ebook img

SOLUTIONS TO CALCULUS VOLUME 1 BY TOM APOSTOL. Fund Science! PDF

236 Pages·2014·1.16 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview SOLUTIONS TO CALCULUS VOLUME 1 BY TOM APOSTOL. Fund Science!

SOLUTIONS TO CALCULUS VOLUME 1 BY TOM APOSTOL. ERNESTYEUNG FundScience! &HelpErnestfinishhisPhysicsResearch! : quantumsuper-A-polynomials-athesisbyErnestYeung http://igg.me/at/ernestyalumni2014 Facebook: ernestyalumni gmail: ernestyalumni google: ernestyalumni linkedin: ernestyalumni tumblr: ernestyalumni twitter: ernestyalumni weibo: ernestyalumni youtube: ernestyalumni indiegogo: ernestyalumni ErnestYeungissupportedbyMr. andMrs. C.W.Yeung,Prof. RobertA.Rosenstone,MichaelDrown,ArvidKingl,Mr. andMrs. ValerieCheng,andtheFoundationforPolishSciences,WarsawUniversity. SOLUTIONSTO VOLUME1One-VariableCalculus,withanIntroductiontoLinearAlgebra I2.5Exercises-Introductiontosettheory,Notationsfordesignatingsets,Subsets,Unions,intersections,complements. Exercise10. Distributivelaws LetX =A∩(B∪C),Y =(A∩B)∪(A∩C) Supposex∈X x∈Aandx∈(B∪C)=⇒x∈AandxisinatleastBorinC thenxisinatleasteither(A∩B)or(A∩C) x∈Y,X ⊆Y Supposey ∈Y yisatleastineither(A∩B)orA∩C theny ∈AandeitherinBorC y ∈X,Y ⊆X X =Y LetX =A∪(B∩C),Y =(A∪B)∩(A∪C) Supposex∈X thenxisatleasteitherinAorin(B∩C) ifx∈A,x∈Y ifx∈(B∩C),x∈Y x∈Y,X ⊆Y Supposey ∈Y thenyisatleastinAorinBandyisatleastinAorinC ify ∈A,theny ∈X ify ∈A∩Bory ∈A∪C,y ∈X (variouscarvingsoutofA,simply) ify ∈(B∩C),y ∈X y ∈X,Y ⊆X X =Y 1 Exercise11. Ifx∈A∪A,thenxisatleastinAorinA. Thenx∈A. SoA∪A⊆A. OfcourseA⊆A∪A. Ifx∈A∩A,thenxisinAandinA. Thenx∈A. SoA∩A⊆A. OfcourseA⊆A∩A. Exercise12. Letx∈A. y ∈A∪BifyisatleastinAorinB. xisinAsox∈A∪B. =⇒A⊆A∪B. Suppose∃b∈Bandb∈/ A. b∈A∪Bbutb∈/ A. soA⊆A∪B. Exercise13. Letx ∈ A∪∅, thenxisatleastinAorin∅. Ifx ∈ ∅, thenxisanullelement(notanelementatall). Then actualelementsmustbeinA. =⇒A∪∅⊆A. Letx∈A. Thenx∈A∪∅. A⊆A∪∅. =⇒A=A∪∅. Exercise14. Fromdistributivity,A∪(A∩B)=(A∪A)∩(A∪B)=A∩(A∪B). Ifx∈A∩(A∪B),x∈Aandx∈A∪B,i.e. x∈AandxisatleastinAorinB. =⇒ x is in A and is in B or is not in B. Then x ∈ A. =⇒ A ∩ (A ∪ B) ⊆ A. Of course, A ⊆ A ∩ (A ∪ B). =⇒A∩(A∪B)=A∪(A∩B)=A. Exercise15. ∀a ∈ A,a ∈ C and ∀b ∈ B,b ∈ C. Consider x ∈ A∪B. x isat leastin A orin B. In eithercase, x ∈ C. =⇒A∪B ⊆C. Exercise16. ifC ⊆AandC ⊆B, thenC ⊆A∩B ∀c∈C,c∈Aandc∈B x∈A∩B,x∈Aandx∈B.Then∀c∈C,c∈A∩B. C ⊆A∩B Exercise17. (1) ifA⊂BandB ⊂C then ∀a∈A,a∈B.∀b∈B,b∈C. thensincea∈B,a∈C,∃c∈C suchthatc∈/ B. ∀a∈A,a∈Bsoa(cid:54)=c∀a.=⇒A⊂C (2) IfA⊆B,B ⊆C,A⊆C since,∀a∈A,a∈B,∀b∈B,b∈C.Thensincea∈B,a∈C. A⊆C (3) A⊂BandB ⊆C. B ⊂C orB =C. A⊂Bonly. ThenA⊂C. (4) Yes,since∀a∈A,a∈B. (5) No,sincex(cid:54)=A(setsaselementsaredifferentfromelements) Exercise18. A−(B∩C)=(A−B)∪(A−C) Supposex∈A−(B∩C) thenx∈Aandx∈/ B∩C =⇒x∈/ B∩C thenxisnotinevenatleastoneBorC =⇒x∈(A−B)∪(A−C) Supposex∈(A−B)∪(A−C) thenxisatleastin(A−B)orin(A−C)=⇒xisatleastinAandnotinBorinAandnotinC thenconsiderwhenoneofthecasesistrueandwhenbothcasesaretrue =⇒x∈A−(B∩C) Exercise19. (cid:91) Supposex∈B− A A∈F (cid:91) thenx∈B,x∈/ A A∈F (cid:91) x∈/ A=⇒x∈/ A,∀A∈F A∈F (cid:92) since∀A∈F,x∈B,x∈/ A, thenx∈ (B−A) A∈F 2 (cid:92) Supposex∈ (B−A) A∈F thenx∈B−A andx∈B−A and ... 1 2 then∀A∈F,x∈B,x∈/ A thenx∈/ evenatleastoneA∈F (cid:91) =⇒x∈B− A A∈F (cid:92) Supposex∈B− A A∈F (cid:92) thenx∈/ A A∈F thenatmostx∈Afor∀A∈F butone thenxisatleastinoneB−A (cid:91) =⇒x∈ (B−A) A∈F (cid:91) Supposex∈ (B−A) A∈F thenxisatleastinoneB−A thenforA∈F,x∈Bandx∈/ A Consider∀A∈F (cid:92) =⇒ thenx∈B− A A∈F Exercise20. (1) (ii)iscorrect. Supposex∈(A−B)−C thenx∈A−B,x∈/ C thenx∈Aandx∈/ Bandx∈/ C x∈/ Bandx∈/ C =⇒x∈/ evenatleastBorC x∈A−(B∪C) Supposex∈A−(B∪C) thenx∈A,x∈/ (B∪C) thenx∈Aandx∈/ Bandx∈/ C =⇒x∈(A−B)−C Toshowthat(i)issometimeswrong, Supposey ∈A−(B−C) y ∈Aandy ∈/ B−C y ∈/ B−C theny ∈/ Bory ∈C ory ∈/ C (wheredoesthisleadto?) Considerdirectly, Supposex∈(A−B)∪C thenxisatleastinA−BorinC thenxisatleastinAand∈/ BorinC Supposex=c∈C andc∈/ A 3 (2) IfC ⊆A, A−(B−C)=(A−B)∪C I3.3Exercises-Thefieldaxioms. Thegoalseemstobetoabstracttheseso-calledrealnumbersintojustx’sandy’sthat arepurelybuiltupontheseaxioms. Exercise1. Thm. I.5. a(b−c)=ab−ac. Lety =ab−ac;x=a(b−c) Want: x=y ac+y =ab(byThm. I.2,possibilityofsubtraction) NotethatbyThm. I.3,a(b−c)=a(b+(−c))=ab+a(−c)(bydistributivityaxiom) ac+x=ac+ab+a(−c)=a(c+(−c))+ab=a(0+b)=ab ButthereexistsexactlyoneyorxbyThm. I.2. x=y. Thm. I.6. 0·a=a·0=0. 0(a)=a(0)(bycommutativityaxiom) Givenb∈Rand0∈R,∃exactlyone −bs.t. b−a=0 0(a)=(b+(−b))a=ab−ab=0(byThm. I.5. andThm. I.2) Thm. I.7. ab=ac ByAxiom4,∃y ∈Rs.t. ay =1 sinceproductsareuniquelydetermined,yab=yac=⇒(ya)b=(ya)c=⇒1(b)=1(c) =⇒b=c Thm. I.8. PossibilityofDivision. Givena,b,a(cid:54)=0,chooseysuchthatay =1. Letx=yb. ax=ayb=1(b)=b Therefore, there exists at least one x such that ax = b. But by Thm. I.7, there exists only one x (since if az −b, and so x=z). Thm. I.9. Ifa(cid:54)=0,thenb/a=b(a−1). b Letx= forax=b a y =a−1foray =1 Want: x=by Nowb(1)=b, soax=b=b(ay)=a(by) =⇒x=by(byThm. I.7) Thm. I.10. Ifa(cid:54)=0,then(a−1)−1 =a. Now ab = 1 for b = a−1. But since b ∈ R and b (cid:54)= 0 (otherwise 1 = 0, contradiction), then using Thm. I.8 on b, ab=b(a)=1; a=b−1. Thm.I.11. Ifab=0,a=0orb=0. ab=0=a(0)=⇒b=0orab=ba=b(0)=⇒a=0. (weusedThm. I.7,cancellationlawformultiplication) Thm. I.12. Want: x=yifx=(−a)bandy =−(ab). ab+y =0 ab+x=ab+(−a)b=b(a+(−a))=b(a−a)=b(0)=0 0isunique,soab+y =ab+ximpliesx=y(byThm. I.1) Thm. I.13. Want: x+y =z,ifa=bx,c=dy,(ad+bc)=(bd)z. (bd)(x+y)=bdx+bdy =ad+bc=(bd)z Sousingb,d(cid:54)=0,whichisgiven,andThm. I.7,thenx+y =z. 4 Thm. I.14. Want: xy =zforbx=a,dy =c,ac=(bd)z. (bd)(xy)=(bx)(dy)=ac=(bd)z b,d(cid:54)=0,sobyThm. I.7,xy =z. Thm.I.15. Want: x=yz,ifbx=a,dy =c,(bc)z =ad (bc)z =b(dy)z =d(byz)=da d(cid:54)=0sobyThm. I.7,byz =a,byz =abx b(cid:54)=0sobyThm. I.7,yz =x Exercise2. Consider0+z =0. ByThm. I.2,thereexistsexactlyonez,z =−0. ByAxiom4,z =0. 0=−0. Exercise3. Consider1(z)z(1)=1. Thenz =1−1. ButbyAxiom4,thereexistsdistinct1suchthatz(1)=1,soz =1. Exercise4. Supposethereexistsxsuchthat0x=1,but0x=0and0and1aredistinct,so zerohasnoreciprocal. Exercise5. a+(−a)=0,0+0=0. Then a+(−a)+b+(−b)=(a+b)+(−a)+(−b)=0 −(a+b)=−a+(−b)=−a−b Exercise6. a+(−a)=0,b+(−b)=0,so a+(−a)+b+(−b)=a+(−b)+(−a)+b=(a−b)+(−a)+b=0+0=0 −(a−b)=−a+b. Exercise7. (a−b)+(b−c)=a+(−b)+b+(−c)=a+(b+(−b))+(−c)=a−c Exercise8. (ab)x=1 (ab)−1 =x a(bx)=1 a−1 =bx b(ax)=1 b−1−ax a−1b−1 =(abx)x=1(x)=(ab)−1 Exercise9. Want: x=y =z,if a z = a=zt b+t=0 −b (−a) y = by =u a+u=0 b (cid:16)a(cid:17) (cid:16)a(cid:17) x=− +x=v+x=0 vb=a b b a+(−a)=vb+by =b(v+y)=0 ifb(cid:54)=0,v+y =0, butv+x=0 byThm. I.1,x=y b+t=0, thenz(b+t)=zb+zt=zb+a=z(0)=0 a+zb=0=⇒−a=zb=by sinceb(cid:54)=0,z =ysox=y =z Exercise10. Sinceb,d(cid:54)=0,Let ad−bc z = (bd)z =ad−bc bypreviousexerciseorThm. I.8,thepossibilityofdivision bd a x= bx=a b −c t= dt=−c(ByThm. I.3,weknowthatb−a=b+(−a)) d 5 dbx+bdt=(bd)(x+y)=ad−bc=(bd)z b,d(cid:54)=0, sox+y =z I3.5Exercises-Theorderaxioms. Theorem1(I.18). Ifa<bandc>0thenac<bc Theorem2(I.19). Ifa<bandc>0,thenac<bc Theorem3(I.20). Ifa(cid:54)=0,thena2 >0 Theorem4(I.21). 1>0 Theorem5(I.22). Ifa<bandc<0,thenac>bc. Theorem6(I.23). Ifa<band−a>−b. Inparticular,ifa<0,then−a>0. Theorem7(I.24). Ifab>0,thenbothaandbarepositiveorbotharenegative. Theorem8(I.25). Ifa<candb<d,thena+b<c+d. Exercise1. (1) ByThm. I.19,−c>0 a(−c)<b(−c)→−ac<−bc −bc−(−ac)=ac−bc>0.Thenac>bc(bydefinitionof>) (2) a<b→a+0<b+0→a+b+(−b)<b+a+(−a)→(a+b)−b<(a+b)+(−a) ByThm.I.18(a+b)+−(a+b)+(−b)<(a+b)−(a+b)+(−a) −b<−a (3) Ifa=0orb=0,ab=0,but0≯0 Ifa>0,thenifb>0,ab>0(b)=0. Ifb<0,ab<0(b)=0. Soifa>0,thenb>0. Ifa<0,thenifb>0,ab<0(b)=0. Ifb<0,ab>0(b)=0. Soifa<0,thenb<0. (4) a<csoa+b<c+b=b+c b<dsob+c<d+c ByTransitiveLaw,a+b<d+c Exercise2. Ifx=0,x2 =0. 0+1=1(cid:54)=0. Sox(cid:54)=0. Ifx(cid:54)=0,x2 >0, andbyThm. I.21,1>0 x2+1>0+0=0→x2+1(cid:54)=0 =⇒(cid:64)x∈Rsuchthatx2+1=0 Exercise3. a<0,b<0,a+b<0+0=0(ByThm. I.25) Exercise4. Considerax=1. ax=1>0.ByThm. I.24,a,xarebothpositiveora,xarebothnegative Exercise5. Definex,ysuchthatax=1,by =1. Wewantx>ywhenb>a. xb−ax=xb−1>0=⇒bx>1=by b>0sox>y Exercise6. 6 Ifa=bandb=c, thena=c Ifa=bandb<c, thena<c Ifa<bandb=c, thena<c Ifa<bandb<c, thena<c(bytransitivityoftheinequality) =⇒a≤c Exercise7. Ifa≤bandb≤c,thena≤c. Ifa=c,thenbypreviousproof,a=b. Exercise8. Ifa≤bandb≤c,thena≤c. Ifa=c,thenbypreviousproof,a=b. Exercise8. Ifaorbiszero,a2orb2 =0. ByThm. I.20,b2 ≥0ora2 ≥0,respectively. Otherwise,ifneitherarezero,bytransitivity,a2+b2 >0. Exercise9. Supposea≥x. Thena−x≥0. Ifa∈Rso∃y ∈R,suchthata−y =0. Considery+1∈R(byclosureunderaddition). a−(y+1)=a−y−1=0−1<0Contradictionthata≥y+1 Exercise10. Ifx=0, done. x Ifx>0,xisapositiverealnumber. Leth= . 2 x =⇒ >xContradiction. 2 I 3.12 Exercises - Integers and rational numbers, Geometric interpretation of real numbers as points on a line, Upperboundofaset,maximumelement,leastupperbound(supremum),Theleast-upper-boundaxiom(completeness axiom),TheArchimedeanpropertyofthereal-numbersystem,Fundamentalpropertiesofthesuprenumandinfimum. WeuseThmI.30,theArchimedeanpropertyofrealnumbers,alot. Theorem9(I.30). Ifx>0andifyisanarbitraryrealnumber,thereexistsapositiveintegernsuchthatnx>y. We will use the least upper-bound axiom (completeness axiom) alot for continuity and differentiation theorems later. Apostol states it as an axiom; in real analysis, the existence of a sup for nonempty, bounded sets can be shown with an algorithmtozoomintoasupwithmonotonicallyincreasingandmonotonicallydecreasingsequenceof“guesses”andshowing itsdifferenceisaCauchysequence. Axiom1(Leastupper-boundaxiom). EverynonemptysetS ofrealnumberswhichisboundedabovehasasuprenum;that is,there’sarealnumberBs.t. B =supS. Exercise1. 0<y−x. =⇒n(y−x)>h>0,n∈Z+,harbitrary y−x>h/n=⇒y >x+h/n>x soletz =x+h/nDone. Exercise2. x∈Rso∃n∈Z+suchthatn>x(Thm. I.29). Setofnegativeintegersisunboundedbelowbecause If∀m∈Z−,−x>−m,then−xisanupperboundonZ+. ContradictionofThm. I.29. =⇒∃m∈Zsuchthatm<x<n Exercise3. UseArchimedianproperty. x>0sofor1,∃n∈Z+suchthatnx>1,x> 1. n Exercise4. x is an arbitrary real number. By Thm. I.29 and well-ordering principle, there exists a smallest n+1 positive integersuchthatx < n+1(considerthesetofallm+1 > xandsobywell-orderingprinciple,theremustbeasmallest elementofthisspecificsetofpositiveintegers). Ifx=nforsomepositiveintegern,done. Otherwise,notethatifx<n,thenn+1couldn’thavebeenthesmallestelementsuchthatm>x. x>n. Exercise5. Ifx=n,done. Otherwise,considerallm>x. Bywell-orderingprinciple,thereexistsasmallestelementnsuch 7 thatn>x. Ifx+1<n,thenx<n−1,contradictingthefactthatnisthesmallestelementsuchthatx<n. Thusx+1>n. Exercise6. y−x>0. n(y−x)>h, harbitrary,n∈Z+ y >x+h/n=z >x Sincehwasarbitrary,thereareinfinitelymanynumbersinbetweenx,y. Exercise7. x= a ∈Q,y ∈/ Q. b a±by x±y = b (cid:18) (cid:19) a−mb Ifa±bywasaninteger,saym,theny =± whichisrational. Contradiction. b ay ay xy = = b 1 b n Ifaywasaninteger,ay =n,y = ,butyisirrational. =⇒xyisirrational. a x y yisnotaninteger Exercise8. Proofbycounterexamples. Wewantthatthesumorproductof2irrationalnumbersisnotalwaysirrational. Ify isirrational,y+1isirrational,otherwise,ify+1∈Q, y ∈Qbyclosureunderaddition. =⇒y+1−y =1 Likewise,y1 =1. y Exercise9. y−x>0=⇒n(y−x)>k,n∈Z+,karbitrary. Choosektobeirrational. Thenk/nirrational. k k y > +x>x.Letz =x+ ,zirrational. n n Exercise10. (1) Supposen=2m andn+1=2m . 1 2 1 2m +1=2m 2(m −m )=1 m −m = .Butm −m canonlybeaninteger. 1 2 1 2 1 2 2 1 2 (2) By the well-ordering principle, if x ∈ Z+ is neither even and odd, consider the set of all x. There must exist a smallestelementx ofthisset. Butsincex ∈Z+,thentheremustexistan<xsuchthatn+1=x . nisevenor 0 0 0 oddsinceitdoesn’tbelongintheaboveset. Sox mustbeoddoreven. Contradiction. 0 (3) (2m )(2m )=2(2m m )even 1 2 1 2 2m +2m =2(m +m )even 1 2 1 2 (2m +1)+(2m +1)=2(m +m +1)=⇒ sumoftwooddnumbersiseven 1 2 1 2 (n +1)(n +1)=n n +n +n+2+1=2(2m m ) 1 2 1 2 1 1 2 2(2m m )−(n +n )−1odd,theproductoftwooddnumbersn ,n isodd 1 2 1 2 1 2 (4) Ifn2even,niseven,sinceforn=2m,(2m)2 =4m2 =2(2m2)iseven. a2 =2b2. 2(b2)even. a2even,soaeven. Ifaevena=2n.a2 =4n2 Ifbodd,b2odd. bhasnofactorsof2b2 (cid:54)=4n2 Thusbiseven. 8 (5) For p,Ifporqorbothareodd,thenwe’redone. q Else,whenp,qarebotheven,p=2lm,q =2np,m,podd. p 2lm 2l−nm = = andatleastmorpodd q 2np p Exercise11. a canbeputintoaformsuchthataorbatleastisoddbythepreviousexercise. b However,a2 =2b2,soaeven,beven,bythepreviousexercise,part(d)or4thpart. Thus a cannotberational. b Exercise12. ThesetofrationalnumberssatisfiestheArchimedeanpropertybutnottheleast-upper-boundproperty. Since p ∈Q⊆R,np1 > p2 sinceifq ,q >0, q q1 q2 1 2 np q q p 1 2 > 1 2 np q >q p q q q q 1 2 1 2 1 2 1 2 nexistssince(p q ),(q p )∈R. 1 2 1 2 Thesetofrationalnumbersdoesnotsatisfytheleast-upper-boundproperty. ConsideranonemptysetofrationalnumbersS boundedabovesothat∀x= r ∈S,x<b. s Supposex<b ,x<b ∀x∈S. 1 2 r r <b <nb butlikewise <b <mb , n,m∈Z+ s 2 1 s 1 2 Soit’spossiblethatb >b ,butalsob >b . 1 2 2 1 I 4.4 Exercises - An example of a proof by mathematical induction, The principle of mathematical induction, The well-orderingprinciple. Considerthese2proofs. N +N +···+N =N2 N N−1 (cid:88) (cid:88) (N −1)+(N −2)+···+(N −(N −1))+(N −N)=N2− j = j j=1 j=1 N N (cid:88) (cid:88) N(N +1) N2+N =2 j =⇒ j = 2 j=1 j=1 Aninterestingpropertyisthat n n (cid:88) (cid:88) S = j = (n+m−j) j=m j=m Sothat N N m N (cid:88) (cid:88) (cid:88) (cid:88) m(m+1) N(N +1) j = j+ j = j+ = 2 2 j=1 j=m j=1 j=m N (cid:88) N(N +1)−m(m+1) (N −m)(N +m+1) j = = 2 2 j=m Anotherwaytoshowthisisthefollowing. S = 1+ 2+ ···+ (N −2)+ (N −1)+ N butS = N+ N −1+ ···+ 3+ 2+ 1 N(N +1) 2S =(N +1)N S = 2 9 Telescopingserieswillletyouget(cid:80)N j2andotherpowersofj. j=1 N (cid:88) N(N +1) (2j−1)=2 −N =N2 2 j=1 N N N (cid:18) (cid:19) (cid:88) (cid:88) (cid:88) N(N +1) (j2−(j−1)2)= (j2−(j2−2j+1))= (2j−1)=2 −N =N2 2 j=1 j=1 j=1 N N N (cid:88) (cid:88) (cid:88) (j3−(j−1)3)=N3 = (j3−(j3−3j2+3j−1))= (3j2−3j+1) j=1 j=1 j=1 (cid:88)N N(N +1) 2N3+2N −3N2−3N N(N +1)(2N +1) (cid:88)N =⇒3 j2 =−3 +N =N3 =⇒ = = j2 2 2 6 j=1 j=1 N N N (cid:88) (cid:88) (cid:88) j4−(j−1)4 =N4 = j4−(j4−4j3+6j2−4j+1)= 4j3−6j2+4j−1= j=1 j=1 j=1 N (cid:88) N(N +1)(2N +1) N(N +1) =4 j3−6 +4 −N =N4 6 2 j=1 N (cid:88) 1 1 =⇒ j3 = (N4+N(N +1)(2N +1)−2N(N +1)+N)= (N4+(2N)N(N +1)−N(N +1)+N) 4 4 j=1 1 1 1(N(N +1))2 = (N4+2N3+2N2−N2−N +N)= N2(N2+2N +1)= 4 4 4 2 Exercise1. Inductionproof. N+1 n 1(1+1) (cid:88) (cid:88) n(n+1) n(n+1)+2(n+1) (n+2)(n+1) j = j+n+1= +n+1= = 2 2 2 2 j=1 j=1 Exercise6. (1) 1 1 8k+8 (2k+3)2 A(k+1)=A(k)+k+1= (2k+1)2+k+1= (4k2+4k+1)+ = 8 8 8 8 (2) Then=1caseisn’ttrue. (3) (n+1)n n2+n n2+n+ 1 1+2+···+n= = < 4 2 2 2 (cid:18)2n+1(cid:19)2 1 (n+1/2)2 n2+n+1/4 and = = 2 2 2 2 Exercise7. (1+x)2 >1+2x+2x2 1+2x+x2 >1+2x+2x2 0>x2 =⇒ Impossible (1+x)3 =1+3x+3x2+x3 >1+3x+3x2 =⇒x3 >0 Bywell-orderingprinciple,wecouldarguethatn=3mustbethesmallestnumbersuchthat(1+x)n >1+2x+2x2. Or wecouldfind,explicitly n (cid:18) (cid:19) n (cid:18) (cid:19) (cid:88) n n(n−1) (cid:88) n (1+x)n = xj =1+nx+ x2+ xj j 2 j j=0 j=3 10

Description:
SOLUTIONS TO CALCULUS VOLUME 1 BY TOM APOSTOL. ERNEST YEUNG SOLUTIONS TO VOLUME 1 One-Variable Calculus, with an Introduction to Linear Algebra .. integer such that x x and so by well-ordering principle, there must be a smallest element
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.