SOLUTIONS TO PROBLEMS ELEMENTARY LINEAR ALGEBRA K. R. MATTHEWS DEPARTMENT OF MATHEMATICS UNIVERSITY OF QUEENSLAND First Printing, 1991 CONTENTS PROBLEMS 1.6 ............................................ 1 PROBLEMS 2.4 ............................................ 12 PROBLEMS 2.7 ............................................ 18 PROBLEMS 3.6 ............................................ 32 PROBLEMS 4.1 ............................................ 45 PROBLEMS 5.8 ............................................ 58 PROBLEMS 6.3 ............................................ 69 PROBLEMS 7.3 ............................................ 83 PROBLEMS 8.8 ............................................ 91 i SECTION 1.6 0 0 0 2 4 0 1 2 0 2. (i) R R R 1R ; 2 4 0 1 ↔ 2 0 0 0 1 → 2 1 0 0 0 · ¸ · ¸ · ¸ 0 1 3 1 2 4 1 0 2 (ii) 1 2 4 R1 ↔ R2 0 1 3 R1 → R1−2R2 0 1 −3 ; · ¸ · ¸ · ¸ 1 1 1 1 1 0 R R R (iii) 1 1 0 2 → 2− 1 0 0 1 1 0 0 R3 → R3−R1 0 1 −1 − − R R +R 1 0 0 1 0 0 1RR→32→1−RR33 3 00 10 11 R2R→3 →R2−+R3R3 00 10 01 ; ↔ − 2 0 0 1 0 0 R R +2R (iv) 0 0 0 3 → 3 1 0 0 0 . 4 0 0 R1 → 12R1 0 0 0 − 1 1 1 2 1 1 1 2 R R 2R 3.(a) 2 3 1 8 2 → 2− 1 0 1 3 4 1 1 −1 8 R3 → R3−R1 0 2 −2 10 − − − − − − 1 0 4 2 1 0 4 2 RR31→→RR31+−2RR22 00 10 −38 −42 R3 → −81R3 00 10 −31 41 − − 4 1 0 0 3 R1 → R1−4R3 0 1 0 −19 . R2 → R2+3R3 0 0 1 41 4 The augmented matrix has been converted to reduced row–echelon form and we read off the unique solution x = 3, y = 19, z = 1. − 4 4 1 1 1 2 10 1 1 1 2 10 (b) 3 1 −7 4 1 R2 → R2−3R1 0 4 −10 2 29 5 −3 15 6 9 R3 → R3+5R1 0 −8 20 −4 −59 − − − − 1 1 1 2 10 − R R +2R 0 4 10 2 29 . 3 3 2 → − − − 0 0 0 0 1 From the last matrix we see that the original system is inconsistent. 1 3 1 7 0 1 1 1 1 − − 2 1 4 1 2 1 4 1 (c) 1 −1 1 12 R1 ↔ R3 3 −1 7 02 − − 6 4 10 3 6 4 10 3 − − 1 1 1 1 1 0 3 1 RR23 →→ RR23−−23RR11 00 −21 42 −233 RR14 →→ RR14+−RR23 00 10 20 −−2203 . R4 → R4−6R1 0 2 4 −3 R3 → R3−2R2 0 0 0 0 − The augmented matrix has been converted to reduced row–echelon form and we read off the complete solution x = 1 3z, y = 3 2z, with z −2 − −2 − arbitrary. 2 1 3 a 2 1 3 a − − 4. 3 1 5 b R R R 1 2 8 b a 2 2 1 − → − − − 5 5 21 c 5 5 21 c − − − − 1 2 8 b a 1 2 8 b a R1 ↔ R2 52 −51 −213 −ac RR23 →→ RR23−+25RR11 00 −55 −1199 5−b 2b−5+a3+ac − − − − 1 2 8 b a R R +R − − R32→→ −351R22 00 01 −5109 3b 2b−25a3a+c − 1 0 2 (b+a) −5 5 R1 → R1−2R2 0 1 −519 2b−53a . 0 0 0 3b 2a+c − From the last matrix we see that the original system is inconsistent if 3b 2a+c = 0. If 3b 2a+c = 0, the system is consistent and the solution − 6 − is (b+a) 2 (2b 3a) 19 x = + z, y = − + z, 5 5 5 5 where z is arbitrary. 1 1 1 1 1 1 R R tR 5. t 1 t 2 → 2− 1 0 1 t 0 1+t 2 3 R3 → R3−(1+t)R1 0 1−t 2 t − − 1 1 1 R R R 0 1 t 0 = B. 3 3 2 → − − 0 0 2 t − Case 1. t = 2. No solution. 6 2 1 0 1 1 0 1 Case 2. t = 2. B = 0 1 0 0 1 0 . − → 0 0 0 0 0 0 We read off the unique solutionx =1, y = 0. 6. Method 1. 3 1 1 1 4 0 0 4 −1 3 1 1 R1 → R1−R4 −0 4 0 4 1 −1 3 1 R2 → R2−R4 0 −0 4 4 1 1 −1 3 R3 → R3−R4 1 1 −1 3 − − 1 0 0 1 1 0 0 1 − − 0 1 0 1 0 1 0 1 → 0 0 1 −1 R4 → R4−R3−R2−R1 0 0 1 −1 . − − 1 1 1 3 0 0 0 0 − Hence the given homogeneous system has complete solution x = x , x = x , x = x , 1 4 2 4 3 4 with x arbitrary. 4 Method 2. Write the system as x +x +x +x = 4x 1 2 3 4 1 x +x +x +x = 4x 1 2 3 4 2 x +x +x +x = 4x 1 2 3 4 3 x +x +x +x = 4x . 1 2 3 4 4 Then it is immediate that any solution must satisfy x = x = x = x . 1 2 3 4 Conversely, if x , x , x , x satisfy x = x = x = x , we get a solution. 1 2 3 4 1 2 3 4 7. λ 3 1 1 λ 3 −1 λ 3 R1 ↔ R2 λ 3 −1 · − ¸ · − ¸ 1 λ 3 R2 → R2−(λ−3)R1 0 λ2+−6λ 8 = B. · − − ¸ Case 1: λ2+6λ 8 = 0. That is (λ 2)(λ 4) = 0 or λ = 2, 4. Here B is − − 6 − − − 6 6 1 0 row equivalent to : 0 1 · ¸ 1 λ 3 1 0 R2 → λ2+16λ 8R2 0 −1 R1 → R1−(λ−3)R2 0 1 . − − · ¸ · ¸ Hence we get the trivial solution x = 0, y = 0. 3 1 1 Case 2: λ = 2. Then B = − and the solution is x = y, with y 0 0 · ¸ arbitrary. 1 1 Case 3: λ = 4. Then B = and the solution is x = y, with y 0 0 − · ¸ arbitrary. 8. 3 1 1 1 1 1 1 1 1 R R 3 3 3 5 1 1 1 1 → 3 1 5 1 1 1 · − − ¸ · − − ¸ 1 1 1 1 R R 5R 3 3 3 2 → 2− 1 0 8 2 8 · −3 −3 −3 ¸ 3 1 1 1 1 R − R 3 3 3 2 → 8 2 0 1 1 1 · 4 ¸ 1 1 0 1 0 R R R 4 . 1 → 1− 3 2 0 1 1 1 · 4 ¸ Hence the solution of the associated homogeneous system is 1 1 x = x , x = x x , 1 3 2 3 4 −4 −4 − with x and x arbitrary. 3 4 9. 1 n 1 1 R R R n 0 n 1 1 n − ··· → − − ··· 1 1 n 1 R R R 0 n n 2 2 n A = . −. ··· . → . − . −. ··· . . . . . . . . . . . . . . . ··· ··· 1 1 1 n R R R 1 1 1 n n 1 n 1 n ··· − − → − − ··· − 1 0 1 1 0 1 ··· − ··· − 0 1 1 0 1 1 → ... ... ··· −... Rn → Rn−Rn−1···−R1 ... ... ··· −... . ··· ··· 1 1 1 n 0 0 0 ··· − ··· The last matrix is in reduced row–echelon form. Consequently the homogeneous system with coefficient matrix A has the solution x = x , x = x ,...,x = x , 1 n 2 n n 1 n − 4 with x arbitrary. n Alternatively, writing the system in the form x + +x = nx 1 n 1 ··· x + +x = nx 1 n 2 ··· . . . x + +x = nx 1 n n ··· shows that any solution must satisfy nx = nx = = nx , so x = x = 1 2 n 1 2 ··· = x . Conversely if x = x ,...,x = x , we see that x ,...,x is a n 1 n n 1 n 1 n ··· − solution. a b 10. Let A = and assume that ad bc = 0. c d − 6 · ¸ Case 1: a = 0. 6 a b 1 b 1 b R 1R a R R cR a · c d ¸ 1 → a 1· c d ¸ 2 → 2− 1· 0 ad−abc ¸ 1 b 1 0 R a R a R R bR . 2 → ad bc 2 0 1 1 → 1− a 2 0 1 − · ¸ · ¸ Case 2: a = 0. Then bc = 0 and hence c = 0. 6 6 0 b c d 1 d 1 0 A = R R c . c d 1 ↔ 2 0 b → 0 1 → 0 1 · ¸ · ¸ · ¸ · ¸ 1 0 So in both cases, A has reduced row–echelon form equal to . 0 1 · ¸ 11. We simplify the augmented matrix of the system using row operations: 1 2 3 4 1 2 3 4 3 1 −5 2 R2 → R2−3R1 0 7 −14 10 4 −1 a2 14 a+2 R3 → R3−4R1 0 −7 a2 2 a− 14 − − − − R R R 1 2 3 4 1 0 1 8 3 → 3− 2 − 7 R 1R 0 1 2 10 R R 2R 0 1 2 10 . 2 → −7 2 − 7 1 → 1− 2 − 7 R R 2R 0 0 a2 16 a 4 0 0 a2 16 a 4 1 1 2 → − − − − − Denote the last matrix by B. 5 Case 1: a2 16 = 0. i.e. a = 4. Then − 6 6 ± R 1 R 1 0 0 8a+25 3 → a2 16 3 7(a+4) R R− R 0 1 0 10a+54 1 → 1− 3 7(a+4) R2 R2+2R3 0 0 1 1 → a+4 and we get the unique solution 8a+25 10a+54 1 x = , y = , z = . 7(a+4) 7(a+4) a+4 1 0 1 8 7 Case 2: a = 4. Then B = 0 1 2 10 , so our system is inconsistent. − − 7 0 0 0 8 − 1 0 1 8 7 Case 3: a = 4. Then B = 0 1 2 10 . We read off that the system is − 7 0 0 0 0 consistent, with complete solution x= 8 z, y = 10 +2z, where z is 7 − 7 arbitrary. 12. We reduce the augmented array of the system to reduced row–echelon form: 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 0 1 0 1 1 1 1 1 1 0 R3 → R3+R1 0 1 0 1 1 0 0 1 1 0 0 0 1 1 0 1 0 1 0 1 1 0 0 1 1 0 1 0 1 1 R R +R 0 1 0 1 1 R3 → R3+R2 0 0 0 0 0 1R→3 1R4 4 0 0 1 1 0 . ↔ 0 0 1 1 0 0 0 0 0 0 The last matrix is in reduced row–echelon form and we read off the solution of the corresponding homogeneous system: x = x x = x +x 1 4 5 4 5 − − x = x x = x +x 2 4 5 4 5 − − x = x = x , 3 4 4 − 6 wherex andx arearbitraryelementsofZ . Hencetherearefoursolutions: 4 5 2 x x x x x 1 2 3 4 5 0 0 0 0 0 1 1 0 0 1 . 1 1 1 1 0 0 0 1 1 1 13. (a) We reduce the augmented matrix to reduced row–echelon form: 2 1 3 4 1 3 4 2 4 1 4 1 R 3R 4 1 4 1 1 1 → 3 1 2 0 3 1 2 0 1 3 4 2 1 3 4 2 R R +R R32→→R32+2R11 00 42 30 34 R2 → 4R2 00 12 20 24 1 0 3 1 1 0 0 1 R R +2R R R +2R 1 → 1 2 0 1 2 2 1 → 1 3 0 1 0 2 . R3 → R3+3R2 0 0 1 0 R2 → R2+3R3 0 0 1 0 Consequently the system has the unique solution x = 1, y = 2, z = 0. (b) Again we reduce the augmented matrix to reduced row–echelon form: 2 1 3 4 1 1 0 3 4 1 4 1 R R 4 1 4 1 1 3 ↔ 1 1 0 3 2 1 3 4 1 1 0 3 1 1 0 3 R R +R R32→→R32+3R11 00 24 43 43 R2 → 3R2 00 14 23 23 1 0 3 1 R R +4R 1 → 1 2 0 1 2 2 . R3 → R3+R2 0 0 0 0 We read off the complete solution x = 1 3z = 1+2z − y = 2 2z = 2+3z, − where z is an arbitrary element of Z . 5 7 14. Suppose that (α ,...,α ) and (β ,...,β ) are solutions of the system 1 n 1 n of linear equations n a x = b , 1 i m. ij j i ≤ ≤ j=1 X Then n n a α = b and a β = b ij j i ij j i j=1 j=1 X X for 1 i m. ≤ ≤ Let γ = (1 t)α +tβ for 1 i m. Then (γ ,...,γ ) is a solution of i i i 1 n − ≤ ≤ the given system. For n n a γ = a (1 t)α +tβ ij j ij j j { − } j=1 j=1 X X n n = a (1 t)α + a tβ ij j ij j − j=1 j=1 X X = (1 t)b +tb i i − = b . i 15. Suppose that (α ,...,α ) is a solution of the system of linear equations 1 n n a x = b , 1 i m. (1) ij j i ≤ ≤ j=1 X Then the system can be rewritten as n n a x = a α , 1 i m, ij j ij j ≤ ≤ j=1 j=1 X X or equivalently n a (x α ) = 0, 1 i m. ij j j − ≤ ≤ j=1 X So we have n a y = 0, 1 i m. ij j ≤ ≤ j=1 X where x α = y . Hence x = α +y , 1 j n, where (y ,...,y ) is j j j j j j 1 n − ≤ ≤ a solution of the associated homogeneous system. Conversely if (y ,...,y ) 1 n 8
Description: