherealvectorspaceR3. Define[xy]=x×y(crossproductofvectors)forx,y ∈L,andverifythatL isaLiealgebra. WritedownthestructureconstantsrelativetotheusualbasisofR3. Solution: Clearly,[,]isbilinearandanti-commutative,itneedonlytochecktheJacobiIdentity: [[x,y],z] = (x×y)×z = (x.z)y−(y.z)x = (z.x)y−(y.x)z+(x.y)z−(z.y)x = [[z,y],x]+[[x,z],y] where(.)istheinnerproductofR3. TakethestandardbasisofR3: e = (1,0,0),e = (0,1,0),e = (0,0,1). Wecanwritedownthestructure 1 2 3 equationsofL: [e ,e ] = e 1 2 3 [e ,e ] = e 2 3 1 [e ,e ] = e 3 1 2 2. Verify that the following equations and those implied by (L1)(L2) define a Lie algebra structure on a three dimensionalspacewithbasis(x,y,z):[xy]=z,[xz]=y,[yz]=0. Solution: (L1)(L2)aresatisfied,itissufficienttoshowtheJacobiIdentityholdforthebasis: [[x,y],z] = [z,z]=0 [[y,z],x] = [0,x]=0 [[x,z],y] = [y,y]=0 (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) 0 1 1 0 0 0 3. Let x = ,h = ,y = be an ordered basis for sl(2,F). Compute the matrices of 0 0 0 −1 1 0 adx,adh,adyrelativetothisbasis. Solution: Bythestructureequationsofsl(2,F): adx(y) = −ady(x)=h adx(h) = −adh(x)=−2x ady(h) = −adh(y)=2y Wecanwritedownthematricesofadx,adh,adyrelativetothisbasiseasily:       0 −2 0 2 0 0 0 0 0 adx∼0 0 1 adh∼0 0 0  ady ∼−1 0 0 0 0 0 0 0 −2 0 2 0 Page3 4. FindalinearLiealgebraisomorphictothenonabeliantwodimensionalalgebraconstructedin(1.4). Solution: TwodimensionalLiealgebraconstructedin(1.4)isgivenbybasis(x,y)withcommutation[x,y]=x. Ingl(F2),let (cid:18) (cid:19) (cid:18) (cid:19) 0 1 −1 0 x(cid:55)→ , y (cid:55)→ 0 0 0 0 Thisisaisomorphism. 5. Verifytheassertionsmadein(1.2)aboutt(n,F),d(n,F),n(n,F),andcomputethedimensionofeachalgebra, byexhibitingbases. Solution: Assertionsmadein(1.2): t(n,F)=d(n,F)+n(n,F) vectorspacedirectsum (1) [d(n,F),n(n,F)]=n(n,F) (2) [t(n,F),t(n,F)]=n(n,F) (3) Evidently, (1)holdsand[d(n,F),n(n,F)] ⊆ n(n,F). Sowejustneedtoshowtheconverseconclusionis alsotrue. Lete denotesthematrixwith(i,j)-elementis1,and0otherwise. ij n(n,F)=span {e |i<j} F ij Butweknow e =e e −e e =[e ,e ]⊆[d(n,F),n(n,F)], i<j ij ii ij ij ii ii ij So(2)iscorrect. (3)followsfrom(1)and(2): [t(n,F),t(n,F)] = [d(n,F)+n(n,F),d(n,F)+n(n,F)] ⊆ [d(n,F),d(n,F)]+[n(n,F),n(n,F)]+[d(n,F),n(n,F)] ⊆ n(n,F) Conversely,n(n,F)=[d(n,F),n(n,F)]⊆[t(n,F),t(n,F)]. 6. Letx∈gl(n,F)havendistincteigenvaluesa ,··· ,a inF. Provethattheeigenvaluesofadxarepreciselythe 1 n n2scalarsa −a (1(cid:54)i,j (cid:54)n),whichofcourseneednotbedistinct. i j Solution:   v 1i Let v =  ..  ∈ Fn,1 (cid:54) i (cid:54) n are eigenvectors of x respect to eigenvalue a respectively. Then i  .  i v ni v ,1 (cid:54) i (cid:54) narelinearindependent. LetA = (v ) ,E denotesthen×nmatrixwith(i,j)-elementis i ij n×n ij Page4 1,and0otherwise,e =AE A−1,ThenwehaveAisanonsingularmatrixand ij ij e v =δ v ij k jk i adx(e )v =x.e .v −e .x.v =(a −a )δ v =(a −a )e .v ij k ij k ij k i k jk i i j ij k So adx(e )=(a −a )e ij i j ij i.e.,a −a areeigenvaluesofadx,theeigenvectorsaree respectively. Henceadxisdiagonalizable. So i j ij wecanconcludethattheeigenvaluesofadxarepreciselythen2scalarsa −a (1(cid:54)i,j (cid:54)n). i j 7. Lets(n,F)denotethescalarmatrices(=scalarmultiplesoftheidentity)ingl(n,F).IfcharF is0orelseaprime notdividingn,provethatgl(n,F)=sl(n,F)+s(n,F)(directsumofvectorspaces),with[s(n,F),gl(n,F)]= 0. Solution: ∀A=(a )∈gl(n,F),Iftr(A)=0,A∈sl(n,F);elseA= tr(A)I+(A−tr(A)I)withtr(A−tr(A)I)=0, ij n n n i.e.,A− tr(A)I ∈sl(n,F).(charF is0orelseaprimenotdividingn.) sl(n,F)∩s(n,F)={0}isclearly. n Hencegl(n,F)=sl(n,F)+s(n,F)(directsumofvectorspaces). ForaI ∈s(n,F),∀A∈gl(n,F),[aI,A]=aA−aA=0,So [s(n,F),gl(n,F)]=0. 8. VerifythestateddimensionofD . l Solution: (cid:18) (cid:19) (cid:18) (cid:19) m n 0 I Supposex= (m,n,p,q ∈gl(n,F),s= l . Bysx=−xts,wehave p q I 0 l m=−qt,n=−nt,p=−pt,q =−mt WecanenumerateabasisofD : l e −e ,1(cid:54)i,j (cid:54)l; e −e ,e −e ,1(cid:54)i<j (cid:54)l i,j l+j,l+i i,l+j j,l+i l+i,j l+j,i wheree isthematrixhaving1inthe(i,j)positionand0elsewhere. Hence ij 1 1 dimD =l2+ l(l−1)+ l(l−1)=2l2−l l 2 2 9. When charF = 0, show thateach classical algebra L = A ,B ,C , or D is equal to [LL]. (Thisshows again l l l l thateachalgebraconsistsoftrace0matrices.) Solution: [L,L]⊆Lisevident. ItissufficienttoshowL⊆[L,L]. Page5 • A : 1 e = 1[h,e ] 12 2 12 e = 1[e ,h] 21 2 21 h = [e ,e ] 12 21 • A (l(cid:62)2): l e = [e ,e ], k (cid:54)=i,j,i(cid:54)=j ij ik kj h = [e ,e ] i i,i+1 i+1,i • B (l(cid:62)2): l e −e = [e −e ,e −e ] 1,l+i+1 i+1,1 1,j+1 l+j+1,1 j+1,l+i+1 i+1,l+j+1 e −e = [e −e ,e −e ] 1,i+1 l+i+1,1 1,l+j+1 j+1,1 l+j+1,i+1 l+i+1,j+1 e −e = [e −e ,e −e ] i+1,i+1 l+i+1,l+i+1 i+1,1 1,l+i+1 1,i+1 l+i+1,1 e −e = [e −e ,e −e ] i+1,j+1 l+i+1,l+j+1 i+1,1 1,l+i+1 1,j+1 l+j+1,1 e −e = [e −e ,e −e ] i+1,l+j+1 j+1,l+i+1 i+1,i+1 l+i+1,l+i+1 i+1,l+j+1 j+1,l+i+1 e −e = [e −e ,e −e ] l+i+1,j+1 j+l+1,i+1 l+i+1,l+i+1 i+1,i+1 l+i+1,j+1 j+l+1,i+1 where1(cid:54)i(cid:54)=j (cid:54)l. • C (l(cid:62)3): l e −e = [e ,e ] ii l+i,l+i i,l+i l+i,i e −e = [e −e ,e −e ] i(cid:54)=j ij l+j,l+i ii l+i,l+i ij l+j,l+i e +e = [e −e ,e +e ] i,l+j j,l+i ii l+i,l+i i,l+j j,l+i e +e = [e −e ,e +e ] l+i,j l+j,i l+i,l+i ii l+i,j l+j,i • D (l(cid:62)2): l e −e = 1[e −e ,e −e ] ii l+i,l+i 2 ij l+j,l+i ji l+i,l+j +1[e −e ,e −e ] 2 i,l+j j,l+i l+j,i l+i,j e −e = [e −e ,e −e ] ij l+j,l+i ii l+i,l+i ij l+j,l+i e −e = [e −e ,e −e ] i,l+j j,l+i ii l+i,l+i i,l+j j,l+i e −e = [e −e ,e −e ] l+i,j l+j,i l+i,l+i ii l+i,j l+j,i wherei(cid:54)=j. 10. Forsmallvaluesofl,isomorphismsoccuramongcertainoftheclassicalalgebras. ShowthatA ,B ,C areall 1 1 1 isomorphic,whileD istheonedimensionalLiealgebra. ShowthatB isisomorphictoC ,D toA . Whatcan 1 2 2 3 3 yousayaboutD ? 2 Solution: TheisomorphismofA ,B ,C isgivenasfollows: 1 1 1 A → B → C 1 1 1 e −e (cid:55)→ 2(e −e ) (cid:55)→ e −e 11 22 22 33 11 22 e (cid:55)→ 2(e −e ) (cid:55)→ e 12 13 21 12 e (cid:55)→ 2(e −e ) (cid:55)→ e 21 12 31 21 ForB ,C wefirstcalculatetheeigenvectorsforh =e −e ,h =e −e andh(cid:48) =e −e ,h(cid:48) = 2 2 1 22 44 2 33 55 1 11 33 2 e −e respectively. We denote λ = (λ(h ),λ(h )) for the eigenvalue of h ,h , λ(cid:48) is similar. See the 22 44 1 2 1 2 followingtable: Page6 B C 2 2 α=(1,0) e −e α(cid:48) =(−1,1) e −e 21 14 21 34 −α=(−1,0) e −e −α(cid:48) =(1,−1) e −e 12 41 12 43 β =(−1,1) e −e β(cid:48) =(2,0) e 32 45 13 −β =(1,−1) e −e −β(cid:48) =(−2,0) e 23 54 31 α+β =(0,1) e −e α(cid:48)+β(cid:48) =(1,1) e +e 15 31 14 23 −(α+β)=(0,−1) e −e −(α(cid:48)+β(cid:48))=(−1,−1) e +e 13 51 41 32 2α+β =(1,1) e −e 2α(cid:48)+β(cid:48) =(0,2) e 25 34 24 −(2α+β)=(−1,−1) e −e −(2α(cid:48)+β(cid:48))=(0,−2) e 43 52 42 Wemakealineartransformation h˜(cid:48) =−1h(cid:48) + 1h(cid:48),h˜(cid:48) = 1h + 1h 1 2 1 2 2 2 2 1 2 2 Thenα(h )=α(cid:48)(h˜(cid:48)),α(h )=α(cid:48)(h˜(cid:48)),β(h )=β(cid:48)(h˜(cid:48)),β(h )=β(cid:48)(h˜(cid:48)). SotheisomorphismofB ,C 1 1 2 2 1 1 2 2 2 2 isgivenasfollows: B → C 2 2 e −e (cid:55)→ −1(e −e )+ 1(e −e ) 22 44 2 11 33 2 22 44 e −e (cid:55)→ 1(e −e )+ 1(e −e ) 33 55 2 11 √ 33 2 22 44 e −e (cid:55)→ 2(e −e ) 12 41 √2 12 43 e −e (cid:55)→ 2(e −e ) 21 14 2 21 34 e −e (cid:55)→ e 32 45 13 e −e (cid:55)→ e 23 54 √ 31 e −e (cid:55)→ 2(e +e ) 15 31 √2 14 23 e −e (cid:55)→ 2(e +e ) 13 51 2 32 41 e −e (cid:55)→ e 25 34 24 e −e (cid:55)→ e 43 52 42 For A and D , we calculate the eigenvalues and eigenvectors for h = e −e ,h = e −e ,h = 3 3 1 11 22 2 22 33 3 e −e andh(cid:48) =e −e ,h(cid:48) =e −e ,h(cid:48) =e −e respectively. 33 44 1 11 44 2 22 55 3 33 66 A D 3 3 α=(1,1,−1) e α(cid:48) =(0,1,1) e −e 13 26 35 −α=(−1,−1,1) e −α(cid:48) =(0,−1,−1) e −e 31 62 53 β =(−1,1,1) e β(cid:48) =(0,1,−1) e −e 24 23 65 −β =(1,−1,−1) e −β(cid:48) =(0,−1,1) e −e 42 32 56 γ =(−1,0,−1) e γ(cid:48) =(1,−1,0) e −e 41 12 54 −γ =(1,0,1) e −γ(cid:48) =(−1,1,0) e −e 14 21 45 α+γ =(0,1,−2) e α(cid:48)+γ(cid:48) =(1,0,1) e −e 43 16 34 −(α+γ)=(0,−1,2) e −(α(cid:48)+γ(cid:48))=(−1,0,−1) e −e 34 61 43 β+γ =(−2,1,0) e β(cid:48)+γ(cid:48) =(1,0,−1) e −e 21 13 64 −(β+γ)=(2,−1,0) e −(β(cid:48)+γ(cid:48))=(−1,0,1) e −e 12 31 46 α+β+γ =(−1,2,−1) e α(cid:48)+β(cid:48)+γ(cid:48) =(1,1,0) e −e 23 15 24 −(α+β+γ)=(1,−2,1) e −(α(cid:48)+β(cid:48)+γ(cid:48))=(−1,−1,0) e −e 32 51 42 Wetakealineartransformation h˜(cid:48) =−h(cid:48) +h(cid:48),h˜(cid:48) =h(cid:48) +h(cid:48),h˜(cid:48) =−h(cid:48) −h(cid:48) 1 1 3 2 1 2 3 1 3 Page7 thenα(h ) = α(cid:48)(h˜(cid:48)),β(h ) = β(cid:48)(h˜(cid:48)),γ(h ) = γ(cid:48)(h˜(cid:48)),i = 1,2,3;TheisomorphismofA andD canbe i i i i i i 3 3 givenasfollows: A (cid:55)→ D 3 3 e −e (cid:55)→ −(e −e )+e −e 11 22 11 44 33 66 e −e (cid:55)→ (e −e )+(e −e ) 22 33 11 44 22 55 e −e (cid:55)→ −(e −e )−(e −e ) 33 44 11 44 33 66 e (cid:55)→ e −e 13 26 35 e (cid:55)→ e −e 31 62 53 e (cid:55)→ e −e 24 23 65 e (cid:55)→ e −e 42 32 56 e (cid:55)→ e −e 41 12 54 e (cid:55)→ e −e 14 21 45 e (cid:55)→ e −e 43 16 34 e (cid:55)→ e −e 34 61 43 e (cid:55)→ e −e 21 13 64 e (cid:55)→ e −e 12 31 46 e (cid:55)→ e −e 23 15 24 e (cid:55)→ e −e 32 51 42 11. VerifythatthecommutatoroftwoderivationsofanF-algebraisagainaderivation,whereastheordinaryproduct neednotbe. Solution: AisaF-algebra,δ,δ(cid:48) ∈Der(A),a,b∈A [δ,δ(cid:48)](ab) = δδ(cid:48)(ab)−δ(cid:48)δ(ab) = δ(δ(cid:48)(a)b+aδ(cid:48)(b))−δ(cid:48)(δ(a)b+aδ(b)) = δ(δ(cid:48)(a))b+δ(cid:48)(a)δ(b)+δ(a)δ(cid:48)(b)+aδ(δ(cid:48)(b)) −δ(cid:48)(δ(a))b−δ(a)δ(cid:48)(b)−δ(cid:48)(a)δ(b)−aδ(cid:48)(δ(b)) = ([δ,δ(cid:48)](a))b−a[δ,δ(cid:48)](b) ∴[δ,δ(cid:48)] ∈ Der(A) 12. LetLbeaLiealgebraoveranalgebraicallyclosedfieldandletx ∈ L. ProvethatthesubspaceofLspannedby theeigenvectorsofadxisasubalgebra. Solution: Supposey,zareeigenvectorsofadxrespecttoeigenvaluesλ,µ,i.e.,[x,y]=λy,[x,z]=µzthen adx[y,z] = [x,[y,z]] = [y,[x,z]]−[z,[x,y]] = (λ+µ)[y,z] So [y,z] is also a eigenvector of adx. i.e., the subspace of L spanned by the eigenvectors of adx is a subalgebra. Page8 2 Ideals and Homomorphisms 1. Provethatthesetofallinnerderivationsadx,x∈L,isanidealofDerL. Solution: ∀δ ∈DerL,x,y ∈L [δ,adx](y) = δ([x,y])−[x,δ(y)] = [δ(x),y]+[x,δ(y)]−[x,δ(y)] = ad(δ(x))(y) ∴[δ,adx] = adδ(x)isainnerderivations. 2. Showthatsl(n,F)ispreciselythederivedalgebraofgl(n,F)(cf. Exercise1.9). Solution: ∀x,y ∈gl(n,F),tr[x,y]=tr(xy)−tr(yx)=0. Wehave [gl(n,F),gl(n,F)]⊆sl(n,F) Conversely,byexercise1.9, sl(n,F)=[sl(n,F),sl(n,F)]⊆[gl(n,F),gl(n,F)] 3. Prove that the center of gl(n,F) equals s(n,F) (the scalar matrices). Prove that sl(n,F) has center 0, unless charF dividesn,inwhichcasethecenteriss(n,F). Solution: (cid:80) Clearly, we have s(n,F) ⊆ Z(gl(n,F)). Conversely, Let a = a e ∈ Z(gl(n,F)), then for each ij ij i,j e ∈gl(n,F), kl (cid:88) [a,e ] = a [e ,e ] kl ij ij kl i,j (cid:88) = a (δ e −δ e ) ij jk il li kj i,j n n (cid:88) (cid:88) = a e − a e ik il lj kj i=1 j=1 n n (cid:88) (cid:88) = (a −a )e + a e − a e kk ll kl ik il lj kj i=1 j=1 i(cid:54)=k j(cid:54)=l So a =a ,a =0,i(cid:54)=j kk ll ij i.e. a∈s(n,F) Page9 Forsl(n,F),ifc∈Z(sl(n,F)),∀x∈sl(n,F),[x,c]=0. Butweknowgl(n,F)=sl(n,F)+s(n,F)and s(n,F)isthecenterofgl(n,F). Hencec∈Z(gl(n,F))=s(n,F). Wehave Z(sl(n,F))=sl(n,F)∩s(n,F) If charF does not divide n, each aI ∈ s(n,F) has trace na (cid:54)= 0, so aI (cid:54)∈ sl(n,F). i.e., Z(sl(n,F)) = sl(n,F) ∩ s(n,F) = 0. Else if charF divides n, each aI ∈ s(n,F) has trace na = 0, in this case Z(sl(n,F))=sl(n,F)∩s(n,F)=s(n,F) 4. Show that (up to isomorphism) there is a unique Lie algebra over F of dimension 3 whose derived algebra has dimension1andliesinZ(L). Solution: LetL bethe3-dimensionalliealgebraoverF withbasis(x ,y ,z )andcommutation: 0 0 0 0 [x ,y ]=z ,[x ,z ]=[y ,z ]=0 0 0 0 0 0 0 0 . SupposeLbeany3-dimensionalliealgebraoverF whosederivedalgebrahasdimension1andliesinZ(L). Wecantakeabasis(x,y,z)ofLsuchthatz ∈ [LL] ⊆ Z(L). Byhypothesis,[x,y] = λz,[x,z] = [y,z] = 0,λ∈F. ThenL→L ,x(cid:55)→x ,y (cid:55)→y ,z (cid:55)→λz isaisomorphism. 0 0 0 0 5. SupposedimL = 3,L = [LL]. ProvethatLmustbesimple. [ObservefirstthatanyhomomorphicimageofL alsoequalsitsderivedalgebra.] Recoverthesimplicityofsl(2,F),charF (cid:54)=2. Solution: LetI isanidealofL,then[L/I,L/I]=[L,L]/I =L/I. Suppose L has a proper ideal I (cid:54)= 0, then I has dimension 1 or 2. If I has dimension 2, then L/I is a 1-dimensionalalgebra, [L/I,L/I] = 0 (cid:54)= L/I. ElseI hasdimension1, wecantakeabasis(x,y,z)ofL suchthatzisabasisofI,so [x,z]∈I,[y,z]∈I Hence[LL]iscontainedinthesubspaceofLspannedby[x,y],z. Itsdimensionisatmost2,thiscontradict with[LL]=L. Now,weconcludethatLhasnopropernonzeroideal,i.e.,LisasimpleLiealgebra. 6. Provethatsl(3,F)issimple, unlesscharF = 3(cf. Exercise3). [Usethestandardbasish ,h ,e (i (cid:54)= j). If 1 2 ij I (cid:54)=0isanideal,thenIisthedirectsumofeigenspacesforadh oradh ;comparetheeigenvaluesofadh ,adh 1 2 1 2 actingonthee .] ij Solution: 7. Prove that t(n,F) and d(n,F) are self-normalizing subalgebras of gl(n,F), whereas n(n,F) has normalizer t(n,F). Page10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.