ebook img

SOLUTIONS TO CALCULUS VOLUME 1 BY TOM APOSTOL. I 2.5 Exercises PDF

281 Pages·2007·1.41 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview SOLUTIONS TO CALCULUS VOLUME 1 BY TOM APOSTOL. I 2.5 Exercises

SOLUTIONS TO CALCULUS VOLUME 1 BY TOM APOSTOL. ERNESTYEUNG,-PRAHA10,C(cid:16)ESKA(cid:30) REPUBLIKA SOLUTIONSTO VOLUME1One-VariableCalculus,withanIntroductiontoLinearAlgebra I2.5Exercises-Introductiontosettheory,Notationsfordesignatingsets,Subsets,Unions,intersections,complements. Exercise10. Distributivelaws LetX =A∩(B∪C),Y =(A∩B)∪(A∩C) Supposex∈X x∈Aandx∈(B∪C)=⇒x∈AandxisinatleastBorinC thenxisinatleasteither(A∩B)or(A∩C) x∈Y,X ⊆Y Supposey ∈Y yisatleastineither(A∩B)orA∩C theny ∈AandeitherinBorC y ∈X,Y ⊆X X =Y LetX =A∪(B∩C),Y =(A∪B)∩(A∪C) Supposex∈X thenxisatleasteitherinAorin(B∩C) ifx∈A,x∈Y ifx∈(B∩C),x∈Y x∈Y,X ⊆Y Supposey ∈Y thenyisatleastinAorinBandyisatleastinAorinC ify ∈A,theny ∈X ify ∈A∩Bory ∈A∪C,y ∈X (variouscarvingsoutofA,simply) ify ∈(B∩C),y ∈X y ∈X,Y ⊆X X =Y Exercise11. Ifx∈A∪A,thenxisatleastinAorinA. Thenx∈A. SoA∪A⊆A. OfcourseA⊆A∪A. Ifx∈A∩A,thenxisinAandinA. Thenx∈A. SoA∩A⊆A. OfcourseA⊆A∩A. Exercise12. Letx∈A. y ∈A∪BifyisatleastinAorinB. xisinAsox∈A∪B. =⇒A⊆A∪B. Suppose∃b∈Bandb∈/ A. b∈A∪Bbutb∈/ A. soA⊆A∪B. Exercise13. Letx ∈ A∪∅, thenxisatleastinAorin∅. Ifx ∈ ∅, thenxisanullelement(notanelementatall). Then actualelementsmustbeinA. =⇒A∪∅⊆A. Letx∈A. Thenx∈A∪∅. A⊆A∪∅. =⇒A=A∪∅. Exercise14. Fromdistributivity,A∪(A∩B)=(A∪A)∩(A∪B)=A∩(A∪B). Ifx∈A∩(A∪B),x∈Aandx∈A∪B,i.e. x∈AandxisatleastinAorinB. =⇒ x is in A and is in B or is not in B. Then x ∈ A. =⇒ A ∩ (A ∪ B) ⊆ A. Of course, A ⊆ A ∩ (A ∪ B). =⇒A∩(A∪B)=A∪(A∩B)=A. Exercise15. ∀a ∈ A,a ∈ C and∀b ∈ B,b ∈ C. Consider x ∈ A∪B. xisatleast in A orin B. Ineither case, x ∈ C. =⇒A∪B ⊆C. Exercise16. ifC ⊆AandC ⊆B, thenC ⊆A∩B ∀c∈C,c∈Aandc∈B x∈A∩B,x∈Aandx∈B.Then∀c∈C,c∈A∩B. C ⊆A∩B 1 Exercise17. (1) ifA⊂BandB ⊂C then ∀a∈A,a∈B.∀b∈B,b∈C. thensincea∈B,a∈C,∃c∈C suchthatc∈/ B. ∀a∈A,a∈Bsoa(cid:54)=c∀a.=⇒A⊂C (2) IfA⊆B,B ⊆C,A⊆C since,∀a∈A,a∈B,∀b∈B,b∈C.Thensincea∈B,a∈C. A⊆C (3) A⊂BandB ⊆C. B ⊂C orB =C. A⊂Bonly. ThenA⊂C. (4) Yes,since∀a∈A,a∈B. (5) No,sincex(cid:54)=A(setsaselementsaredifferentfromelements) Exercise18. A−(B∩C)=(A−B)∪(A−C) Supposex∈A−(B∩C) thenx∈Aandx∈/ B∩C =⇒x∈/ B∩C thenxisnotinevenatleastoneBorC =⇒x∈(A−B)∪(A−C) Supposex∈(A−B)∪(A−C) thenxisatleastin(A−B)orin(A−C)=⇒xisatleastinAandnotinBorinAandnotinC thenconsiderwhenoneofthecasesistrueandwhenbothcasesaretrue =⇒x∈A−(B∩C) Exercise19. (cid:91) (cid:92) Supposex∈B− A Supposex∈ (B−A) A∈F (cid:91) A∈F thenx∈B,x∈/ A thenx∈B−A1andx∈B−A2and ... (cid:91) A∈F then∀A∈F,x∈B,x∈/ A x∈/ A=⇒x∈/ A,∀A∈F thenx∈/ evenatleastoneA∈F A∈F (cid:91) (cid:92) =⇒x∈B− A since∀A∈F,x∈B,x∈/ A, thenx∈ (B−A) A∈F A∈F (cid:92) Supposex∈B− A A∈F (cid:91) (cid:92) Supposex∈ (B−A) thenx∈/ A A∈F A∈F thenxisatleastinoneB−A thenatmostx∈Afor∀A∈F butone thenforA∈F,x∈Bandx∈/ A thenxisatleastinoneB−A (cid:91) Consider∀A∈F =⇒x∈ (B−A) (cid:92) =⇒ thenx∈B− A A∈F A∈F Exercise20. (1) (ii)iscorrect. Supposex∈(A−B)−C Supposex∈A−(B∪C) thenx∈A−B,x∈/ C thenx∈A,x∈/ (B∪C) thenx∈Aandx∈/ Bandx∈/ C thenx∈Aandx∈/ Bandx∈/ C x∈/ Bandx∈/ C =⇒x∈/ evenatleastBorC =⇒x∈(A−B)−C x∈A−(B∪C) 2 Toshowthat(i)issometimeswrong, Supposey ∈A−(B−C) y ∈Aandy ∈/ B−C y ∈/ B−C theny ∈/ Bory ∈C ory ∈/ C (wheredoesthisleadto?) Considerdirectly. Supposex∈(A−B)∪C thenxisatleastinA−BorinC thenxisatleastinAand∈/ BorinC Supposex=c∈C andc∈/ A (2) IfC ⊆A, A−(B−C)=(A−B)∪C I3.3Exercises-The(cid:2)eldaxioms. Thegoalseemstobetoabstracttheseso-calledrealnumbersintojustx’sandy’sthat arepurelybuiltupontheseaxioms. Exercise1. Thm. I.5. a(b−c)=ab−ac. Lety =ab−ac;x=a(b−c) Want: x=y ac+y =ab(byThm. I.2,possibilityofsubtraction) NotethatbyThm. I.3,a(b−c)=a(b+(−c))=ab+a(−c)(bydistributivityaxiom) ac+x=ac+ab+a(−c)=a(c+(−c))+ab=a(0+b)=ab ButthereexistsexactlyoneyorxbyThm. I.2. x=y. Thm. I.6. 0·a=a·0=0. 0(a)=a(0)(bycommutativityaxiom) Givenb∈Rand0∈R,∃exactlyone −bs.t. b−a=0 0(a)=(b+(−b))a=ab−ab=0(byThm. I.5. andThm. I.2) Thm. I.7. ab=ac ByAxiom4,∃y ∈Rs.t. ay =1 sinceproductsareuniquelydetermined,yab=yac=⇒(ya)b=(ya)c=⇒1(b)=1(c) =⇒b=c Thm. I.8. PossibilityofDivision. Givena,b,a(cid:54)=0,chooseysuchthatay =1. Letx=yb. ax=ayb=1(b)=b Therefore, there exists at least one x such that ax = b. But by Thm. I.7, there exists only one x (since if az −b, and so x=z). Thm. I.9. Ifa(cid:54)=0,thenb/a=b(a−1). b Letx= forax=b a y =a−1foray =1 Want: x=by Nowb(1)=b, soax=b=b(ay)=a(by) =⇒x=by(byThm. I.7) Thm. I.10. Ifa(cid:54)=0,then(a−1)−1 =a. Now ab = 1 for b = a−1. But since b ∈ R and b (cid:54)= 0 (otherwise 1 = 0, contradiction), then using Thm. I.8 on b, ab=b(a)=1; a=b−1. 3 Thm.I.11. Ifab=0,a=0orb=0. ab=0=a(0)=⇒b=0orab=ba=b(0)=⇒a=0. (weusedThm. I.7,cancellationlawformultiplication) Thm. I.12. Want: x=yifx=(−a)bandy =−(ab). ab+y =0 ab+x=ab+(−a)b=b(a+(−a))=b(a−a)=b(0)=0 0isunique,soab+y =ab+ximpliesx=y(byThm. I.1) Thm. I.13. Want: x+y =z,ifa=bx,c=dy,(ad+bc)=(bd)z. (bd)(x+y)=bdx+bdy =ad+bc=(bd)z Sousingb,d(cid:54)=0,whichisgiven,andThm. I.7,thenx+y =z. Thm. I.14. Want: xy =zforbx=a,dy =c,ac=(bd)z. (bd)(xy)=(bx)(dy)=ac=(bd)z b,d(cid:54)=0,sobyThm. I.7,xy =z. Thm.I.15. Want: x=yz,ifbx=a,dy =c,(bc)z =ad (bc)z =b(dy)z =d(byz)=da d(cid:54)=0sobyThm. I.7,byz =a,byz =abx b(cid:54)=0sobyThm. I.7,yz =x Exercise2. Consider0+z =0. ByThm. I.2,thereexistsexactlyonez,z =−0. ByAxiom4,z =0. 0=−0. Exercise3. Consider1(z)z(1)=1. Thenz =1−1. ButbyAxiom4,thereexistsdistinct1suchthatz(1)=1,soz =1. Exercise4. Supposethereexistsxsuchthat0x=1,but0x=0and0and1aredistinct,so zerohasnoreciprocal. Exercise5. a+(−a)=0,0+0=0. Then a+(−a)+b+(−b)=(a+b)+(−a)+(−b)=0 −(a+b)=−a+(−b)=−a−b Exercise6. a+(−a)=0,b+(−b)=0,so a+(−a)+b+(−b)=a+(−b)+(−a)+b=(a−b)+(−a)+b=0+0=0 −(a−b)=−a+b. Exercise7. (a−b)+(b−c)=a+(−b)+b+(−c)=a+(b+(−b))+(−c)=a−c Exercise8. (ab)x=1 (ab)−1 =x a(bx)=1 a−1 =bx b(ax)=1 b−1−ax a−1b−1 =(abx)x=1(x)=(ab)−1 Exercise9. Want: x=y =z,if a z = a=zt b+t=0 −b (−a) y = by =u a+u=0 b (cid:179) (cid:180) (cid:179) (cid:180) a a x=− +x=v+x=0 vb=a b b a+(−a)=vb+by =b(v+y)=0 ifb(cid:54)=0,v+y =0, butv+x=0 byThm. I.1,x=y b+t=0, thenz(b+t)=zb+zt=zb+a=z(0)=0 a+zb=0=⇒−a=zb=by sinceb(cid:54)=0,z =ysox=y =z 4 Exercise10. Sinceb,d(cid:54)=0,Let ad−bc z = (bd)z =ad−bc bypreviousexerciseorThm. I.8,thepossibilityofdivision bd a x= bx=a b −c t= dt=−c(ByThm. I.3,weknowthatb−a=b+(−a)) d dbx+bdt=(bd)(x+y)=ad−bc=(bd)z b,d(cid:54)=0, sox+y =z I3.5Exercises-Theorderaxioms. Theorem1(I.18). Ifa<bandc>0thenac<bc Theorem2(I.19). Ifa<bandc>0,thenac<bc Theorem3(I.20). Ifa(cid:54)=0,thena2 >0 Theorem4(I.21). 1>0 Theorem5(I.22). Ifa<bandc<0,thenac>bc. Theorem6(I.23). Ifa<band−a>−b. Inparticular,ifa<0,then−a>0. Theorem7(I.24). Ifab>0,thenbothaandbarepositiveorbotharenegative. Theorem8(I.25). Ifa<candb<d,thena+b<c+d. Exercise1. (1) ByThm. I.19,−c>0 a(−c)<b(−c)→−ac<−bc −bc−(−ac)=ac−bc>0.Thenac>bc(byde(cid:2)nitionof>) (2) a<b→a+0<b+0→a+b+(−b)<b+a+(−a)→(a+b)−b<(a+b)+(−a) ByThm.I.18(a+b)+−(a+b)+(−b)<(a+b)−(a+b)+(−a) −b<−a (3) Ifa=0orb=0,ab=0,but0≯0 Ifa>0,thenifb>0,ab>0(b)=0. Ifb<0,ab<0(b)=0. Soifa>0,thenb>0. Ifa<0,thenifb>0,ab<0(b)=0. Ifb<0,ab>0(b)=0. Soifa<0,thenb<0. (4) a<csoa+b<c+b=b+c b<dsob+c<d+c ByTransitiveLaw,a+b<d+c Exercise2. Ifx=0,x2 =0. 0+1=1(cid:54)=0. Sox(cid:54)=0. Ifx(cid:54)=0,x2 >0, andbyThm. I.21,1>0 x2+1>0+0=0→x2+1(cid:54)=0 =⇒(cid:64)x∈Rsuchthatx2+1=0 Exercise3. a<0,b<0,a+b<0+0=0(ByThm. I.25) Exercise4. Considerax=1. ax=1>0.ByThm. I.24,a,xarebothpositiveora,xarebothnegative Exercise5. De(cid:2)nex,ysuchthatax=1,by =1. Wewantx>ywhenb>a. xb−ax=xb−1>0=⇒bx>1=by b>0sox>y 5 Exercise6. Ifa=bandb=c, thena=c Ifa=bandb<c, thena<c Ifa<bandb=c, thena<c Ifa<bandb<c, thena<c(bytransitivityoftheinequality) =⇒a≤c Exercise7. Ifa≤bandb≤c,thena≤c. Ifa=c,thenbypreviousproof,a=b. Exercise8. Ifa≤bandb≤c,thena≤c. Ifa=c,thenbypreviousproof,a=b. Exercise8. Ifaorbiszero,a2orb2 =0. ByThm. I.20,b2 ≥0ora2 ≥0,respectively. Otherwise,ifneitherarezero,bytransitivity,a2+b2 >0. Exercise9. Supposea≥x. Thena−x≥0. Ifa∈Rso∃y ∈R,suchthata−y =0. Considery+1∈R(byclosureunderaddition). a−(y+1)=a−y−1=0−1<0Contradictionthata≥y+1 Exercise10. Ifx=0, done. x Ifx>0,xisapositiverealnumber. Leth= . 2 x =⇒ >xContradiction. 2 I3.12Exercises-Integersandrationalnumbers,Geometricinterpretationofrealnumbersaspointsonaline,Upper boundof a set, maximum element, least upper bound (supremum), The least-upper-boundaxiom(completeness ax- iom),TheArchimedeanpropertyofthereal-numbersystem,Fundamentalpropertiesofthesuprenumandin(cid:2)mum. WeuseThmI.30,theArchimedeanpropertyofrealnumbers,alot. Theorem9(I.30). Ifx>0andifyisanarbitraryrealnumber,thereexistsapositiveintegernsuchthatnx>y. We will use the least upper-bound axiom (completeness axiom) alot for continuity and differentiation theorems later. Apostol states it as an axiom; in real analysis, the existence of a sup for nonempty, bounded sets can be shown with an algorithmtozoomintoasupwithmonotonicallyincreasingandmonotonicallydecreasingsequenceof(cid:147)guesses(cid:148)andshowing itsdifferenceisaCauchysequence. Axiom1(Leastupper-boundaxiom). EverynonemptysetS ofrealnumberswhichisboundedabovehasasuprenum;that is,there’sarealnumberBs.t. B =supS. Exercise1. 0<y−x. =⇒n(y−x)>h>0,n∈Z+,harbitrary y−x>h/n=⇒y >x+h/n>x soletz =x+h/nDone. Exercise2. x∈Rso∃n∈Z+suchthatn>x(Thm. I.29). Setofnegativeintegersisunboundedbelowbecause If∀m∈Z−,−x>−m,then−xisanupperboundonZ+. ContradictionofThm. I.29. =⇒∃m∈Zsuchthatm<x<n Exercise3. UseArchimedianproperty. x>0sofor1,∃n∈Z+suchthatnx>1,x> 1. n Exercise4. x is an arbitrary real number. By Thm. I.29 and well-ordering principle, there exists a smallest n+1 positive integersuchthatx < n+1(considerthesetofallm+1 > xandsobywell-orderingprinciple,theremustbeasmallest elementofthisspeci(cid:2)csetofpositiveintegers). Ifx=nforsomepositiveintegern,done. Otherwise,notethatifx<n,thenn+1couldn’thavebeenthesmallestelementsuchthatm>x. x>n. Exercise5. Ifx=n,done. Otherwise,considerallm>x. Bywell-orderingprinciple,thereexistsasmallestelementnsuch thatn>x. Ifx+1<n,thenx<n−1,contradictingthefactthatnisthesmallestelementsuchthatx<n. Thusx+1>n. Exercise6. y−x>0. n(y−x)>h, harbitrary,n∈Z+ y >x+h/n=z >x 6 Sincehwasarbitrary,therearein(cid:2)nitelymanynumbersinbetweenx,y. Exercise7. x= ab ∈Q,y ∈/ Q. a±by x±y = b (cid:181) (cid:182) a−mb Ifa±bywasaninteger,saym,theny =± whichisrational. Contradiction. b ay ay xy = = b 1 b n Ifaywasaninteger,ay =n,y = ,butyisirrational. =⇒xyisirrational. a x y yisnotaninteger Exercise8. Proofbycounterexamples. Wewantthatthesumorproductof2irrationalnumbersisnotalwaysirrational. Ify isirrational,y+1isirrational,otherwise,ify+1∈Q, y ∈Qbyclosureunderaddition. =⇒y+1−y =1 Likewise,y1 =1. y Exercise9. y−x>0=⇒n(y−x)>k,n∈Z+,karbitrary. Choosektobeirrational. Thenk/nirrational. k k y > +x>x.Letz =x+ ,zirrational. n n Exercise10. (1) Supposen=2m1andn+1=2m2. 1 2m1+1=2m2 2(m1−m2)=1 m1−m2 = 2.Butm1−m2canonlybeaninteger. (2) By the well-ordering principle, if x ∈ Z+ is neither even and odd, consider the set of all x. There must exist a smallestelementx0ofthisset. Butsincex0 ∈Z+,thentheremustexistan<xsuchthatn+1=x0. nisevenor oddsinceitdoesn’tbelongintheaboveset. Sox0mustbeoddoreven. Contradiction. (3) (2m1)(2m2)=2(2m1m2)even 2m1+2m2 =2(m1+m2)even (2m1+1)+(2m2+1)=2(m1+m2+1)=⇒ sumoftwooddnumbersiseven (n +1)(n +1)=n n +n +n+2+1=2(2m m ) 1 2 1 2 1 1 2 2(2m1m2)−(n1+n2)−1odd,theproductoftwooddnumbersn1,n2isodd (4) Ifn2even,niseven,sinceforn=2m,(2m)2 =4m2 =2(2m2)iseven. a2 =2b2. 2(b2)even. a2even,soaeven. Ifaevena=2n.a2 =4n2 Ifbodd,b2odd. bhasnofactorsof2b2 (cid:54)=4n2 Thusbiseven. (5) For p,Ifporqorbothareodd,thenwe’redone. q Else,whenp,qarebotheven,p=2lm,q =2np,m,podd. p 2lm 2l−nm = = andatleastmorpodd q 2np p Exercise11. ab canbeputintoaformsuchthataorbatleastisoddbythepreviousexercise. However,a2 =2b2,soaeven,beven,bythepreviousexercise,part(d)or4thpart. Thus a cannotberational. b Exercise12. Thesetofrationalnumberssatis(cid:2)estheArchimedeanpropertybutnottheleast-upper-boundproperty. Since pq ∈Q⊆R,npq11 > pq22 sinceifq1,q2 >0, np q q p 1 2 > 1 2 np q >q p q q q q 1 2 1 2 1 2 1 2 nexistssince(p1q2),(q1p2)∈R. 7 Thesetofrationalnumbersdoesnotsatisfytheleast-upper-boundproperty. ConsideranonemptysetofrationalnumbersS boundedabovesothat∀x= r ∈S,x<b. s Supposex<b1,x<b2∀x∈S. r r s <b2 <nb1butlikewise s <b1 <mb2, n,m∈Z+ Soit’spossiblethatb1 >b2,butalsob2 >b1. I 4.4 Exercises - An example of a proof by mathematical induction, The principle of mathematical induction, The well-orderingprinciple. Considerthese2proofs. N +N +···+N =N2 (cid:88)N N(cid:88)−1 (N −1)+(N −2)+···+(N −(N −1))+(N −N)=N2− j = j j=1 j=1 (cid:88)N (cid:88)N N(N +1) N2+N =2 j =⇒ j = 2 j=1 j=1 Aninterestingpropertyisthat (cid:88)n (cid:88)n S = j = (n+m−j) j=m j=m Sothat (cid:88)N (cid:88)N (cid:88)m (cid:88)N m(m+1) N(N +1) j = j+ j = j+ = 2 2 j=1 j=m j=1 j=m (cid:88)N N(N +1)−m(m+1) (N −m)(N +m+1) j = = 2 2 j=m Anotherwaytoshowthisisthefollowing. S = 1+ 2+ ···+ (N −2)+ (N −1)+ N butS = N+ N −1+ ···+ 3+ 2+ 1 N(N +1) 2S =(N +1)N S = 2 (cid:80) Telescopingserieswillletyouget N j2andotherpowersofj. j=1 (cid:88)N N(N +1) (2j−1)=2 −N =N2 2 j=1 (cid:181) (cid:182) (cid:88)N (cid:88)N (cid:88)N N(N +1) (j2−(j−1)2)= (j2−(j2−2j+1))= (2j−1)=2 −N =N2 2 j=1 j=1 j=1 (cid:88)N (cid:88)N (cid:88)N (j3−(j−1)3)=N3 = (j3−(j3−3j2+3j−1))= (3j2−3j+1) j=1 j=1 j=1 (cid:88)N N(N +1) 2N3+2N −3N2−3N N(N +1)(2N +1) (cid:88)N =⇒3 j2 =−3 +N =N3 =⇒ = = j2 2 2 6 j=1 j=1 (cid:88)N (cid:88)N (cid:88)N j4−(j−1)4 =N4 = j4−(j4−4j3+6j2−4j+1)= 4j3−6j2+4j−1= j=1 j=1 j=1 (cid:88)N N(N +1)(2N +1) N(N +1) =4 j3−6 +4 −N =N4 6 2 j=1 (cid:88)N 1 1 =⇒ j3 = (N4+N(N +1)(2N +1)−2N(N +1)+N)= (N4+(2N)N(N +1)−N(N +1)+N) 4 4 j=1 1 1 1(N(N +1))2 = (N4+2N3+2N2−N2−N +N)= N2(N2+2N +1)= 4 4 4 2 8 Exercise1. Inductionproof. 1(1+1) N(cid:88)+1 (cid:88)n n(n+1) n(n+1)+2(n+1) (n+2)(n+1) j = j+n+1= +n+1= = 2 2 2 2 j=1 j=1 Exercise6. (1) 1 1 8k+8 (2k+3)2 A(k+1)=A(k)+k+1= (2k+1)2+k+1= (4k2+4k+1)+ = 8 8 8 8 (2) Then=1caseisn’ttrue. (3) (n+1)n n2+n n2+n+ 1 1+2+···+n= = < 4 2 2 2 (cid:181) (cid:182) 2n+1 2 1 (n+1/2)2 n2+n+1/4 and = = 2 2 2 2 Exercise7. (1+x)2 >1+2x+2x2 1+2x+x2 >1+2x+2x2 0>x2 =⇒ Impossible (1+x)3 =1+3x+3x2+x3 >1+3x+3x2 =⇒x3 >0 Bywell-orderingprinciple,wecouldarguethatn=3mustbethesmallestnumbersuchthat(1+x)n >1+2x+2x2. Or wecould(cid:2)nd,explicitly (cid:181) (cid:182) (cid:181) (cid:182) (cid:88)n n n(n−1) (cid:88)n n (1+x)n = xj =1+nx+ x2+ xj j 2 j j=0 j=3 and n(n−1) >n 2 n2−n>2n n2 >3n n>3 Exercise8. a ≤ca ,a ≤ca ≤c2a 2 1 3 2 1 a ≤ca ≤ca cn−1 =a cn n+1 n 1 1 Exercise9. √ n=1, 1=1 (cid:113) (cid:112) √ √ √ 12+12 = 2 ( 2)2+12 = 3 (cid:113) √ √ ( n)2+12 = n+1 Exercise10. 1=qb+r q =0,b=1,r =1 2=qb+r,q =0,r =2,b=1,2orr =0,q =2;q =1,r =0 Assumen=qb+r;0≤r <b;b∈Z+,b(cid:2)xed n+1=qb+r+1=qb+1+r =qb+1+b−1=(q+1)b+0 Exercise11. Forn>1,n=2,3areprime. n=4=2(2),aproductofprimes. Assumethek−1thcase. Consider k,1≤j ≤k. j If k ∈Z+,onlyforj =1,j =k,thenkprime. j If k ∈Z+,forsome1<j <k, k =c∈Z+. c,j <k. j j Thusk =cj. c,j areproductsofprimesorareprimes,byinductionhypothesis. Thuskisaproductofprimes. 9 Exercise12. n=2. G1,G2 areblonde. G1 hasblueeyes. ConsiderG2. G2 maynothaveblueeyes. ThenG1,G2 arenotall blue-eyed. I4.7Exercises-Proofofthewell-orderingprinciple,Thesummationnotation. Exercise1. (cid:80) (1) n(n+1) = 4 k =10 (cid:80)2 k=(cid:80)1 (2) 5 2n−2 = 3 2n =1+14=15 (cid:80)n=2 (cid:80)n=0 (3) 2 3 22r =2 3 4r =170 (cid:80) r=0 r=0 (4) 4 jj =1+4+27+44 =288 (cid:80)j=1 (5) 5 (2j+1)=25(6) +6(1)=36 j=0 (cid:179)2 (cid:180) (cid:80) (cid:80) (6) 1 = n 1 − 1 =1− 1 = n k(k+1) k=1 k k+1 n+1 n+1 Exercise2. (cid:80) (cid:80) (cid:80) (1) Want: nk=1(ak+bk)= nk=1ak+ nk=1bk (additiveproperty) a +b =a +b 1 1 1 1 (a +b )+(a +b )=(a +a )+(b +b ) 1 1 2 2 1 2 1 2 (a +b )+(a +b )+(a +b )=(a +a +a )+(b +b +b ) 1 1 2 2 3 3 1 2 3 1 2 3 n(cid:88)+1 (cid:88)n (cid:88)n (cid:88)n n(cid:88)+1 n(cid:88)+1 (a +b )= (a +b )+a +b = a +a + b +b = a + b k k k k n+1 n+1 k n+1 k n+1 k k k=1 k=1 k=1 k=1 k=1 k=1 (cid:80) (cid:80) (2) Want: nk=1(cak)=c nk=1ak (homogeneousproperty). ca =(c)a 1 1 ca +ca =c(a +a ) 1 2 1 2 ca +ca +ca =c(a +a +a ) 1 2 3 1 2 3 n(cid:88)+1 (cid:88)n n(cid:88)+1 (ca )=c a +ca =c a k k n+1 k k=1 k=1 k=1 (cid:80) (3) Want: nk=1(ak−ak−1)=an−a0 (telescopingproperty) (cid:88)n (cid:88)n (cid:88)n (cid:88)n (a −a )= (a +(−a ))= a + (−1)a = k k−1 k k−1 k k−1 k=1 k=1 k=1 k=1 n(cid:88)−1 n(cid:88)−1 =a + a +(−1) a −a =a −a n k k 0 n 0 k=1 k=1 (cid:80) (cid:80) Exercise3. nk=11= k=1(k−(k−1))=n Exercise4. k2−(k−1)2 =k2−(k2−2k+1)=2k−1 (cid:88)n (cid:88)n (2k−1)= k2−(k−1)2 =n2−0=n2 k=1 k=1 (cid:80) Exercise5. nk=1k = n22+n = n(n2+1) Exercise6. (cid:195) (cid:33) (cid:88)n (cid:88)n (cid:88)n n(n+1) n k3−(k−1)3 =n3 = 3k2−3k+1=3 (k2)− + 2 3 k=1 k=1 k=1 (cid:88)n n3 n2 n =⇒ k2 = + + 3 2 6 k=1 10

Description:
SOLUTIONS TO CALCULUS VOLUME 1 BY TOM APOSTOL. SOLUTIONS TO VOLUME 1 One-Variable Calculus, with an Introduction to Linear
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.