ebook img

SOLUTIONS TO PROBLEMS ELEMENTARY LINEAR ALGEBRA PDF

100 Pages·2015·0.42 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview SOLUTIONS TO PROBLEMS ELEMENTARY LINEAR ALGEBRA

SOLUTIONS TO PROBLEMS ELEMENTARY LINEAR ALGEBRA K. R. MATTHEWS DEPARTMENT OF MATHEMATICS UNIVERSITY OF QUEENSLAND First Printing, 1991 CONTENTS PROBLEMS 1.6 ............................................ 1 PROBLEMS 2.4 ............................................ 12 PROBLEMS 2.7 ............................................ 18 PROBLEMS 3.6 ............................................ 32 PROBLEMS 4.1 ............................................ 45 PROBLEMS 5.8 ............................................ 58 PROBLEMS 6.3 ............................................ 69 PROBLEMS 7.3 ............................................ 83 PROBLEMS 8.8 ............................................ 91 i SECTION 1.6 0 0 0 2 4 0 1 2 0 2. (i) R R R 1R ; 2 4 0 1 ↔ 2 0 0 0 1 → 2 1 0 0 0 · ¸ · ¸ · ¸ 0 1 3 1 2 4 1 0 2 (ii) 1 2 4 R1 ↔ R2 0 1 3 R1 → R1−2R2 0 1 −3 ; · ¸ · ¸ · ¸ 1 1 1 1 1 0 R R R (iii) 1 1 0 2 → 2− 1 0 0 1  1 0 0  R3 → R3−R1  0 1 −1  − −     R R +R 1 0 0 1 0 0 1RR→32→1−RR33 3  00 10 11  R2R→3 →R2−+R3R3  00 10 01 ; ↔ −     2 0 0 1 0 0 R R +2R (iv) 0 0 0 3 → 3 1 0 0 0 .  4 0 0  R1 → 12R1  0 0 0  −     1 1 1 2 1 1 1 2 R R 2R 3.(a) 2 3 1 8 2 → 2− 1 0 1 3 4  1 1 −1 8  R3 → R3−R1  0 2 −2 10  − − − − − −     1 0 4 2 1 0 4 2 RR31→→RR31+−2RR22  00 10 −38 −42 R3 → −81R3 00 10 −31 41  − − 4     1 0 0 3 R1 → R1−4R3 0 1 0 −19 . R2 → R2+3R3  0 0 1 41  4   The augmented matrix has been converted to reduced row–echelon form and we read off the unique solution x = 3, y = 19, z = 1. − 4 4 1 1 1 2 10 1 1 1 2 10 (b) 3 1 −7 4 1 R2 → R2−3R1 0 4 −10 2 29  5 −3 15 6 9  R3 → R3+5R1  0 −8 20 −4 −59  − − − −     1 1 1 2 10 − R R +2R 0 4 10 2 29 . 3 3 2 →  − − −  0 0 0 0 1   From the last matrix we see that the original system is inconsistent. 1 3 1 7 0 1 1 1 1 − − 2 1 4 1 2 1 4 1 (c)  1 −1 1 12 R1 ↔ R3 3 −1 7 02  − −  6 4 10 3   6 4 10 3   −   −      1 1 1 1 1 0 3 1 RR23 →→ RR23−−23RR11  00 −21 42 −233  RR14 →→ RR14+−RR23  00 10 20 −−2203 . R4 → R4−6R1  0 2 4 −3  R3 → R3−2R2  0 0 0 0   −        The augmented matrix has been converted to reduced row–echelon form and we read off the complete solution x = 1 3z, y = 3 2z, with z −2 − −2 − arbitrary. 2 1 3 a 2 1 3 a − − 4. 3 1 5 b R R R 1 2 8 b a 2 2 1  −  → −  − −  5 5 21 c 5 5 21 c − − − −     1 2 8 b a 1 2 8 b a R1 ↔ R2 52 −51 −213 −ac  RR23 →→ RR23−+25RR11  00 −55 −1199 5−b 2b−5+a3+ac  − − − −     1 2 8 b a R R +R − − R32→→ −351R22  00 01 −5109 3b 2b−25a3a+c  −   1 0 2 (b+a) −5 5 R1 → R1−2R2 0 1 −519 2b−53a . 0 0 0 3b 2a+c −   From the last matrix we see that the original system is inconsistent if 3b 2a+c = 0. If 3b 2a+c = 0, the system is consistent and the solution − 6 − is (b+a) 2 (2b 3a) 19 x = + z, y = − + z, 5 5 5 5 where z is arbitrary. 1 1 1 1 1 1 R R tR 5. t 1 t 2 → 2− 1 0 1 t 0  1+t 2 3  R3 → R3−(1+t)R1  0 1−t 2 t  − −     1 1 1 R R R 0 1 t 0 = B. 3 3 2 → −  −  0 0 2 t −   Case 1. t = 2. No solution. 6 2 1 0 1 1 0 1 Case 2. t = 2. B = 0 1 0 0 1 0 .  −  →   0 0 0 0 0 0 We read off the unique solutionx =1, y = 0.  6. Method 1. 3 1 1 1 4 0 0 4 −1 3 1 1 R1 → R1−R4 −0 4 0 4  1 −1 3 1  R2 → R2−R4  0 −0 4 4   1 1 −1 3  R3 → R3−R4  1 1 −1 3   −   −      1 0 0 1 1 0 0 1 − − 0 1 0 1 0 1 0 1 →  0 0 1 −1 R4 → R4−R3−R2−R1 0 0 1 −1 . − −  1 1 1 3   0 0 0 0   −        Hence the given homogeneous system has complete solution x = x , x = x , x = x , 1 4 2 4 3 4 with x arbitrary. 4 Method 2. Write the system as x +x +x +x = 4x 1 2 3 4 1 x +x +x +x = 4x 1 2 3 4 2 x +x +x +x = 4x 1 2 3 4 3 x +x +x +x = 4x . 1 2 3 4 4 Then it is immediate that any solution must satisfy x = x = x = x . 1 2 3 4 Conversely, if x , x , x , x satisfy x = x = x = x , we get a solution. 1 2 3 4 1 2 3 4 7. λ 3 1 1 λ 3 −1 λ 3 R1 ↔ R2 λ 3 −1 · − ¸ · − ¸ 1 λ 3 R2 → R2−(λ−3)R1 0 λ2+−6λ 8 = B. · − − ¸ Case 1: λ2+6λ 8 = 0. That is (λ 2)(λ 4) = 0 or λ = 2, 4. Here B is − − 6 − − − 6 6 1 0 row equivalent to : 0 1 · ¸ 1 λ 3 1 0 R2 → λ2+16λ 8R2 0 −1 R1 → R1−(λ−3)R2 0 1 . − − · ¸ · ¸ Hence we get the trivial solution x = 0, y = 0. 3 1 1 Case 2: λ = 2. Then B = − and the solution is x = y, with y 0 0 · ¸ arbitrary. 1 1 Case 3: λ = 4. Then B = and the solution is x = y, with y 0 0 − · ¸ arbitrary. 8. 3 1 1 1 1 1 1 1 1 R R 3 3 3 5 1 1 1 1 → 3 1 5 1 1 1 · − − ¸ · − − ¸ 1 1 1 1 R R 5R 3 3 3 2 → 2− 1 0 8 2 8 · −3 −3 −3 ¸ 3 1 1 1 1 R − R 3 3 3 2 → 8 2 0 1 1 1 · 4 ¸ 1 1 0 1 0 R R R 4 . 1 → 1− 3 2 0 1 1 1 · 4 ¸ Hence the solution of the associated homogeneous system is 1 1 x = x , x = x x , 1 3 2 3 4 −4 −4 − with x and x arbitrary. 3 4 9. 1 n 1 1 R R R n 0 n 1 1 n − ··· → − − ··· 1 1 n 1 R R R 0 n n 2 2 n A =  . −. ··· .  → . −  . −. ··· .  . . . . . . . . . . . . . .  ···   ···   1 1 1 n  R R R  1 1 1 n  n 1 n 1 n  ··· −  − → − −  ··· −      1 0 1 1 0 1 ··· − ··· − 0 1 1 0 1 1 →  ... ... ··· −... Rn → Rn−Rn−1···−R1 ... ... ··· −... .  ···   ···   1 1 1 n   0 0 0   ··· −   ···      The last matrix is in reduced row–echelon form. Consequently the homogeneous system with coefficient matrix A has the solution x = x , x = x ,...,x = x , 1 n 2 n n 1 n − 4 with x arbitrary. n Alternatively, writing the system in the form x + +x = nx 1 n 1 ··· x + +x = nx 1 n 2 ··· . . . x + +x = nx 1 n n ··· shows that any solution must satisfy nx = nx = = nx , so x = x = 1 2 n 1 2 ··· = x . Conversely if x = x ,...,x = x , we see that x ,...,x is a n 1 n n 1 n 1 n ··· − solution. a b 10. Let A = and assume that ad bc = 0. c d − 6 · ¸ Case 1: a = 0. 6 a b 1 b 1 b R 1R a R R cR a · c d ¸ 1 → a 1· c d ¸ 2 → 2− 1· 0 ad−abc ¸ 1 b 1 0 R a R a R R bR . 2 → ad bc 2 0 1 1 → 1− a 2 0 1 − · ¸ · ¸ Case 2: a = 0. Then bc = 0 and hence c = 0. 6 6 0 b c d 1 d 1 0 A = R R c . c d 1 ↔ 2 0 b → 0 1 → 0 1 · ¸ · ¸ · ¸ · ¸ 1 0 So in both cases, A has reduced row–echelon form equal to . 0 1 · ¸ 11. We simplify the augmented matrix of the system using row operations: 1 2 3 4 1 2 3 4 3 1 −5 2 R2 → R2−3R1 0 7 −14 10  4 −1 a2 14 a+2  R3 → R3−4R1  0 −7 a2 2 a− 14  − − − −     R R R 1 2 3 4 1 0 1 8 3 → 3− 2 − 7 R 1R 0 1 2 10 R R 2R 0 1 2 10 . 2 → −7 2  − 7  1 → 1− 2  − 7  R R 2R 0 0 a2 16 a 4 0 0 a2 16 a 4 1 1 2 → − − − − −     Denote the last matrix by B. 5 Case 1: a2 16 = 0. i.e. a = 4. Then − 6 6 ± R 1 R 1 0 0 8a+25 3 → a2 16 3 7(a+4) R R− R 0 1 0 10a+54 1 → 1− 3  7(a+4)  R2 R2+2R3 0 0 1 1 →  a+4    and we get the unique solution 8a+25 10a+54 1 x = , y = , z = . 7(a+4) 7(a+4) a+4 1 0 1 8 7 Case 2: a = 4. Then B = 0 1 2 10 , so our system is inconsistent. −  − 7  0 0 0 8 −   1 0 1 8 7 Case 3: a = 4. Then B = 0 1 2 10 . We read off that the system is  − 7  0 0 0 0 consistent, with complete solution x= 8 z, y = 10 +2z, where z is 7 − 7 arbitrary. 12. We reduce the augmented array of the system to reduced row–echelon form: 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 0 1 0 1 1  1 1 1 1 0  R3 → R3+R1  0 1 0 1 1   0 0 1 1 0   0 0 1 1 0          1 0 1 0 1 1 0 0 1 1 0 1 0 1 1 R R +R 0 1 0 1 1 R3 → R3+R2  0 0 0 0 0  1R→3 1R4 4  0 0 1 1 0 . ↔  0 0 1 1 0   0 0 0 0 0          The last matrix is in reduced row–echelon form and we read off the solution of the corresponding homogeneous system: x = x x = x +x 1 4 5 4 5 − − x = x x = x +x 2 4 5 4 5 − − x = x = x , 3 4 4 − 6 wherex andx arearbitraryelementsofZ . Hencetherearefoursolutions: 4 5 2 x x x x x 1 2 3 4 5 0 0 0 0 0 1 1 0 0 1 . 1 1 1 1 0 0 0 1 1 1 13. (a) We reduce the augmented matrix to reduced row–echelon form: 2 1 3 4 1 3 4 2 4 1 4 1 R 3R 4 1 4 1 1 1   →   3 1 2 0 3 1 2 0     1 3 4 2 1 3 4 2 R R +R R32→→R32+2R11  00 42 30 34  R2 → 4R2  00 12 20 24      1 0 3 1 1 0 0 1 R R +2R R R +2R 1 → 1 2 0 1 2 2 1 → 1 3 0 1 0 2 . R3 → R3+3R2  0 0 1 0  R2 → R2+3R3  0 0 1 0      Consequently the system has the unique solution x = 1, y = 2, z = 0. (b) Again we reduce the augmented matrix to reduced row–echelon form: 2 1 3 4 1 1 0 3 4 1 4 1 R R 4 1 4 1 1 3   ↔   1 1 0 3 2 1 3 4     1 1 0 3 1 1 0 3 R R +R R32→→R32+3R11  00 24 43 43  R2 → 3R2  00 14 23 23      1 0 3 1 R R +4R 1 → 1 2 0 1 2 2 . R3 → R3+R2  0 0 0 0    We read off the complete solution x = 1 3z = 1+2z − y = 2 2z = 2+3z, − where z is an arbitrary element of Z . 5 7 14. Suppose that (α ,...,α ) and (β ,...,β ) are solutions of the system 1 n 1 n of linear equations n a x = b , 1 i m. ij j i ≤ ≤ j=1 X Then n n a α = b and a β = b ij j i ij j i j=1 j=1 X X for 1 i m. ≤ ≤ Let γ = (1 t)α +tβ for 1 i m. Then (γ ,...,γ ) is a solution of i i i 1 n − ≤ ≤ the given system. For n n a γ = a (1 t)α +tβ ij j ij j j { − } j=1 j=1 X X n n = a (1 t)α + a tβ ij j ij j − j=1 j=1 X X = (1 t)b +tb i i − = b . i 15. Suppose that (α ,...,α ) is a solution of the system of linear equations 1 n n a x = b , 1 i m. (1) ij j i ≤ ≤ j=1 X Then the system can be rewritten as n n a x = a α , 1 i m, ij j ij j ≤ ≤ j=1 j=1 X X or equivalently n a (x α ) = 0, 1 i m. ij j j − ≤ ≤ j=1 X So we have n a y = 0, 1 i m. ij j ≤ ≤ j=1 X where x α = y . Hence x = α +y , 1 j n, where (y ,...,y ) is j j j j j j 1 n − ≤ ≤ a solution of the associated homogeneous system. Conversely if (y ,...,y ) 1 n 8

Description:
solutions to problems elementary linear algebra k. r. matthews department of mathematics university of queensland first printing, 1991
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.